University of Tasmania
Browse

Testing the Effect of Metabolic Rate on DNA Variability at the Intra-Specific Level

Download (359.4 kB)
journal contribution
posted on 2023-05-17, 02:27 authored by McGaughran, A, Barbara HollandBarbara Holland
We tested the metabolic rate hypothesis (whereby rates of mtDNA evolution are postulated to be mediated primarily by mutagenic by-products of respiration) by examining whether mass-specific metabolic rate was correlated with root-to-tip distance on a set of mtDNA trees for the springtail Cryptopygus antarcticus travei from sub-Antarctic Marion Island. Using Bayesian analyses and a novel application of the comparative phylogenetic method, we did not find significant evidence that contemporary metabolic rates directly correlate with mutation rate (i.e., root-to-tip distance) once the underlying phylogeny is taken into account. However, we did find significant evidence that metabolic rate is dependent on the underlying mtDNA tree, or in other words, lineages with related mtDNA also have similar metabolic rates. We anticipate that future analyses which apply this methodology to datasets with longer sequences, more taxa, or greater variability will have more power to detect a significant direct correlation between metabolic rate and mutation rate. We conclude with suggestions for future analyses that would extend the preliminary approach applied here, in particular highlighting ways to tease apart oxidative stress effects from the effects of population size and/or selection coefficients operating on the molecular evolutionary rate.

History

Publication title

PLOS One

Volume

5

Pagination

EJ

ISSN

1932-6203

Department/School

School of Natural Sciences

Publisher

Public Library Science

Place of publication

San Francisco, USA

Rights statement

Copyright: © 2010 McGaughran, Holland. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC