University of Tasmania

File(s) not publicly available

The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands

journal contribution
posted on 2023-05-16, 14:00 authored by Jeffery SummersJeffery Summers, Davis, AS, Byblow, WD
The present study was designed to test two predictions from the coupled oscillator model of multifrequency coordination. First, it was predicted that multifrequency tasks that match the inherent manual asymmetry (i.e., the preferred hand assigned to the faster tempo) would be easier to learn than tasks that do not match the inherent dynamics (i.e., the non-preferred hand assigned to the faster tempo). Second, in the latter case acquisition of the multifrequency coordination would involve a reorganisation of the coupling dynamics such that the faster hand would exert a greater influence on the slower hand than vice versa. Sixteen right-handed volunteers received extensive training on a 2:1 coordination pattern involving a bimanual forearm pronation-supination task. Participants were randomly assigned to one of two groups: 1L:2R in which the preferred right hand performed the higher frequency, or 2L:1R in which the non-preferred left hand performed the higher frequency. The dynamic stability of the patterns was assessed by the ability of participants to maintain the coordination pattern as movement frequency was increased. Changes in the directional coupling between the hands was assessed by transition pathways and lead-lag relationship evident in a 1:1 anti-phase frequency-scaled coordination task performed prior to and following three practice sessions of the 2:1 task. The predicted differential stability between the multifrequency patterns was evident in the initial acquisition sessions but by the end of training the two patterns evidenced equivalent stability. Unexpectedly, for both groups the fast hand displayed greater variability in amplitude and movement frequency than the slow hand perhaps reflecting anchoring afforded to the slow hand by synchronising movement endpoints with the auditory pacing metronome. Analysis of pre- to post-training changes to the coupling dynamics in the 1:1 anti-phase task support the hypothesis that acquisition of the 2L:1R pattern involved reorganisation of the inherent dynamics. © 2002 Elsevier Science B.V. All rights reserved.


Publication title

Human Movement Science










School of Psychological Sciences


Elsevier Science BV

Place of publication

Amsterdam, Netherlands

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in psychology

Usage metrics

    University Of Tasmania


    Ref. manager