

University of Tasmania Open Access Repository

Cover sheet

Title

The amount of recycled crust in sources of mantle-derived melts

Author

Sobolev, AV, Hofmann, AW, Kuzmin, DV, Yaxley, GM, Arndt, NT, Chung, SL, Danyushevsky, LV, Elliott, T, Frey, FA, Garcia, MO, Gurenko, AA, Vadim Kamenetsky, Kerr, AC, Krivolutskaya, NA, Matvienkov, VV, Nikogosian, I, Rocholl, A, Sigurdsson, IA, Sushchevskaya, NM, Teklay, M

Bibliographic citation

Sobolev, AV; Hofmann, AW; Kuzmin, DV; Yaxley, GM; Arndt, NT; Chung, SL; et al. (2007). The amount of recycled crust in sources of mantle-derived melts. University Of Tasmania. Journal contribution. https://figshare.utas.edu.au/articles/journal_contribution/The_amount_of_recycled_crust_in_sources_of_mantle-derived_melts/23250944

Is published in: 10.1126/science.1138113

Copyright information

This version of work is made accessible in the repository with the permission of the copyright holder/s under the following,

Licence.

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections University of Tasmania Private Bag 3 Hobart, TAS 7005 Australia E oa.repository@utas.edu.au

http://discover.bio-rad.com

The Amount of Recycled Crust in Sources of Mantle-Derived Melts Alexander V. Sobolev, *et al. Science* **316**, 412 (2007); DOI: 10.1126/science, 1138113

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 19, 2007):

Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/316/5823/412

Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/1138113/DC1

This article **cites 38 articles**, 6 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/316/5823/412#otherarticles

This article appears in the following **subject collections**: Geochemistry, Geophysics http://www.sciencemag.org/cgi/collection/geochem_phys

Information about obtaining **reprints** of this article or about obtaining **permission to reproduce this article** in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright c 2007 by the American Association for the Advancement of Science; all rights reserved. The title SCIENCE is a registered trademark of AAAS.

The Amount of Recycled Crust in Sources of Mantle-Derived Melts

Alexander V. Sobolev,^{1,2}* Albrecht W. Hofmann,¹ Dmitry V. Kuzmin,^{1,3} Gregory M. Yaxley,⁴ Nicholas T. Arndt,⁵ Sun-Lin Chung,⁶ Leonid V. Danyushevsky,⁷ Tim Elliott,⁸ Frederick A. Frey,⁹ Michael O. Garcia,¹⁰ Andrey A. Gurenko,¹ Vadim S. Kamenetsky,⁷ Andrew C. Kerr,¹¹ Nadezhda A. Krivolutskaya,² Vladimir V. Matvienkov,¹² Igor K. Nikogosian,^{13,14} Alexander Rocholl,¹⁵ Ingvar A. Sigurdsson,¹⁶ Nadezhda M. Sushchevskaya,² Mengist Teklay¹⁷

Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many >60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.

It is widely accepted that the heterogeneity of the convecting mantle observed in the composition of mantle-derived magmas is largely due to subduction and recycling of oceanic crust into the deep mantle (1, 2). To understand the role of crustal material in creating compositional heterogeneities in the mantle and to evaluate the geodynamical consequences of this contribution, one must quantify the crustal

*To whom correspondence should be addressed. E-mail: sobolev@geokhi.ru

input to the mantle sources of common, mantlederived magmas in mid-oceanic ridges basalts (MORBs), ocean islands (OIBs), and large igneous provinces (LIPs). It is not possible to use incompatible element abundances in basalts to constrain the proportion of recycled component in the magma source because concentrations of these elements are also sensitive to the extent of melting. Similarly, the use of isotope ratios for making such quantitative estimates is compromised by the isotopic variability of subducted materials involved in the recycling process (2). We used an alternative approach based on a combination of major elements and compatible trace elements in parental melts, because these are more uniform in the mantle and are strongly controlled by the residual phases in equilibrium with partial melts (3-5).

Our method has its basis in the experimental and theoretical prediction that high-pressure (P >3.0 GPa) melting of typical recycled oceanic crust (in the form of eclogite with a separate SiO₂ phase) and reaction of this melt with peridotite produces olivine-free pyroxenite (5). We show that further melting of this hybrid lithology in the absence of residual olivine is more voluminous than the melting of peridotite (at a given pressure and temperature) and that pyroxenite-derived melts are characteristically enriched in Si and Ni but depleted in Mg, Ca, and Mn compared with their peridotite-derived counterparts. This difference arises because olivine principally controls the composition of melt produced in peridotite, whereas pyroxene mainly controls the composition of melt from olivine-free hybrid pyroxenite (5-8). Experimental data predict (9)that, as such pyroxenite-derived melts rise toward the surface, the decrease in pressure causes their saturation in olivine. This olivine is unusually Ni rich and Mn and Ca poor. With use of a new, large data set of high-precision analyses of olivine phenocrysts from OIBs, LIPs, MORBs, and komatiites, we show that hybrid pyroxenite is a common lithology in upwelling mantle and a major contributor to tholeiitic (silica-saturated) and transitional (moderately silica-undersaturated) magmas of OIBs and LIPs emplaced on thick oceanic or continental lithosphere.

Olivine data set. We use olivine phenocrysts as probes of parental melt composition, because olivine is the first phase to precipitate at low pressures in almost all mantle-derived magmas and because its forsterite content is an excellent measure of the degree of fractional crystallization allowing reconstruction of the parental melt composition.

Olivine phenocrysts were analyzed by electron microprobe using high probe currents and long counting times (10). This procedure routinely yields detection limits of around 6 to 15 parts per million (ppm) and errors (2 standard errors) of 15 to 30 ppm for trace elements (Ni, Ca, Mn, Cr, Co, and Al) and 0.01 mole percent (mol %) for forsterite content [defined as Fo = Mg/(Mg + Fe)], checked by repeated analysis of San Carlos olivine standard (11). In the following diagrams we use only high-precision data.

We have analyzed nearly 17,000 grains of olivine phenocrysts from 229 samples of tholeiitic to transitional compositions covering MORBs (40 samples) from Mid-Atlantic Ridge, East Pacific Rise, South-East Indian Ridge, and Knipovich Ridge; OIBs (138 samples) from Hawaiian Islands and Emperor Seamounts, Canary Islands, Reunion, Azores, and Iceland; LIPs (36 samples) from Ontong Java Plateau, Siberia, Emeishan, Karoo, Afar, and North Atlantic Province; komatiites and associated picrites (15 samples) from the Archean Abitibi greenstone belt in Canada and the Belingwe belt in Zimbabwe and South Africa; Proterozoic komatiitic basalts from Gilmour Island, Canada; and komatiites and picrites from Gorgona Island, Colombia. Most samples are picrites or olivine basalts containing large amounts of fresh, highmagnesium olivine phenocrysts. The samples are subdivided into four groups: (i) MORB; (ii) within plate magmas (WPM, magmas erupted far from plate boundaries) forming OIB emplaced over thin lithosphere (<70 km thick), WPM-THIN; (iii) WPM (OIB and LIP) emplaced over thick lithosphere (>70 km thick), WPM-THICK: and (iv) komatiites and associated magmas, KOMATIITES. Details of sample locations, references for sample descriptions, and their group correspondence are presented in table S2a.

The most-magnesian olivine compositions (defined by olivines phenocrysts with Fo within 1 mol % from a maximum Fo) for each specimen were averaged (table S2a) for the plots shown in Fig. 1. Individual olivine analyses are presented on fig. S4 and tables S2, c to f.

In addition to Mn and Ni concentrations, which strongly correlate with Fo (Fig. 1, A and

¹Max Planck Institute (MPI) for Chemistry, Post Office Box 3060, 55020 Mainz, Germany. ²Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Street 19, 119991 Moscow, Russia. ³Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptuyga prospekt 3, 630090 Novosibirsk, Russia. ⁴Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 Australia. ⁵Laboratoire de Géodynamique des Chaînes Alpines, Université de Grenoble, 38401 Grenoble cedex. France, ⁶Department of Geosciences, National Taiwan University, Post Office Box 13-318, Taipei 106, Taiwan. ⁷Australian Research Council, Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania, 7001, Australia. ⁸Department of Earth Sciences, Oueen's Road, Wills Memorial Building, University of Bristol, Bristol BS8 1RJ, UK. ⁹Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ¹⁰Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA. ¹¹School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3YE, UK. ¹²P. P. Shirshov Institute of Oceanology of Russian Academy of Sciences, Nakhimovsky prospekt 36, 117997 Moscow, Russia. 13 Department of Petrology, Faculty of Geosciences Utrecht University, Budapestlaan 4, Utrecht, Netherlands. ¹⁴Department of Petrology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands. ¹⁵Department of Earth and Environmental Sciences, University Munich, 80333 Munich, Germany. ¹⁶South Iceland Nature Centre, Strandvegur 50, Vestmannaeyjar, IS 900, Iceland. ¹⁷Department of Earth Science, University of Asmara, Asmara, Eritrea.

C), we also plot Mn/Fe and Ni versus Mg/Fe ratios (Fig. 1, B and D). These ratios do not vary significantly with olivine fractionation (see model curves Frac 1 and Frac 2) but nevertheless range considerably (Fig. 1, B and D). Most olivine phenocrysts from MORBs and many from komatiites have Mn and Ni contents similar to those of peridotite-derived melts. In contrast, most olivines from the WPM-THICK group are significantly depleted in Mn and enriched in Ni. Their concentrations are not compatible with the melting products of common peridotites. The olivines from the WPM-THIN group have intermediate Mn and Ni contents.

