University of Tasmania
Browse

File(s) not publicly available

The Parsec-scale Structure and Evolution of the Nearby Fanaroff-Riley Type II Radio Galaxy Pictor A

journal contribution
posted on 2023-05-16, 12:18 authored by Tingay, SJ, Jauncey, DL, Reynolds, JE, Tzioumis, AK, Peter McCullochPeter McCulloch, Simon EllingsenSimon Ellingsen, Costa, ME, James LovellJames Lovell, Preston, RA, Simkin, SM
We present very long baseline interferometry (VLBI) images of the core emission from a nearby bright FR II radio galaxy, Pictor A, revealing its parsec-scale jet structure and evolution for the first time. These data constitute a significant addition to our knowledge of powerful radio galaxies on the smallest scales, effectively doubling the number studied at this resolution. The jet, 14 h-1 pc in projected extent, is directed west of the core for the first 5 h-1 pc and then appears to bend approximately 40° to the north. Apparent motions for three of the five parsec-scale jet components have been estimated, 0.5 ± 0.4, 1.1 ± 0.5, and 0.4 ± 0.7 h-1c, indicating that subluminal motion is likely. No parsec-scale counterjet has been detected, allowing only lower limits on the jet-to-counterjet surface brightness ratio to be estimated. Two models, one describing the apparent 40° bend in the parsec-scale jet as an intrinsic deflection of the jet and one describing it as the effect of jet precession, may each be plausible and should be testable with future VLBI observations. By adopting the jet deflection model to describe the apparent 40° bend, we estimate that the Pictor A jet is initially inclined to our line of sight by less than 51°. Comparing this result with VLBI observations of Cygnus A suggests that, while the components in both jets are consistent with at least mildly relativistic speeds, the Pictor A jet lies significantly closer to our line of sight than the Cygnus A jet. This conclusion is consistent with both the parsec-scale radio structures and the kiloparsec-scale orientations of the host galaxies as well as the "unified model" interpretation of the optical spectra from these two objects.

History

Publication title

The Astronomical Journal

Volume

119

Issue

4

Pagination

1695-1700

ISSN

0004-6256

Department/School

School of Natural Sciences

Publisher

University of Chicago Press

Place of publication

Chicago

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC