University Of Tasmania

File(s) under permanent embargo

The ~1.85 Ga carbonatite in north China and its implications on the evolution of the Columbia supercontinent

journal contribution
posted on 2023-05-19, 23:34 authored by Xie, Y, Qu, Y, Zhong, R, Verplanck, PL, Sebastien MeffreSebastien Meffre, Xu, D
Mantle-derived carbonatites provide a unique window in the understanding of mantle characteristics and dynamics, as well as insight into the assembly and breakup of supercontinents. As a petrological indicator of extensional tectonic regimes, Archean/Proterozoic carbonatites provide important constraints on the timing of the breakup of ancient supercontinents. The majority of the carbonatites reported worldwide are Phanerozoic, in part because of the difficulty in recognizing Archean/Proterozoic carbonatites, which are characterized by strong foliation and recrystallization, and share broad petrologic similarities with metamorphosed sedimentary lithologies. Here, we report the recognition of a ∼1.85 Ga carbonatite in Chaihulanzi area of Chifeng in north China based on systematic geological, petrological, geochemical, and baddeleyite U-Pb geochronological results. The carbonatite occurs as dikes or sills emplaced in Archean metasedimentary rocks and underwent intense deformation. Petrological and SEM/EDS results show that calcite and dolomite are the dominant carbonate minerals along with minor and varied amounts of Mg-rich mafic minerals, including forsterite (with Fo N 98), phlogopite, diopside, and an accessory amount of apatite, baddeleyite, spinel, monazite, and ilmenite. The relatively high silica content together with the non-arc and OIB-like trace element signatures of the carbonatite indicates a hot mantle plume as the likely magma source. The depleted Nd isotopic signatures suggest that plume upwelling might be triggered by the accumulation of recycled crust in the deep mantle. As a part of the global-scale Columbia supercontinent, the Proterozoic tectonic evolution of the North China Craton (NCC) provides important insights into the geodynamics governing amalgamation and fragmentation of the supercontinent. The Paleo-Mesoproterozoic boundary is the key point of tectonic transition from compressional to extensional settings in the NCC. The newly identified ∼1.85 Ga carbonatite provides a direct link between the long-lasting supercontinental breakup and plume activity, which might be sourced from the "slab graveyard," continental crustal slabs subducted into asthenosphere, beneath the supercontinent. The carbonatite provides a precise constraint of the initiation of the continental breakup at ∼1.85 Ga.


Australian Research Council

AMIRA International Ltd

ARC C of E Industry Partner $ to be allocated

Anglo American Exploration Philippines Inc

AngloGold Ashanti Australia Limited

Australian National University

BHP Billiton Ltd

Barrick (Australia Pacific) PTY Limited

CSIRO Earth Science & Resource Engineering

Mineral Resources Tasmania

Minerals Council of Australia

Newcrest Mining Limited

Newmont Australia Ltd

Oz Minerals Australia Limited

Rio Tinto Exploration

St Barbara Limited

Teck Cominco Limited

University of Melbourne

University of Queensland

Zinifex Australia Ltd


Publication title

Gondwana Research








School of Natural Sciences


Int Assoc Gondwana Research

Place of publication

Kochi Univ, Faculty Science Akebono-Cho 2-5-1, Kochi, Japan, 780-8520

Rights statement

Copyright 2018 International Association for Gondwana Research

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences