University of Tasmania
green.pdf (358.54 kB)

Temperature influences swimming speed, growth and larval duration in coral reef fish larvae

Download (358.54 kB)
journal contribution
posted on 2023-05-16, 19:17 authored by Bridget Green, Fisher, R
The effects of temperature on growth, pelagic larval duration (PLD) and maximum swimming speed were compared in the tropical fish marine species Amphiprion melanopus, to determine how temperature change affects these three factors critical to survival in larvae. The effects of rearing temperature (25 and 28°C) on the length of the larval period and growth were examined in conjunction with the effects of swimming temperature (reared at 25°C, swum at 25 and 28°C, reared at 28°C, swum at 25 and 28°C) on critical swimming speed (U-crit). Larvae reared at 25°C had a 25% longer pelagic larval duration (PLD) than larvae reared at 28°C, 12.3 (±0.3) days compared with 9 (±0.6) days at 25°C. To offset this effect of reduced developmental rate, growth and U-crit were measured in larvae reared at 28 and 25°C at the same absolute age (7 days after hatching (dah)) and same developmental age (7 dah at 28°C cf. 11 dah at 25°C), corresponding to the day before metamorphosis. Larvae reared at 25°C were smaller than larvae reared at 28°C at the same absolute age (7 dah at 25°C cf. 7 dah at 28°C), yet larger at similar developmental age (11 dah at 25°C cf. 7 dah at 28°C) when weight and standard length were compared. This stage-specific size increase did not result in better performance in larvae at the same developmental age, as there was no difference in U-crit in premetamorphic larvae reared at either temperature (7 dah at 28°C c.f 11 dah at 25°C). However, U-crit was considerably slower in 7-day-old larvae reared at 25°C than larvae of the same absolute age (7 dah) reared at 28°C. Swimming temperature controls demonstrated that a change in temperature immediately prior to swimming tests did not effect swimming performance for larvae reared at either temperature. A decreased in rearing temperature resulted in longer larval durations, reduced growth rates and slower swimming development in larvae. However, the magnitude of the response of each of these traits varied considerably. As such, larvae reared at the lower temperature were a larger size at metamorphosis but had poorer relative swimming capabilities. This study highlights the importance of measuring a range of ecologically relevant traits in developing larvae to properly characterise their relative condition and performance in response to environmental change. © 2003 Elsevier B.V. All rights reserved.


Publication title

Journal of Experimental Marine Biology and Ecology








Institute for Marine and Antarctic Studies


Elsevier Science

Place of publication


Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania


    Ref. manager