University of Tasmania

File(s) under permanent embargo

Testing the generality of above-ground biomass allometry across plant functional types at the continent scale

journal contribution
posted on 2023-05-19, 05:30 authored by Paul, KI, Roxburgh, SH, Chave, J, England, JR, Zerihun, A, Specht, A, Lewis, T, Bennett, LT, Baker, TG, Adams, MA, Huxtable, D, Montagu, KD, Falster, DS, Feller, M, Sochacki, S, Ritson, P, Bastin, G, Bartle, J, Wildy, D, Hobbs, T, Armour, JL, Waterworth, R, Stewart, HTL, Jonson, J, Forrester, DI, Applegate, G, Daniel Mendham, Bradford, M, Anthony O'Grady, Green, D, Sudmeyer, R, Rance, SJ, Turner, J, Barton, C, Wenk, EH, Grove, T, Attiwill, PM, Pinkard, E, Butler, D, Brooksbank, K, Spencer, B, Snowdon, P, O'Brien, N, Battaglia, M, Cameron, DM, Hamilton, S, McAuthur, G, Sinclair, J
Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84–95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9–356 Mg ha−1). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).


Publication title

Global Change Biology










Tasmanian Institute of Agriculture (TIA)


Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

© 2015 John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania


    Ref. manager