Concentrations of Ca also provide some discrimination in spite of the greater overlap. Most olivines from the WPM-THICK group are too low in Ca to have precipitated from peridotitederived melts (shown as experimental-based model compositions and fractionation trajectories, Fig. 1E).

Chromium is strongly controlled by garnet and spinel in peridotites and thus might be useful to decipher products of high-degree melting of

Fig. 1. (A to F) Average compositions of the most highly magnesian olivine phenocrysts in each sample. Concentrations and their ratios are given in ppm versus forsterite content of olivine in mol %. Olivine group names are as defined in text. PM, Herzberg indicates compositions of olivine in equilibrium at 0.1 MPa with melt originally generated at 3.0 to 5.0 GPa from fertile peridotite (12), calculated by Petrolog software (41) for oxygen fugacity corresponding to quartz-favalite-magnetite (QFM) buffer using the Herzberg model (4), PM, Kinzler, olivine compositions similar to PM, Herzberg but with Ni calculated by using Ni partitioning between olivine and melt from Kinzler et al. (28). Frac 1 is the trend of olivine composition during fractional crystallization from a melt derived from fertile peridotite at 3 GPa and 1515°C (12). Fractionation of olivine modeled up to 20% for oxygen fugacity corresponding to QFM buffer using the Herzberg model (4). Frac 2 is similar to Frac 1 but calculated for 35% crystallization of melt derived at 4.0 GPa and 1630°C (12). Green ellipse indicates field of olivine compositions compatible with peridotitic source. In (F), HRZ, Herzberg stands for calculated compositions of olivine from spinel- and garnet-free harzburgite restite using (4); LHRZ, Walter and HRZ, Walter indicate experimental olivines from lherzolite- and garnet-free harzburgite residual assemblages, respectively, produced by highpressure melting of fertile peridotite (12). Black ellipse marked "ol + low Ca-Px"

peridotite, which leave residuals (restites) free of Cr-rich phases (12). Olivines from Archean komatiites have the highest Cr values and match compositions of olivines from a spinel- and garnet-free refractory restite (Fig. 1F). They could, therefore, be derived directly from high-degree melting of peridotite. In the other groups of olivines, Cr is markedly lower than expected in equilibrium with peridotite at high pressures (see experimental data on lherzolite melting, Fig. 1F). The lowest Cr contents are found in MORB olivines, indicative of residual Cr spinel.

Cobalt (Fig. 2A) shows nearly uniform correlation with Fo for all rock groups, with possibly only minor (around 5%) relative enrichment in WPM-THICK and WPM-THIN over MORB (estimated from group average Co/Fe of table S2a). Decoupling of Co and Ni yields Ni/Co ratios of many WPM-THICK olivines that are unusually high for the Earth mantle (Fig. 2B).

Mn/Fe is the parameter least dependent on olivine fractionation (as shown by the model fractionation curves in Fig. 3). Thus, it is diagnostic of parental magma compositional differences. There is a significant negative correlation of Ni/Mg versus Mn/Fe (linear correlation coefficient *r* is 0.66 for 238 samples) in spite of strong dependence of Ni/Mg on the degree of olivine fractionation (see fractionation trajectories in Fig. 3A). This correlation improves (r = 0.88 for 103 samples) for the subset of olivines with a narrower range of Fo contents (Fo89 to Fo91). MORB olivines are the lowest in Ni and highest in Mn, whereas olivines from the WPM-THICK group are the highest in Ni and lowest in Mn, with olivines from the WPM-THIN group being intermediate.

To minimize the effects of olivine fractionation, we show parameters Ni/(Fe/Mg) and Ca/Fe in Fig. 3, B and C. This procedure also reduces the scatter in the ordinate significantly, thus highlighting the differences between geodynamic settings.

Fate of recycled oceanic crust. In subduction at P > 2.5 GPa, the basaltic and gabbroic portions of the oceanic crust are transformed completely to eclogite (clinopyroxene and garnet) with a free SiO₂ phase (13–15). Unless silica has been

indicates field of olivine compositions from refractory garnet- and spinel-free assemblage of olivine and low-Ca pyroxene.

RESEARCH ARTICLES

removed during subduction (16), this combination will also be the relevant assemblage during recycling to the upper mantle (17).

In the ascending mantle (e.g., a mantle plume or upstream flow of convecting mantle), the silica-oversaturated eclogite starts melting at higher pressures than the peridotite and produces high silica melt (18, 19). This melt reacts with olivine from peridotite, producing pyroxenes and garnet (5, 8, 19). Previous studies have envisioned that this reaction creates a refertilized peridotite enriched in pyroxene (19, 20). This conclusion would predict variable mixing proportions of individual ingredients (eclogitederived high-Si melt and peridotite) that are

Fig. 2. (**A** and **B**) Cobalt and nickel to cobalt ratio versus Fo of average Mgrich olivine phenocrysts. Pink band at Ni/Co 20 ± 1 represents estimated values for bulk silicate Earth (BSE), core, and chondrites (*39*). Arrows indicate trend of olivine compositions due to the mantle melting (melting) and magma crystallization (cryst). All other symbols are as on Fig. 1.

2.6

2.4 2.2 2 1.8

1.6

1.2

1 0.8 0.6 0.4

Α

I 00 Ni/Mg

B 2.6

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4 0.2

1.1

1.2

1.3

1.4

100Mn/Fe

1.5

1.6

Ni/(Mg/Fe)/1000

drastically different in composition. Melting such variable source compositions would create highly nonlinear correlations of $^{187}Os/^{188}Os$ and $^{87}Sr/^{86}Sr$ isotope ratios in the melts, and this is contradicted by the strongly linear correlations observed in Hawaiian basalts (21, 22), which are thought to have a significant eclogite component (3, 5).

However, it has been shown experimentally (23) and proposed on the basis of Korzinskii's theory (24) that, under conditions of local equilibrium, the reaction between high-Si eclogite-derived melt and peridotite produces an olivine-free lithology enriched in pyroxene (5). This fundamentally differs from a partial reaction (19, 20) because it leads to a stable pyroxenite lithology (hybrid py-

roxenite) generated by roughly fixed proportions of high-Si melt and peridotite [constrained by reaction stoichiometry between 40 and 60 weight % (wt %) of melt (5)] irrespective of the initial proportions of the reaction ingredients. Consequently, the hybrid pyroxenite has nearly uniform chemical and isotopic composition, thus constituting a single mixing endmember. Binary mixing of melts derived from peridotite and this pyroxenite leads to near-linear ⁸⁷Sr/⁸⁶Sr versus ⁸⁷Os/¹⁸⁸Os trends (5).

Other predicted geochemical consequences of replacement of olivine by pyroxene are a significant decrease of the bulk distribution coefficient between crystals and melt (K_d) for Ni

1.9

MIX. KINZLER

ERIDOTITE

17

18

(5, 6) and a decrease in the ratio of the bulk coefficients of Mn and Fe (7). These features occur because olivine is the major silicate phase in peridotite concentrating Ni and the only silicate phase in peridotite having K_d for Fe greater than K_d for Mn (7). The bulk K_d changes will increase Ni and lower the Mn/Fe ratio of pyroxenitederived melt compared with peridotite-derived melts. In addition, melting of pyroxenite yields lower Ca compared with peridotite (8). Additional predicted differences are higher melt fractions for hybrid pyroxenite than peridotite and higher Si and lower Mg in pyroxenitederived melt (5, 25, 26).

tal melting of a model hybrid pyroxenite (5). Experiments were run at P = 3.5 GPa and temperatures between 1400° and 1570°C in a conventional 1.27-cm piston-cylinder apparatus at the Australian National University (10, 19). These results, together with published experimental data for melting of peridotite (12), confirm the Ni and Mn relationships as well as melting rates predicted above (table S3 and fig. S5). From these data, we calculate equilibrium olivine compositions at low pressure (4, 27, 28) in order to compare them with the natural phenocryst data (Fig. 3). We used these results to estimate mixing proportions of melts derived from the two end-member sources for the olivine data sets representing different geodynamic settings. The end-member melt compositions were calculated from averaging experimental data on melting of pyroxenite and peridotite (10).

Quantitative estimates. We assumed mixtures (in 10% intervals) of the end-member melts (10) and calculated the composition of equilibrium olivines. The calculated mixing trajectories for the two different models for Ni partitioning are consistent with natural olivine data (Fig. 3B). The relation between Mn/Fe of modeled olivines and mixing proportions (10) was used to compute the amount of pyroxenite-derived component for individual samples (Fig. 4). Olivines from the WPM-THICK group of basalts yield an average of $61 \pm 16\%$ (standard deviation) pyroxenite-derived component, similar to results derived from Ni contents in Hawaiian melt inclusions and olivines only (5). The olivines from some continental LIPs (specific suits from Siberia and Karoo) indicate almost pure pyroxenitic sources. Corresponding results for the other groups are for WPM-THIN, $30 \pm 13\%$; for Archean komatiites, $21 \pm 10\%$; and for MORB, excluding one unusual sample from the Southern Atlantic (see below), $17 \pm 12\%$ [similar to predictions of (25)]. Because of the uncertainties involved in estimating the end-member compositions, the differences between groups are better constrained than the absolute numbers. Although MORBs contain the lowest proportion of pyroxenite-derived melt, the spread of MORB data is significant, and many samples do contain substantial amounts of pyroxenite-derived component [the extreme is the enriched in silica MORB sample from the Southern Atlantic (29) with 100% pyroxenite-derived component]. The calculations show that the Archean komatiites contain a significant amount of pyroxenitic component (maximum of 30% for samples from Canada and Belingwe), although the largest amount is in Proterozoic komatiitic basalts from Gilmour Island, Canada (up to almost 40%). From these calculations, an estimate of the amount of recycled oceanic crust (10) yields 4% for MORB, 11% for WPM-THIN group, 16% for WPM-THICK group, and around 13% for Archean komatiites. The highest estimate of

Fig. 4. Estimated amounts of pyroxenite-derived component in the parental melt for 229 samples of four different groups.

the amount of recycled oceanic crust (10) yield Ontong Java high-Mg lavas: 13% to 28%.

