University of Tasmania
Browse

File(s) under permanent embargo

Systematic structural coordination chemistry of p-tert-Butyltetrathiacalix[4]arene: further complexes of Lanthanide Metal Ions

journal contribution
posted on 2023-05-21, 14:25 authored by Bilyk, A, Dunlop, JW, Rebecca FullerRebecca Fuller, Hall, AK, Harrowfield, JM, Hosseini, MW, Koutsantonis, GA, Murray, IW, Skelton, BW, Sobolev, AN, Stamps, RL, White, AH

Extension of previous work on the lanthanide(III) ion complexes of p-tert-butyltetrathiacalix[4]arene has led to a variety of structurally characterised species containing oxo-, hydroxo- and aqua-ligands presumably derived from water present in the preparative medium, along with the thiacalixarene in various stages of deprotonation. The overall stoichiometry of some species is remarkably complicated due to the presence of simple anions and multiple solvents. Simplest is the binuclear complex [(μ-H2O){Ln(O-dmf)2}2(HL·dmf)2]·nS (dmf = dimethylformamide) [1Ln, Ln = Sm (nS = 2dmf), Eu (nS = 1.5dmf·2MeCN)], also the best-defined of all the arrays studied. The heaviest lanthanides give trinuclear Ln(OH)3·2Ln(LH)·xdmf·yH2O (2Ln, Ln = Yb, Lu), while both oxo and hydroxo species are isolable with Eu: trinuclear Eu3O(L)(LH)(LH4)·13dmf (3) and tetranuclear Eu4O(OH)2(L)(LH2)2(LH4)·12dmf (9), both somewhat atypical species containing uncoordinated thiacalixarene molecules within the lattice. Anion (NO3, ClO4) coordination, as in the tri- and tetranuclear species, 46Ln, 9, 10Ln, 11Ln, 12, seems especially favoured for the lighter lanthanides. In these arrays, the Ln3 and Ln4 aggregates are triangular or (quasi-)square-planar, except for Gd4O2(LH2)4·2H2O·2MeOH·2dmf·3.375CH2Cl2 (12), where there is a Z-disposition. Most common is an Ln3O core, which spans the gamut of Ln in three sets of crystal forms with cells of similar dimensions: for Ln = La...Nd, Ln3(OH)(NO3)4(LH2)2·4.5dmf (5Ln) (space group C2/m), and Sm...Lu, Ln3O(NO3)(LH)2·4H2O·2dmso·2MeCN·3py (6Ln) (space group P21/n), conformity with crystallographic symmetryentails disorder of the Ln atoms; in a further form of lowersymmetry Pn, (pyH)Ln3O(NO3)2(LH)2·2MeCN·xH2O·ydmso·1.5py·MeOH (7Ln, Ln = La, Ce), with no imposed crystallographic symmetry, some disorder persists, but none is found in the crystallographically unrelated form of 8Pr, Pr3O(NO3)(LH)2·16H2O·2MeCN·5py. Ln4(OH)(NO3)3(L)2·8dmf·2dmso·3H2O (10Ln, Ln = Pr...Gd, previously defined for Nd) has a square-planar Ln4O array sandwiched between a pair of L ligands, with a similar form found for Ln4O(ClO4)2(L2)·xdmf·yH2O (11Ln, Ln = La...Nd).

History

Publication title

European Journal of Inorganic Chemistry

Volume

2010

Issue

14

Pagination

2127-2152

ISSN

1434-1948

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag Gmbh

Place of publication

Po Box 10 11 61, Weinheim, Germany, D-69451

Rights statement

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC