University Of Tasmania

File(s) under permanent embargo

The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity

journal contribution
posted on 2023-05-20, 11:36 authored by Radeloff, VC, Dubinin, M, Coops, NC, Allen, AM, Thomas BrooksThomas Brooks, Clayton, MK, Costa, GC, Graham, CH, Helmers, DP, Ives, AR, Kolesov, D, Pidgeon, AM, Rapacciuolo, G, Razenkova, E, Suttidate, N, Young, BE, Zhu, L, Hobi, ML
Remotely sensed data can help to identify both suitable habitat for individual species, and environmental conditions that foster species richness, which is important when predicting how biodiversity will respond to global change. The question is how to summarize remotely sensed data so that they are most relevant for biodiversity analyses, and the Dynamic Habitat Indices are three metrics designed for this. Our goals here were to a) derive, for the first time, the Dynamic Habitat Indices (DHIs) globally, and b) use these to evaluate three hypotheses (available energy, environmental stress, and environmental stability) that attempt to explain global variation in species richness of amphibians, birds, and mammals. The three DHIs summarize three key measures of vegetative productivity: a) annual cumulative productivity, which we used to evaluate the available energy hypothesis that more energy is associate with higher species richness; b) minimum productivity throughout the year, which we used to evaluate the environmental stress hypothesis that higher minima cause higher species richness, and c) seasonality, expressed as the annual coefficient of variation in productivity, which we used to evaluate the environmental stability hypothesis that less intra-annual variability causes higher species richness. We calculated the DHIs globally at 1-km resolution from MODIS vegetation products (NDVI, EVI, LAI, fPAR, and GPP), based on the median of the good observations of all years from the entire MODIS record for each of the 23 or 46 possible dates (8- vs. 16-day composites) during the year, and calculated species richness for three taxa (amphibians, birds, and mammals) at 110-km resolution from species range maps from the IUCN Red List. We found marked global patterns of the DHIs, and strong support for all three hypotheses. The three DHIs for a given vegetation product were well correlated (Spearman rank correlations ranging from −0.6 (cumulative vs. variation DHIs) to −0.93 (variation vs. minimum DHI)). Similarly, DHI components derived from different MODIS vegetation products were well correlated (0.8–0.9), and correlations of the DHIs with temperature and precipitation were moderate and strong respectively. All three DHIs were well correlated with species richness, showing in ranked order positive correlations for cumulative DHI based on GPP (Spearman rank correlations of 0.75, 0.63, and 0.67 for amphibians, resident birds, and mammals respectively) and minimum DHI (0.73, 0.83, and 0.62), and negative for variation DHI (−0.69, −0.83, and −0.59). Multiple linear models of all three DHIs explained 67%, 65%, and 61% of the variability in species richness of amphibians, resident birds, and mammals, respectively. The DHIs, which are closely related to well-established ecological hypotheses of biodiversity, can predict species richness well, and are promising for application in biodiversity science and conservation.


Publication title

Remote Sensing of Environment








Institute for Marine and Antarctic Studies


Elsevier Science Inc

Place of publication

360 Park Ave South, New York, USA, Ny, 10010-1710

Rights statement

© 2018 Elsevier Inc. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Assessment and management of Antarctic and Southern Ocean ecosystems

Usage metrics

    University Of Tasmania