Silica-undersaturated basalts. Most of the magmas analyzed in this study are silica saturated (tholeiites or transitional). Only a few samples are moderately silica-undersaturated alkali magmas (e.g., Azores and Afar). Our database is representative of the normal oceanic crust, several of the world's major suites of flood basalts (LIPs), several of the major modern mantle plumes (30), and some komatiites. The strongly silicaundersaturated associations not covered here include continental rift basalts, many smaller ocean islands consisting mostly of alkali lavas, and also some larger-flux plumes (30) such as Pitcairn, Tahiti, and Cape Verde islands. Why are such basalts that are highly enriched in incompatible elements, and therefore presumably generated by very low degrees of melting, nearly always undersaturated in silica? This observation appears to contradict our model; one would expect that silica-saturated melts generated from hybrid pyroxenites should be prevalent, especially at very low melt fractions. There are several possible explanations. (i) A volatile (mostly CO_2 -) triggered melting of peridotite may be the dominant mechanism forming strongly silicaundersaturated alkaline magmas at temperatures lower than hybrid pyroxenite melts (31). (ii) Low-degree melts of silica-saturated eclogite may be retained in the source because of their high viscosity, thus preventing production of the hybrid pyroxenite (5). (iii) Melting of hybrid pyroxenite at the contact with peridotite may produce low-degree, silica-undersaturated melts at lower temperatures than melting of hybrid pyroxenite itself (8). (iv) Melting of bimineralic eclogites (no free silica phase) formed from silica-undersaturated recycled crust produces undersaturated alkaline magmas (16).

What controls the amount of pyroxenitederived melt? By following the method outlined above, we estimated the proportions of melt derived from pyroxenite and peridotite for each parental magma. These proportions depend on several interrelated parameters, namely the thickness of lithosphere, the potential mantle temperature (T_p) (32), and the amount of recycled crust in the upwelling mantle (Fig. 5). Because at the same $T_{\rm p}$ pyroxenite melts at higher pressure than peridotite (26), a thick lithosphere (which imposes a high lower limit on the depth of melting) will suppress low-depth peridotite melting and therefore favor a high proportion of pyroxenitederived melts (33, 34). The extreme case is found in some continental flood basalts (specific suites of Siberia and Karoo at table S2a) where the amount of pyroxenite-derived melt is nearly 100%. In such a case, the amount of recycled material cannot be estimated because the peridotitic component contributes no melt. In contrast, a thin lithosphere (MORB, Iceland, Azores, and Detroit seamount) favors a higher proportion of peridotite-derived melt because of the increasing degree of melting of peridotite at shallower depths.

RESEARCH ARTICLES

A high T_p is an important condition to maintain sufficient buoyancy of mantle plumes or any other upstream mantle flow, and this buoyancy limits the amount of dense eclogite that they can carry (35). Also, a high T_p affects mostly the proportion of peridotite-derived melt because fractional melting imposes a rather stringent upper limit to further melting at high melt fractions (36). High melt fractions are restricted to the eclogite and hybrid pyroxenite assemblages (26) (fig. S5). The peridotite assemblage produces lower melt fractions than pyroxenite (fig. S5) or eclogite (19, 25) at any given temperature and pressure, and its actual extent of melting therefore depends strongly on the specific T_p .

Lastly, why are the proportions of recycled component lower beneath mid-ocean ridges than in thick-lithosphere settings? We suggest several explanations: (i) Relatively low amount of dense recycled component in MORBs is limited by their $T_{\rm p}$, which is too low to carry more. (ii) For statistical reasons, plumes are more likely to encounter more-common thick lithosphere than less-common thin lithosphere and few plumes impinge directly on ridges, so we are forced to deal with very-small-number statistics. (iii) Detroit seamount represents one case where a (Hawaiian) plume has encountered thin lithosphere and where our results do indicate a high fraction of recycled crust, similar to those found on the island of Hawaii on the thick lithosphere.

This amount is significantly higher than for Iceland, probably reflecting the effect of a higher T_p of the Hawaiian plume (4). (iv) The surface expression of a plume emplaced under thick lithosphere requires high T_p , which is necessary for carrying a significant amount of recycled crust (35), allowing melts to form at higher pressures than for ordinary peridotite (5, 25, 26), and melting a peridotite at higher pressures [e.g., komatiites (37)].

Heterogeneous versus homogeneous mantle. The model presented here assumes that the recycled crustal component was not fully mixed with peridotite during subduction and mantle convection and thus that the formation of the olivine-free hybrid lithology may take place. On the other hand, homogenization of crustal material within the peridotite mantle should create a range of ultramafic lithologies with variable amounts of olivine, similar to a model by Kelemen et al. (20). Under these circumstances, the major-element contents of partial melts will correspond to the eutectic-like composition, buffered by the peridotite assemblage, whereas the compatible trace elements (Ni and Mn) will be controlled by the bulk partition coefficients of this assemblage and thus by the amount of olivine and pyroxene present in the system. Therefore, the amount of recycled crust can still be estimated on the basis of these trace elements, but their abundances will no longer correlate with the

Fig. 5. Schematic model illustrating interplay between amount of recycled crust, thickness of lithosphere, and $T_{\rm p}$. Blue, upwelling peridotitic mantle; red, recycled oceanic crust (eclogite with free SiO₂ phase); black dots, melting; yellow, reaction zones forming hybrid pyroxenite; pink, refractory restite after eclogite melting; and green, lithosphere. $X_{\rm px}$, amount of pyroxenite derived melt in the mixture with peridotite-derived melt, and $X_{\rm rc}$, amount of recycled oceanic crust in the peridotitic mantle (42).

buffered major elements (Si, Ca, and Al). For Hawaiian basalts, such correlations with Ni are present (5), which requires a strongly heterogeneous source.

Input from Earth's core? The Ni excess in mantle olivines from Siberian LIP (38) and the elevated Fe/Mn ratios in Hawaiian lavas (7) have been explained by input from Earth's core to the sources of mantle plumes. This suggestion is consistent with ¹⁸⁶Os/¹⁸⁸Os ratios for some Hawaiian and Gorgona lavas (39) but is contradicted by the fact that concentrations of highly siderofile (Pt) and chalcophile (Cu) elements reported for Hawaiian basalts are not affected by this process (5). Our olivine data provide strong arguments against any notable core contribution to Ni or Fe excess in the sources of mantle-derived magmas. Cobalt does not show significant excess in olivines (Fig. 2 and fig. S3) and is effectively decoupled from Ni. As a result, the Ni/Co ratio in most Ni-rich mantle plume olivines exceeds 30 at the typical mantle Fo range of 89 to 91 (Fig. 2). This is not expected from a core contribution, because Ni/Co ratios for both mantle and core are almost equal and close to the chondritic value of about 20 (40). In addition, Ca is significantly depleted in many high-Ni and low-Mn olivines from the WPM-THICK group, which cannot be explained by core contribution. Lastly, the olivines from Gorgona komatiites, which do show significant excess in ¹⁸⁶Os (39), do not indicate large anomalies in Ni and Mn/Fe, whereas Koolau lavas with the highest Ni excess and lowest Mn/Fe ratio in olivines do not show significant elevations in ¹⁸⁶Os/¹⁸⁸Os ratios (39). This suggests complete decoupling of these potentially strong indicators of coremantle exchange.

References and Notes

- 1. A. W. Hofmann, W. M. White, *Earth Planet. Sci. Lett.* 57, 421 (1982).
- A. W. Hofmann, in *The Mantle and Core*, vol. 2 of *Treatise* on *Geochemistry*, H. D. Holland, K. K. Turekian, Eds. (Elsevier, Amsterdam, 2003), p. 61.
- 3. E. H. Hauri, Nature 382, 415 (1996).
- 4. C. Herzberg, M. J. O'Hara, J. Petrol. 43, 1857 (2002).
- A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, I. K. Nikogosian, *Nature* 434, 590 (2005).
- Ni was first proposed as a monitor for replacement of olivine by pyroxene in (20).
- M. Humayun, L. P. Qin, M. D. Norman, Science 306, 91 (2004).
- 8. C. Herzberg, *Nature* **444**, 605 (2006).
- 9. S. M. Eggins, Contrib. Mineral. Petrol. 110, 387 (1992).
- 10. Materials and methods are available on *Science* Online.
- 11. E. J. Jarosevich, J. A. Nelen, J. A. Norberg, *Geostand Newsl.* **4**, 43 (1980).
- 12. M. J. Walter, J. Petrol. 39, 29 (1998).
- V. S. Sobolev, A. V. Sobolev, Dokl. Akad. Nauk SSSR 237, 437 (1977).
- T. Kogiso, M. M. Hirschmann, D. J. Frost, *Earth Planet.* Sci. Lett. **216**, 603 (2003).
- T. Kogiso, M. M. Hirschmann, M. Pertermann, J. Petrol. 45, 2407 (2004).
- 16. T. Kogiso, M. Hirschmann, *Earth Planet. Sci. Lett.* **249**, 188 (2006).
- A. Yasuda, T. Fujii, K. Kurita, J. Geophys. Res. 99, 9401 (1994).
- A. E. Ringwood, D. H. Green, *Tectonophysics* 3, 383 (1966).

