The Productora Cu-Au-Mo deposit, Chile: A Mesozoic magmatic-hydrothermal breccia complex with both porphyry and IOCG affinities
The Productora Cu-Au-Mo deposit is hosted by a Cretaceous hydrothermal breccia complex in the Coastal Cordillera of northern Chile. The current resource, which includes the neighboring Alice Cu-Mo porphyry deposit, is estimated at 236.6 Mt grading 0.48% Cu, 0.10 g/t Au, and 135 ppm Mo. Local wall rocks consist of a thick sequence of broadly coeval rhyolite to rhyodacite lapilli tuffs (128.7 ± 1.3 Ma; U-Pbzircon) and two major intrusions: the Cachiyuyito tonalite and Ruta Cinco granodiorite batholith (92.0 ± 1.0 Ma; U-Pbzircon). Previous studies at Productora concluded the deposit had strong affinities with the iron oxide copper-gold (IOCG) clan and likened the deposit to Candelaria. Based on new information, we document the deposit geology in detail and propose a new genetic model and alternative classification as a magmatic-hydrothermal breccia complex with closer affinities to porphyry systems.
Hydrothermal and tectonic breccias, veins, and alteration assemblages at Productora define five paragenetic stages: stage 1 quartz-pyrite–cemented breccias associated with muscovite alteration, stage 2 chaotic matrix-supported tectonic-hydrothermal breccia with kaolinite-muscovite-pyrite alteration, stage 3 tourmaline-pyrite-chalcopyrite ± magnetite ± biotite-cemented breccias and associated K-feldspar ± albite alteration, stage 4 chalcopyrite ± pyrite ± muscovite, illite, epidote, and chlorite veins, and stage 5 calcite veins. The Productora hydrothermal system crosscuts earlier-formed sodic-calcic alteration and magnetite-apatite mineralization associated with the Cachiyuyito stock. Main-stage mineralization at Productora was associated with formation of the stage 3 hydrothermal breccia. Chalcopyrite is the dominant hypogene Cu mineral and occurs predominantly as breccia cement and synbreccia veins with pyrite.
The Alice Cu-Mo porphyry deposit is characterized by disseminated chalcopyrite and quartz-pyrite-chalcopyrite ± molybdenite vein stockworks hosted by a granodiorite porphyry stock. Alice is spatially associated with the Silica Ridge lithocap, which is characterized by massive, fine-grained, quartz-altered rock above domains of alunite, pyrophyllite, and dickite. Rhenium-Os dating of molybdenite indicates that main-stage mineralization at Productora occurred at 130.1 ± 0.6 Ma, and at 124.1 ± 0.6 Ma in the Alice porphyry.
Chalcopyrite and pyrite from Productora have δ34Ssulfide values from –8.5 to +2.2‰, consistent with a magmatic sulfur source and fluids evolving under oxidizing conditions. No significant input from evaporite- or seawater-sourced fluids was detected. Stage 3 tourmalines have average initial Sr of 0.70397, consistent with an igneous-derived Sr source.
The Productora magmatic-hydrothermal breccia complex formed as a result of explosive volatile fluid release from a hydrous intrusive complex. Metal-bearing fluids were of magmatic affinity and evolved under oxidizing conditions. Despite sharing many similarities with the Andean IOCG clan (strong structural control, regional sodic-calcic alteration, locally anomalous U), fluid evolution at the Productora Cu-Au-Mo deposit is more consistent with that of a porphyry-related magmatic hydrothermal breccia (sulfur-rich, acid alteration assemblages and relatively low magnetite contents, <5 vol %). The Productora camp is an excellent example of the close spatial association of Mesozoic magnetite-apatite, porphyry, and magmatic-hydrothermal breccia mineralization styles, a relationship seen throughout the Coastal Cordillera of northern Chile.
Funding
CSIRO-Commonwealth Scientific & Industrial Research Organisation
Hot Chili Ltd
The Australasian Institute of Mining and Metallurgy Education Endowment Fund
History
Publication title
Economic Geology and the Bulletin of the Society of Economic GeologistsVolume
115Pagination
543-580ISSN
0361-0128Department/School
School of Natural SciencesPublisher
Society of Economic Geologists, IncPlace of publication
United StatesRights statement
©2020 Society of Economic Geologists, Inc.Repository Status
- Restricted