- G. M. Yaxley, D. H. Green, Schweiz. Mineral. Petrogr. Mitt. 78, 243 (1998).
- P. B. Kelemen, S. R. Hart, S. Bernstein, *Earth Planet.* Sci. Lett. **164**, 387 (1998).
- E. H. Hauri, M. D. Kurz, Earth Planet. Sci. Lett. 153, 21 (1997).
- J. C. Lassiter, E. H. Hauri, *Earth Planet. Sci. Lett.* 164, 483 (1998).
- R. P. Rapp, N. Shimizu, M. D. Norman, G. S. Applegate, *Chem. Geol.* 160, 335 (1999).
- 24. D. S. Korzhinskii, *Theory of Metasomatic Zoning* (Clarendon, Oxford, 1970).
- M. M. Hirschmann, E. M. Stolper, *Contrib. Mineral. Petrol.* 124, 185 (1996).
- 26. G. M. Yaxley, Contrib. Mineral. Petrol. 139, 326 (2000).
- 27. P. Beattie, Contrib. Mineral. Petrol. 115, 103 (1993).
- 28. R. J. Kinzler, T. L. Grove, S. I. Recca, *Geochim. Cosmochim. Acta* **54**, 1255 (1990).
- 29. V. S. Kamenetsky et al., Geology 29, 243 (2001).
- 30. N. H. Sleep, Annu. Rev. Earth Planet. Sci. 20, 19 (1992).
- 31. G. H. Gudfinnsson, D. C. Presnall, J. Petrol. 46, 1645 (2005).
- 32. D. McKenzie, M. J. Bickle, J. Phys. Earth 38, 511 (1990).
- J. P. Morgan, Geochem. Geophys. Geosystems 2, 2000GC000049 (2001).
- 34. G. Ito, J. J. Mahoney, Earth Planet. Sci. Lett. 230, 29 (2005).

- 35. M. Pertermann, M. M. Hirschmann, J. Petrol. 44, 2173 (2003).
- 36. I. Kushiro, Annu. Rev. Earth Planet. Sci. 29, 71 (2001).
- 37. N. Arndt, J. Geophys. Res. 108, XX (2003).
- 38. I. D. Ryabchikov, Dokl. Earth Sci. 389, 437 (2003).
- 39. A. D. Brandon, R. J. Walker, *Earth Planet. Sci. Lett.* **232**, 211 (2005).
- W. F. McDonough, S. S. Sun, Chem. Geol. 120, 223 (1995).
- 41. L. V. Danyushevsky, J. Volcanol. Geotherm. Res. 110, 265 (2001).
- 42. D. McKenzie, M. J. Bickle, J. Petrol. 29, 625 (1988).
- We thank B. Schulz-Dobrick for supervising purchase and establishing electron microprobe facility in MPI; Hawaiian Scientific Drilling Project team, Koolau Scientific Drilling Project team, Ocean Drilling Program team, A. T. Anderson, E. A. Mathez, and N. Gitahi for providing samples;
 - E. J. Jarosevich for supplying microprobe standards; A. Yasevich for sample preparations and N. Groschopf
 - for maintaining the electron microprobe. The paper
 - benefited from discussions with M. Hirschmann,
 - P. Kelemen, C. Herzberg, B. McDonough, I. Ryabchikov,
 - L. Kogarko, A. Kadik, E. Galimov, V. Batanova. Constructive reviews of C. Herzberg, and P. Kelemen improved the

clarity of the manuscript. The study was supported by Wolfgang Paul Award of the Alexander von Humboldt Foundation, Germany, to A.V.S. Partial support from the following sources is also acknowledged: Russian Foundation for Basic Research (RFBR) grants 06-05-65234 and HLI-4264.2006.5 and Russian Academy of Sciences and Deutsche Forschungsgemeinschaft grant HO 1026/16-1 to A.V.S., RFBR grant 06-05-64651 to N.M.S., NSF grants EAR03-36874 to M.O.G. and EAR-0105557 to F.A.F., and Netherlands Research Center for Integrated Solid Earth Science grant 6.2.12 to I.K.N. This is School of Ocean and Earth Science and Technology, University of Hawaii, contribution no. 7104.

Supporting Online Material

www.sciencemag.org/cgi/content/full/1138113/DC1 SOM Text

Figs. S1 to S5 Tables S1 to S4 Data set

29 November 2006; accepted 16 March 2007 Published online 29 March 2007; 10.1126/science.1138113 Include this information when citing this paper.

Genes Required for Mitotic Spindle Assembly in *Drosophila* S2 Cells

Gohta Goshima,^{1,3}* Roy Wollman,^{2,3} Sarah S. Goodwin,¹ Nan Zhang,¹ Jonathan M. Scholey,² Ronald D. Vale,^{1,3}† Nico Stuurman^{1,3}

The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of *Drosophila* S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.

The diamond-shaped mitotic spindle has become one of the most widely recognized images in biology, emblematic of life's propagation through cell division. In higher eukaryotes, the process of spindle formation begins after nuclear envelope breakdown (NEB) when microtubules (MTs), generated both from centrosomes and from the vicinity of chromatin, are organized into a bipolar array (1–5). Sister chromatids bind to MTs emanating from opposite poles, are aligned in the middle of the bipolar MT network, and then ultimately separate and move apart during anaphase. Failures early in mitosis result in the formation of an abnormal metaphase

*Present address: Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. †To whom correspondence should be addressed. E-mail: vale@cmp.ucsf.edu spindle, which can lead to mitotic delay and, potentially, chromosome missegregation during the ensuing anaphase.

To understand the mechanism of metaphase spindle assembly, it is critical to identify the proteins required for this process and then dissect how they function. Many mitotic proteins have been identified through genetic and RNAi screens (6-10), but the inventory is likely incomplete. Here, we present a genome-wide screen for mitotic spindle morphology in *Drosophila* S2 cells and the functional analysis of unexpected genes discovered through the screen.

Identification of genes involved in metaphase spindle formation by high-throughput microscopy. Because the percentage of S2 cells in mitosis is low (~1%), we conducted our RNAi screen in the presence of dsRNA (doublestranded RNA) to Cdc27 (a subunit of the anaphase-promoting complex) to delay anaphase and thereby increase the percentage of metaphase cells (~10% of the population). Thus, our screen was designed to investigate the assembly of the metaphase spindle, but not anaphase or cytokinesis. We also rescreened the final hits without Cdc27 RNAi–induced mitotic arrest. The majority (88%) showed identical phenotypes, although a few genes only manifest clear phenotypes under conditions of mitotic arrest (table S1).

Using our custom, full-genome (14,425 genes) Drosophila RNAi library (11), we treated S2 cells with dsRNA for 4 days, conditions that generally reduce protein levels by >80% (12, 13). After dsRNA treatment, cells were fixed and stained for DNA, y-tubulin, MT, and phosphohistone H3 (pH3) in 96 well plates, and about 40 sites per well were imaged by automated microscopy with a high numerical aperture air objective to obtain relatively high-resolution images of mitotic spindles (Fig. 1A). To reduce the complexity of this large amount of image data, a custom computer code was used to identify, crop, and arrange mitotic spindles into galleries, which were then blindly scored by an observer (Fig. 1B and fig. S1). In addition, computer algorithms measured eight parameters of spindle shape, as well as the intensity of y-tubulin, cell number, and mitotic index (Fig. 1C) (11). More than 4,000,000 spindles were analyzed in this screen.

Before beginning this screen, we annotated 49 genes that produce mitotic defects in S2 cells (table S2). Of these 49 genes, 45 were identified as hits in the primary screen, indicating a high success rate of identifying mitotic phenotypes. However, our final list of genes should not be considered as a complete or universal inventory, because genes can be missed (particularly those with subtle phenotypes), and some phenotypes (or lack thereof) may be specific to S2 cells. False positives by off-target effects of dsRNA can occur in RNAi screens (14, 15), so precautions were taken to minimize gene overlap in the dsRNA design, and all unexpected hits were confirmed with another dsRNA that had no overlap with the first dsRNA (11). To learn more about the functions of interesting genes,

¹Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA. ²Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, 3203 Life Sciences, Davis, CA 95616, USA. ³Physiology Course, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.

Corrected 19 April 2007: Minor typographic erros have been corrected.

www.sciencemag.org/cgi/content/full/1138113/DC1

Supporting Online Material for

The Amount of Recycled Crust in Sources of Mantle-Derived Melts

Alexander V. Sobolev, Albrecht W. Hofmann, Dmitry V. Kuzmin, Gregory M. Yaxley, Nicholas T. Arndt, Sun-Lin Chung, Leonid V. Danyushevsky, Tim Elliott, Frederick A. Frey, Michael O. Garcia, Andrey A.Gurenko, Vadim S. Kamenetsky, Andrew C. Kerr, Nadezhda A. Krivolutskaya, Vladimir V. Matvienkov, Igor K. Nikogosian, Alexander Rocholl, Ingvar A. Sigurdsson, Nadezhda M. Sushchevskaya, Mengist Teklay

> Published 29 March 2006 on *Science* Express DOI: 10.1126/science.1138113

This PDF file includes:

Materials and Methods Figs. S1 to S5 Tables S1, S2a, S2b, and S3 References

Other Supporting Online Material for this manuscript includes the following: available at www.sciencemag.org/cgi/content/full/1138113/DC1

Table S2 (complete) as zipped file

The Amount of Recycled Crust in Sources of Mantle-Derived Melts

A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, et al.

Supporting Online Material Methods and Samples

Electron probe microanalysis. Olivine phenocrysts were analyzed for Si, Fe, Mg, Ca, Ni, Mn, Cr, Al and Co with a Jeol Jxa 8200 electron probe at Max-Planck Institute of Chemistry. Each olivine grain was analyzed in the geometrical center at 20 kV accelerating voltage and probe current of 300 nA. A small olivine subset was analyzed at 30 kV and 200nA. Details of analytical conditions are presented in Table S1. These conditions have been found optimal to obtain best detection limits (see Fig S1). The intensity of the Co Ka line was additionally corrected for overlap with the shoulder of FeK_{β} second order line using the following linear equation established by analyzing Fe bearing standards free of Co:

$$CoO_c = CoO_m - 0.0011 \times FeO_m - 0.013.$$
 [S1]

Where CoO_c and CoO_m , FeO_m -are corrected and measured values correspondingly.

The constant in equation [S1] was obtained from analyses of San Carlos olivine standard with known Co content (Table S1). Note that the linear approximation of equation [S1] may not be valid for highly Mg (Fo>93) and low Mg (Fo<70) olivines.

In addition San Carlos olivine standard USNM 111312/444 (S1) was run (3 points per each 30-50 measurement points) as an

Fig. S1. Detection limit for Mn as function of probe current and peak counting time (in seconds, sec).

Detection limit was determined for San Carlos olivine standard with Jeol software using background statistics and 3 sigma criterion. Typical measurement conditions used in literature are marked as "routine analysis". Analysis at higher beam current and counting times published by (S3) is marked as "precision analysis". The analytical conditions used in this study are indicated as "high precision analysis".

Fig. S2. Reproducibility of San Carlos olivine standard analyzed three times every 30 to 50-th measurement points. Measured- represent uncorrected measurements, corrected – stands for measurements corrected for the calibration drift.

 Table S1. Typical analytical conditions of electron probe microanalysis of olivine. Probe current 300 nA, acceleration voltage 20kV.

El	St	Cryst	Line	Peak	BG(+)	BG(-)	S.C.O.
Si	1	TAP	Κα	90	90		190740 *
Al	2	TAP	Κα	240	120	120	170 #
Fe	1	LIF	Κα	90	90	-	74230 *
Mn	3	LIFH	Κα	120	60	60	1084 *
Mg	1	TAP	Κα	90	45	45	298040 *
Ca	4	PETJ	Κα	120	60	60	665 #
Ni	5	LIF	Κα	150	70	70	2907 *
Co	6	LIFH	Κα	120	120	-	140 **
Gr	7	PETI	Ka	120	60	60	95 #

Notes for Table S1: Standards (St) - 1- San-Carlos olivine USNM 111312/444 (S.C.O.); 2-pure Al_2O_3 ; 3-Rhodonite; 4-Wollastonite; 5-pure NiO; 6- pure Cometal; 7-pure Cr_2O_3 . Peak and background (BG) counting time in seconds. *-Accepted values for (S.C.O.) from ref (S1) in ppm, **-value measured by LA-ICP MS.

unknown to monitor drifts in calibration and estimate accuracy of analysis. All measurements of Si, Fe, Mn, Ni, Ca and Al were corrected for deviation of this standard from the reference values (Table S1).

For trace elements, the above measurement conditions routinely yield detection limits of around 6-15 ppm based on 3 sigma criteria by Jeol standard software, and errors of 15-30 ppm for trace elements and 0.01 mol% for Fo content (2 standard errors) established by counting statistics and reproducibility of olivine standard (see Fig S1-S2). Precision and

Fig. S3. Comparison between Co and Mn concentrations in olivine measured by EPMA and LA-ICPMS. Error bar corresponds to \pm 2 standard errors for both EPMA and LA-ICP MS

accuracy of Co and Mn measurements were independently checked by LA-ICP MS analysis using Thermo Finnigan Element 2 mass spectrometer and New Wave Up213 YAG laser (213 nm wavelength) setup. KL2-G (*S4*) and NIST 612 glasses were used as a external standards and Ca in olivine as reference value. Figure S3 shows that both Co Table S2f. These tables are included as separate spreadsheets together with Table S2a in the Excel file called Table S2. Table S2a is also placed in the end of this file. Tables S2c,d,e,f include concentrations of oxides and their relative standard deviations in % (signal counting statistics) for individual olivine grains. Each analytical point in addition to **Melting of pyroxenites.** The model hybrid pyroxenite composition from Sobolev et al. (*S3*) (their Table S2, column 50%) was chosen for the high pressure experimental investigation. A synthetic starting material with this composition (Px-1) was prepared for the experiments by blending high purity oxides and carbonates under analytical grade

Fig. S4. Composition of olivine phenocrysts: all data from database. Group of MORB olivines shown on top of all groups.

and Mn concentrations measured by EPMA correspond to those analyzed by LA-ICP MS within 20 ppm (2 standard errors).

Olivine database. The averaged most highly magnesian olivines for each sample are presented in Table S2a. Individual olivine analyses are presented on Fig S4 and in Tables S2,c,d,e,f separately for each group: MORB in Table S2c, WPM-THIN in Table S2d, WPM-THICK in Table S2e and KOMATIITES in sample name has a unique number. Table S2a includes group title, sample name, reference for sample description (if published), information on locality, number of averaged high-Mg grains, forsterite content, element concentrations in ppm, standard errors of the mean in ppm, characteristic ratios of elements and calculated amount of pyroxenitic component (X_{px} , see below for explanation).

acetone for several hours, until the material was homogenous and very fine-grained. The resultant dried powder was then pelletised and fired for 12 hours at 1100°C to decarbonate and partially fuse the components. FeO was added after firing in the form of synthetic fayalite (Fe₂SiO₄), and again blended under acetone. The final mixture was then dried overnight at 200°C and subsequently stored at 110°C. The actual composition of the Px-1

starting material was checked by electron probe microanalysis of quenched glass prepared by fusing the starting mix at 1300°C in an Ar atmosphere in a box furnace and quenching in water (Table S3).

High pressure experiments were run at a pressure of 3.5 GPa and temperatures between 1400-1570°C in a conventional 1.27cm pistoncylinder apparatus at the Australian National University. The Px-1 starting material (\approx 1 mg) was loaded into graphite capsules, which were sealed by arc-welding in Pt outer capsules. The

capsules were placed centrally into NaClpyrex sleeves with MgO inserts, an assembly which requires no friction correction. Type B thermocouples $(Pt_6Rh_{94}/Pt_{30}Rh_{70})$ were employed, with the thermocouple join placed within a fraction of a millimeter of the Pt capsule. Runs were brought to run temperature and pressure simultaneously. Temperature was controlled throughout by Eurotherm controllers attached to the thermocouple and is accurate to $\pm 10^{\circ}$ C. Pressure is accurate to ± 0.1 GPa. Experiments were maintained at the desired PT condition long enough to allow a close approach to equilibrium, and then quenched by terminating power to the furnace.

After recovery from the post-run assembly, the Pt capsules were mounted in 1 inch diameter epoxy buttons, sectioned longitudinally and polished, in preparation for analysis by scanning electron microscopy at the Australian National University and electron probe microanalysis at the Max Planck Institute for Chemistry in Mainz.

Table S3. Proportions of phases produced and melt compositions from melting of pyroxenite at 3.5 GPa and 1400-1575°C.

Run	DT	Т	Phas	es propo	rtions, w	/t%				Melt co	ompositio	ns in oxide	e wt%, Ni	i in ppm			
Ν	h	° C	melt	Opx	Cpx	Ga	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	Cr_2O_3	Ni
C-2298	45	1400	8	0.	79	14	60.70	2.76	14.40	6.80	0.068	4.44	7.71	2.34	0.70	0.07	453
C-2317	48	1450	16	0	71	12	55.76	2.33	14.20	7.63	0.081	7.45	7.95	2.16	0.44	0.06	626
C-2301	5	1500	33	0	60	6	53.30	1.58	14.21	8.25	0.106	10.67	8.61	1.75	0.13	0.09	810
C-2330	5	1520	42	0	55	3	52.54	1.29	14.22	8.65	0.112	11.66	8.65	1.98	0.14	0.11	850
C-2332	5	1540	72	24	4	0	52.00	0.86	13.55	8.19	0.125	14.08	9.00	1.80	0.08	0.20	796
C-2318 6 1550 76 18 7 0			0	52.38	0.83	13.39	7.95	0.117	14.67	8.77	1.74	0.09	0.20	843			
C-2319	5	1575	79	20	0	0	52.20	0.79	13.07	8.11	0.126	15.44	8.52	1.67	0.07	0.22	841
		Px-1, Bul	k compo	sition			52.67	0.64	11.26	7.55	0.119	18.48	7.05	1.52	0.06	0.25	1000
	Per	idotite-de	rived en	dmembe	r		46.79	0.85	11.50	9.68	0.185	19.07	10.00	0.84	0.47	0.39	642
	Pyre	oxenite -d	erived er	ndmemb	er		52.56	1.07	13.71	8.24	0.117	13.32	8.72	1.79	0.10	0.16	830

Note for Table S3: Melt, Opx, Cpx, Ga, - proportions of melt, orthopyroxene, clinopyroxene and garnet in experimental runs in mass fractions, calculated using list square method from bulk composition and compositions of phases. DT- run duration in haurs, T- temperature in °C. The amount of Ni has been calculated using the method described in Sobolev et al, 2005 (S3). This method uses known phase proportions and the distribution of Ni between phases, to calculate Ni in the phases on the basis of mass balance and known bulk Ni content. The assumed bulk Ni concentrations are: 1000 ppm for pyroxenite (Px-1) and 1900 ppm for peridotite (S3).

Pyroxenite-derived component in melts. In order to estimate endmember compositions we have averaged compositions of melts of pyroxenite and peridotite (see Fig.S5). For pyroxenite we averaged all melt compositions except numbers C-2298 and C-2327 (Table S3) produced at low temperature and low percentage of melting. For peridotites we averaged 7 compositions of melts from runs 30.12, 30.07, 30.14, 30.1 (3.GPa), 40.06, 40.07, 40.05 (4.GPa) of Walter, 1998 (S2). The endmember compositions are shown in Table S3. We assumed that the mixtures consist of endmembers with similar temperatures, and we therefore excluded (from the averaging procedure) experimental melts with very low or very high temperatures (see Fig.S5).

The calculated endmember melts were then mixed (in 10% intervals) producing mixed melt compositions. For these melts the composition of equilibrium olivines were

Fig. S5. Melt fraction and composition of experimental melts of pyroxenite and fertile peridotite. Temperatures for experimental runs of fertile peridotite (S2) are extrapolated to 3.5 GPa by using slope 100C/GPa. Data for pyroxenite from Table S3. Crystalline phase coexisting with melt are: OI - olivine; Opx - orthopyroxene; Cpx - clinopyroxene; Ga - garnet. Blue and red ellipses indicate analyses averaged to calculate peridotite-derived and pyroxenite-derived endmembers respectively.

calculated using Herzberg's model (S5). The calculated Mn/Fe ratios of the olivines and the amounts of pyroxenitic endmember (X_{px}) yield a straight line:

$$X_{px} = 3.48 - 2.071 \times (100 \text{ Mn/Fe})$$
 [S2]

We used this equation to calculate the amount of pyroxenitic endmember for each average olivine composition in Table S2a.

The calculated endmember compositions are derived from experiments at high pressures and temperatures. Therefore, they are directly relevant primarily to thicklithosphere settings, but we have applied them for all settings. Equivalent estimates for lower pressures and temperatures (1.0 GPa and 1300-1350°C) have been calculated using pMELTS (S6). This yielded similar degrees of melting and residual assemblages (50 to 60% of melting and low-Ca pyroxene dominated residue) as those derived from high pressure and temperature runs (Table S3). This gives us some confidence that the same Mn/Fe ratios can be applied to lower pressures, but experimental confirmation will be needed. Additional confidence in the results is derived from the observation that the extreme compositions observed in both MORB and WPM-thick settings match the calculated endmember compositions reasonably well.

Oceanic crust in magma sources. A final step is to estimate the actual amount of recycled oceanic crust (X_{crc}) from the determined proportion of pyroxenite-derived melt. This quantity is linked to the proportion of hybrid pyroxenite-derived melt (X_{px}) by the degree of melting of eclogite (F_e) , the amount of eclogite-derived melt needed to produce hybrid pyroxenite from peridotite (X_e) , and the degrees of melting of peridotite (F_{px}) and pyroxenite (F_{px}) (S3):

$$X_{crc} = \frac{X_{e}}{F_{e}(\frac{1-X_{px}}{X_{px}}\frac{F_{px}}{F_{pe}} + \frac{1-F_{e}}{F_{e}}X_{e} + 1)}$$
[S3]

Following assumption of Sobolev et al, (2005) (S3), we propose that the extent of melting of eclogites reaches a maximum of 50%. This limit is unlikely to be exceeded significantly during fractional melting, because this process removes Na (S7) and thereby renders the residue highly refractory. Therefore it is also not strongly dependent on the potential temperature of the rising mantle material. The amount of pyroxenite produced by reaction of the primary (eclogite-derived) melt with peridotite is prescribed by the stoichiometry of the reaction, which also yields proportions of the reactants of close to 50:50 (S3). For these, proportions, the amount of reaction pyroxenite equals the amount of initial eclogite. The melt fraction produced by the pyroxenite can be estimated at low pressure (1-2 GPa by modeling using pMELTS software (S6)), yielding a maximum of about 60 % for batch melting at 1 GPa and 1320 to 1350°C. At higher pressures (3.5 GPa) we must rely on the experimental data (Table S3, Fig. S5), which also yield a maximum melt fraction of about 50-60% for batch melting for 1540-1550°C.

These values will be significantly lower for fractional melting (S8), for the same reason as discussed for eclogite melting (i.e. early Na removal). Adopting an amount of 50 % pyroxenite melting will therefore result in a minimum estimate in the amount of recycled crust present. Finally, we estimate the melt fraction of peridotite using published models (S5) for MORB (10%), Iceland, as a proxy for the WPM-THIN group (20%), Hawaii, as proxy for the WPM-THICK group (10%) and Archaean komatiites -40% (S9). This yields the following average estimates for the amounts of recycled oceanic crust in the mantle sources: 4% for MORB, 11% for WPM-THIN group, 16% for WPM-THICK group, and around 13% for Archean komatiites. According to (S10) the melt fraction of peridotite for Ontong Java high-Mg magmas corresponds to 30%, which yield the amount of recycled oceanic crust of 13-28% in the mantle source of these magmas.

Supporting Online References

- Sl. E. J. Jarosevich, J. A. Nelen, J. A. Norberg, Geostand. Newsl. 4, 43 (1980).
- M. J. Walter, Journal of Petrology 39, 29 (J1998).
 A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, I. K. Nikogosian, Nature
- 434, 590 (2005).S4. K. P. Jochum et al., Geostandards Newsletter-the Journal of Geostandards and
- K. P. Jochum et al., Geostanaaras Newsletter-the journal of Geostanaaras ana Geoanalysis 24, 87 (2000).
- S5. C. Herzberg, M. J. O'Hara, Journal of Petrology 43, 1857 (2002).
- M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, V. C. Kress, Geochemistry Geophysics Geosystems 3 (2002).
- T. Kogiso, M. Hirschmann, Earth and Planetary Science Letters 249, 188 (2006).
- S8. I. Kushiro, Annual Review of Earth and Planetary Sciences 29, 71 (2001).
- S9. N. Arndt, Journal of Geophysical Research-Solid Earth 108 (2003).
- J. G. Fitton, M. Godard, in Origin and Evolution of the Ontong Java PlateauJ. G.
 Fitton, J. J. Mahoney, P. J. Wallace, A. D. Saunders, Eds. (Geological Society, London, Special Publication, 229 London, 2004) pp. 151-178.
- B. Sylvander, D. M. Christie, L. V. Danyushevsky, in Eos. (1996), vol. 77, pp. F691.
- S12. M. R. Perfit et al., Earth and Planetary Science Letters 141, 91 (1996).
- S13. A. V. Sobolev, Petrology 4, 209 (1996).

Table S2b. Locations (GPS coordinates) and description for Icelandic samples

Sample	Locality	Description	latitude	longitude
01-7	Reykjanes, Haleyjabunga	Glassy olivine phyric picrite	N63 ⁰ 48.954'	W22 ⁰ 38.646'
03-102	Reykjanes, Lagafell	Glassy olivine phyric picrite	N63 ⁰ 52.906'	W22 ⁰ 32.611'
03-106	Reykjanes, Haleyjabunga	Glassy olivine phyric picrite	N63 ⁰ 48.873'	W22 ⁰ 38.724'
01-15	Reykjanes, Sulur	Glassy olivinephyric basalt	N63 ⁰ 54.094'	W22 ⁰ 32.558'
01-12	Reykjanes, Stapafell	Glassy olivine-plagioclase phyric picrite	N63 ⁰ 54.601'	W22 ⁰ 31.370'
01-8	Hengill, Midfell	Glassy olivine phyric picrite with rare plagioclase and clinopyroxene xenocrysts	N64 ⁰ 10.140'	W21 ⁰ 04.257'
01-10	Hengill, Midfell	Glassy olivine phyric picrite with rare plagioclase and clinopyroxene xenocrysts	N64 ⁰ 10.103'	W21 ⁰ 04.118'
01-19	Hengill, Maelifell	Glassy olivine phyric basalt with rare plagioclase and clinopyroxene xenocrysts	N64 ⁰ 06.252'	W21 ⁰ 10.744'
03-131	Kistufell	Glassy olivine phyric basalt	N64 ⁰ 47.806'	W17 ⁰ 13.745'
03-164	Kistufell	Glassy olivine phyric basalt	N64 ⁰ 46.918'	W17 ⁰ 12.713'
03-140	Kistufell	Glassy olivine phyric basalt	N64 ⁰ 47.861'	W17 ⁰ 12.202'
03-161	Kistufell	Glassy olivine phyric basalt	N64 ⁰ 47.808'	W17 ⁰ 13.957'
01-55	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 56.285'	W17 ⁰ 05.047'
01-57-4	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 55.791'	W17 ⁰ 04.463'
01-56-1	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 56.277'	W17 ⁰ 05.374'
01-41	Theistareykir, Theistareykjahraun	Glassy olivine phyric basalt	N65 ⁰ 57.547'	W17 ⁰ 04.120'
01-44	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 56.068'	W17 ⁰ 05.246'
01-56-2	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 56.277'	W17 ⁰ 05.374'
01-54	Theistareykir, Laufrandarhraun	Glassy olivine phyric picrite	N65 ⁰ 56.281'	W17 ⁰ 04.624'
01-51	Theistareykir, Langavitishraun	Glassy olivine phyric basalt with rare clinopyroxene phenocrysts	N65 ⁰ 56.058'	W16 ⁰ 52.282'
03-224	Snaefellsness, Enni	Glassy olivine phyric basalt	N64 ⁰ 54.146'	W23 ⁰ 45.776'
03-226	Snaefellsness, Sydri-Raudamelur	Olivine phyric basalt	N64 ⁰ 52.296'	W22 ⁰ 17.368'
03-220	Snaefellsness, Ytri-Raudamelur	Olivine phyric basalt	N64 ⁰ 52.717'	W22 ⁰ 20.860'

- S14. V. S. Kamenetsky et al., Earth and Planetary Science Letters 160, 115 (1998).
- S15. V. Kamenetsky, Earth and Planetary Science Letters 142, 479 (1996).
- S16. A. P. Leroex, H. J. B. Dick, L. Gulen, A. M. Reid, A. J. Erlank, Geochimica Et Cosmochimica Acta 51, 541 (1987).
- V. S. Kamenetsky et al., Geology 29, 243 (2001).
- S18. N. M. Sushchevskaya et al., Geochemistry International 43, 222 (2005)
- S19. in Table S2b.
- S20. T. Elliott, J. Blichert-Toft, A. Heumann, G. Koetsier, V. Forjaz, Geochimica Et Cosmochimica Acta 71, 219 (2007).
- S. Huang, M. Regelous, T. Thordarson, F. A. Frey, Geochemistry Geophysics Geosystems 6 (2005).
- A. C. Kerr, R. W. Kent, B. A. Thomson, J. K. Seedhouse, C. H. Donaldson, Journal of Petrology 40, 873 (1999).
- G. M. Yaxley, V. S. Kamenetsky, M. Kamenetsky, M. D. Norman, D. Francis, Contributions to Mineralogy and Petrology 148, 426 (2004).
- S24. L. M. Larsen, A. K. Pedersen, Journal of Petrology 41, 1071 (2000).
- S25. K. G. Cox, B. G. Jamieson, Journal of Petrology 15, 269 (1974).
- S26. Y. G. Xu, S. L. Chung, B. M. Jahn, G. Y. Wu, Lithos 58, 145 (2001).
- S27. S. L. Chung, B. M. Jahn, Geology 23, 889 (1995).
- S28. M. Teklay, A. W. Hofmann, G. E. Brugmann, J. C. Lassiter, Geochimica Et Cosmochimica Acta 66, A767 (2002).
- S29. A. V. Sobolev, I. K. Nikogosian, Petrology 2, 111 (1994).
- J. M. Rhodes, M. J. Vollinger, Geochemistry Geophysics Geosystems 5, Q03G13 (2004).
- F. A. Frey et al., Journal of Geophysical Research-Solid Earth and Planets 96, 14347 (1991).
- F. A. Frey, M. O. Garcia, M. F. Roden, Geochimica Et Cosmochimica Acta 58, 1441 (1994).
- E. H. Haskins, M. O. Garcia, Contributions to Mineralogy and Petrology 147, 162 (2004).
- M. D. Norman, M. O. Garcia, Earth and Planetary Science Letters 168, 27 (1999).
- S35. M. O. Garcia, D. J. P. Foss, H. B. West, J. J. Mahoney, Journal of Petrology 36, 1647 (1995).
- S36. V. V. Matvienkov, O. G. Sorokhtin, Okeanologiya 38, 742 (1998).
- A. A. Gurenko et al., Chemical Geology 233, 75 (2006).
- S38. A. A. Gurenko, T. H. Hansteen, H.-U. Schmincke, in Proceedings of the Ocean Drilling Program, Scientific Results P. P. E. Weaver, H.-U. Schmincke, J. V. Firth, W. Duffield, Eds. (1998), vol. 157, pp. 375-401.
- S39. N. T. Arndt, A. J. Naldrett, D. R. Pyke, Journal of Petrology 18, 319 (1977).
- S40. N. T. Arndt, Journal of Petrology 27, 279 (1986).
- M. J. Bickle et al., in The geology of the Belingwe Greenstone Belt, Zimbabwe M. J. Bickle, E. G. Nisbet, Eds. (Balkema, Rotterdam, 1993) pp. 175-214.
- N. T. Arndt, G. E. Brügmann, K. Lehnert, C. Chauvel, B. W. Chappell, in Geochemistry and Mineralization of Proterozoic Volcanic Suites T. C. Pharaoh, R. D. Beckinsale, D. Rickard, Eds. (Geol. Soc. Spec. Publ., 1987) pp. 133-145.
 A. C. Kerr, Lithos 84.77 (2005).

Ε
S
Ĭ
8
81
ñ
1
II
ĥ
nt/
tei
uc
)č
. <u>2</u> 0
\sim
16
5 S
ıaξ
Ц
JC
ler
SC
×.
5
A
al
. <u>E</u>
ate
Ï
e
in
ln(
Q Q
a u
Ē
S.
İdi
Su
Ĺ,
t a
ē
ev
lo
ob
\mathbf{v}

GROUP	Geodynamic setting	g References	Sample	Geographic	Locality	z	Fo	V ppm	e ppm N	n ppm M	g ppm (a ppm 1	Vi ppm Co	ppm Cr	pm 100*	Mn/Fe 100	"Ni/Mg Ni/(Mg/Fe)/1000 10	0Ca/Fe X	x Mn/Fe STE	owt% A	ppm F	M mqq e	n ppm N	Ng ppm C	a ppm Ni	opm Cop	om Crppr	n
MORB	MORB	(S11)	113-16	Indian Ocean	105.22 oE SEIR	24	89.49	270	61667	1293 2	96327	1995	2109	ñ	1.	617 0	.712	0.569	2.494	0.135	0.07	7	502	10	268	13	89	2	
MORB	MORB	(S11)	145-3	Indian Ocean	116.72 oE SEIR	6	89.90	298	77032	1224 2	98238	1761	2500	õ	59 1.	590 (.838	0.646	2.285	0.191	0.05	4	422	80	234	6	Ŀ	6	
MORB	MORB	qdun	30-29	Indian Ocean	124.28 oE SEIR	9	89.60	236	79185	1280 2	96874	1843	2115	õ	00 1.	617 0	.712	0.564	2.328	0.135	0.10	10	724	14	499	20	F	8	
MORB	MORB	(S11)	144-13	Indian Ocean	115.21 oE SEIR	29	89.16	269	32315	1316 2	94471	1921	1993	õ	53	599 (.677	0.557	2.334	0.171	0.05	9	377	8	265	20	6	2	
MORB	MORB	qdun	18-10	Indian Ocean	126.74 oE SEIR	24	89.60	272	78878	1239 2	95854	1921	2303	ŝ	72 1.	571 0	.778	0.614	2.435	0.229	0.06	4	438	6	280	12		7	
MORB	MORB	(S11)	69-1	Indian Ocean	88.92 oE SEIR	1	89.89	319	76966	1205 2	97733	2036	1972	5	99	566 (.662	0.510	2.646	0.239	0.05	10	417	80	287	10	6	4	
MORB	MORB	(S11)	88-22 	Indian Ocean	96.83 oE SEIR	9	88.18	213	38627	1453 2	87837	2153	1572	e i	8 : 	639	.546	0.484	2.429	0.088	0.11	. 80	755	4	526	ę,	~ I	2	
MORB	MORB	qdun	5-2	Indian Ocean	126.52 oE SEIR	ŝ	89.63	257	78288	1238 2	94600	1875	2383	õ	1.	582	608	0.633	2.395	0.207	0.04	m	307	9	235	m	2	2	
MORB	MORB	qdun	16-19	Indian Ocean	127.58 oE SEIR	8	88.40	235	37179	1357 2	89113	1920	1953	ς, γ	18	557 (929	0.589	2.202	0.258	0.15	2	1112	18	675	21	80	9	
MORB	MORB	qdun	J-PE-1	Pacific Ocean	Garrett F.Z.	32	90.82	395	39627	1084 2	99751	2071	2817	4	00 : 	557 0	.940	0.654	2.975	0.259	0.02	ę.	14		169		<u>.</u>	; ⊒	
MORB	MORB	(S12)	sQ-1	Pacific Ocean	Siqueiros F.Z.	8	90.38	377	72454	1131 2	96261	1985	2661	137 4	e :	261	.898	0.651	2.739	0.250	0.03	4 1	191		201	- 5	` ∽	· ۵	
MORB	MORB	(S13)	FZ 649-5(i)	Atlantic Ocean	9 N MAR	8	89.75	301	76919	1213 2	93090	1953	2444	ŝ	74	217 0	.834	0.642	2.539	0.216	0.04	ŝ	309	4	200	ۍ ۲	ŝ	4	
MORB	MORB	(S13)	FZ 649-5(ii)	Atlantic Ocean	9 N MAR	58	88.76	302	34161	1235 2	89205	1832	2410	en i		467 0	.833	0.701	2.177	0.444	0.04	2	276	9	173	4	2	Q	
MORB	MORB	(S13)	649(i)	Atlantic Ocean	9N MAR	12	89.63	314	78044	1222	93379	1929	2501	44 3	50	566	.853	0.665	2.472	0.239	0.05	7	410	9	334	18	2	2	
MORB	MORB	(S13)	649(ii)	Atlantic Ocean	9N MAR	9	88.87	310	33452	1240 2	89834	1875	2434	155 3	90	486	.840	0.701	2.247	0.406	0.08	б	639	6	585	20		8	
MORB	MORB	qdun	All-60, Stn9, D9, 9-20	N. Atlantic	43N MAR	8 8	89.81	332	76416	1184	93134	1896	2543	4 1	00 9 7	549	.868	0.663	2.481	0.274	0.02	~ 1	152	5 5	<u>5</u>	5 5	÷.,	რ ს	
MORB	MORB	qdun	All-32 11-92	N. Atlantic	43N MAR	76	90.70	242	/0116	1151 2	9/618	2032	2461	20	.1.	642	827	0.580	2.898	0.082	0.01	<u>م</u>	601		/6	თ.:		<u>م</u>	
MORB	MORB	qdun	All-32 12-6(i)	N. Atlantic	43N MAR	74	90.83	240	39316	1124 2	98835	2340	2221	4	28	622	.743	0.515	3.376	0.124	0.03	en 1	200	~~ ·	3	4	б	6	
MORB	MORB	qdun	All-32 12-6(ii)	N. Atlantic	43N MAR	<u></u>	90.88	252	58934	1175 2	98950	2174	2291	ŝ	10	105	.766	0.528	3.153	-0.048	0.01		21	5	99	ŝ	0	m :	
MORB	MORB	qdun	All-32 12-2	N. Atlantic	43N MAR	85	91.13	254	36863	1089 2	98972	2221	2339	ŝ	1.	629	.782	0.523	3.321	0.110	0.03	4	201	4	132	27	~	9	
MORB	MORB	(S14)	All-32 12-7	N. Atlantic	43N MAR	55	91.03	213	57956	1115 3	00251	2393	2252	4	53 1.	641 0	.750	0.510	3.522	0.084	0.03	4	211	4	152	22	-	9	
MORB	MORB	(S15)	All-32 11-178	N. Atlantic	43N MAR	89	90.88	260	39155	1140 2	76866	2072	2479	ŝ	21	648 (.827	0.572	2.996	0.070	0.03	2	202	ŝ	126	12	5	9	
MORB	MORB	(S15)	CH-31 Dr08 695	N. Atlantic	Famous	17	91.21	306	36586	1039 3	00597	2100	2721	ŝ	92 1.	561 (.905	0.603	3.154	0.251	0.09	6	670	12	371	8	5	8	
MORB	MORB	(S15)	CH-31 Dr08 136-02	N. Atlantic	Famous	19	91.38	298	54581	1012 2	97930	2019	2620	ŝ	95 1.	567 0	879	0.568	3.127	0.237	0.07	10	523	6	265	7	6	8	
MORB	MORB	(S15)	ARP-73 10.03	N. Atlantic	Famous	52	91.30	295	35425	1039 2	98895	2046	2535	ŝ	32 1.	589 (.848	0.555	3.126	0.193	0.05	6	345	5	180	5	5	8	
MORB	MORB	(S16)	AG32 4-68	S. Atlantic	Bouvet	4	90.72	319	96669	1088 2	97891	2024	2653	4	50 1.	554 0	.891	0.623	2.891	0.264	0.04	7	270	2	185	7	=	10	
MORB	MORB	qdun	AG-32 3-36	S. Atlantic	Bouvet	86	89.95	282	75474	1217 2	94027	1869	2239	4	27 1.	612 0	.761	0.575	2.476	0.144	0.04	4	264	4	156	4	9	9	
MORB	MORB	qdun	AG-32 3-41	S. Atlantic	Bouvet	73	90.22	301	74107	1199 2	97481	1902	2432	4	74 1.	618 0	.818	0.606	2.566	0.132	0.02	2	149	°	122	10	22	7	
MORB	MORB	(S17)	518-60/1	S. Atlantic	Bouvet	2	86.70	225	99549	1199 2	82320	1115	3478	ŝ	36 1.	204 1	.232	1.226	1.120	0.99	0.05	5	308	9	345	11	4	22	
MORB	MORB	qdun	13-12/49a	Atlantic Ocean	Romanche F.Z.	09	89.35	198	30862	1332 2	95314	2392	1999	139 2	70 1.	648 0	121	0.547	2.958	0.070	0.03	3	230	4	206	9	°.	9	
MORB	MORB	qdun	13-12/49c	Atlantic Ocean	Romanche F.Z.	58	86.98	198	32768	1357 2	90684	2455	1953	145 2	54 1.	640 0	672	0.556	2.966	0.087	0.04	5	268	5	170	13	` e	5	
MORB	MORB	qdun	13-12/49d	Atlantic Ocean	Romanche F.Z.	19	88.90	185	33795	1388 2	91945	2415	1872 `	143 2	50 1.	656 (.641	0.537	2.881	0.053	0.06	7	415	7	229	31	80	10	
MORB	MORB	qdun	13-12/49e	Atlantic Ocean	Romanche F.Z.	36	87.69	185	92539	1514 2	86753	1715	2076	154 3	22 1.	636 (.724	0.670	1.854	0.095	0.02	4	102	з	160	4	0	5	
MORB	MORB	qdun	13-12/49f	Atlantic Ocean	Romanche F.Z.	17	89.39	195	30132	1331 2	93645	2443	1985	41 2	50 1.	661 0	.676	0.542	3.048	0.044	0.06	9	478	6	339	1	2	8	
MORB	MORB	qdun	13-12/49g	Atlantic Ocean	Romanche F.Z.	21	89.23	201	31299	1338 2	92963	2402	1996	145 2	52 1.	646 0	.681	0.554	2.954	0.074	0.06	Э	438	8	358	11	2	9	
MORB	MORB	qdun	13-11/1	Atlantic Ocean	Romanche F.Z.	21	88.11	240	39219	1358 2	87667	1705	1996	154 3	1. 10	522 0	.694	0.619	1.911	0.330	0.01	33	75	2	130	2	6	4	
MORB	MORB	qdun	13-11/2	Atlantic Ocean	Romanche F.Z.	36	87.44	205	94090	1336 2	85163	1854	1568	164 3	1	420 0	.550	0.517	1.970	0.542	0.05	33	341	9	219	9	-	4	
MORB	MORB	qdun	13-12/66	Atlantic Ocean	Romanche F.Z.	2	90.56	283	70902	1193 2	96041	2433	2279	30 3	56	682 (077.0	0.546	3.432	-0.001	0.01	13	253	0	1571	18	80	7	
MORB	MORB	qdun	13-12/78	Atlantic Ocean	Romanche F.Z.	13	89.34	211	79948	1314 2	91469	2395	2059	47 2	33 1.	643 (707	0.565	2.996	0.080	0.08	2	562	10	433	18	ຕ ຕ	6	
MORB	MORB	qdun	13-13/5	Atlantic Ocean	Romanche F.Z.	23	89.16	230	81451	1309 2	91485	1722	1767	161 3	11	607 0	909	0.494	2.114	0.154	0.03	2	238	e	195	e		2	
MORB	MORB	qdun	13-13/14	Atlantic Ocean	Romanche F.Z.	2	88.27	164	37742	1448 2	87388	1883	1501	142 2	34 1.	651 (.522	0.458	2.146	0.064	0.08	0	653	0	39	1		17	
MORB	MORB	(S18)	22-40	Arctic ocean	Knipovich ridge	31	87.56	213	93547	1512 2	86542	1813	1775	155 2	38 1.	616 0	.619	0.579	1.938	0.136	0.04	9	216	4	350	4	55	8	
MORB	MORB	(S18)	22-23	Arctic ocean	Knipovich ridge	17	87.42	219	94211	1524 2	84900	1824	1747	157 2	1	618 0	.613	0.578	1.936	0.132	0.08	4	406	7	602	9	z	7	
VIHT-MAV	OIB	(S19)	01-7	Iceland	Reykjanes, Haleyjabunga	52	90.22	344	74156	1176 2	97683	2335	2518	4	37 1.	586 (.846	0.627	3.148	0.198	0.03	10	252	4	217	1	2	6	
VIHT-MMV	OIB	(S19)	03-102	Iceland	Reykjanes, Lagafell	31	90.66	355	70780	1142 2	98921	2440	2520	ŵ	1.	614 0	.843	0.597	3.447	0.141	0.05	14	362	7	264	17	ŝ	16	
WPM-THIN	OIB	(S19)	03-106	Iceland	Reykjanes, Haleyjabunga	65	90.17	314	74317	1175 2	96602	2308	2498	4	52	581	.842	0.626	3.105	0.208	0.03	7	197	4	210	5	0	7	
VIHT-MAV	OIB	(S19)	01-15	Iceland	Reykjanes, Sulur	80	88.39	237	37687	1372 2	90573	1989	2307	154	34	564 0	.794	0.696	2.268	0.243	0.12	8	873	15	681	31	 	16	
VIHT-MAV	OIB	(S19)	01-12	Iceland	Reykjanes, Stapafell	7	87.61	249	92892	1457 2	85789	1987	2123	õ	58	569 (.743	0.690	2.139	0.234	0.13	5	952	15	695	35	er 1	18	
WPM-THIN	OIB	(S19)	01-8	Iceland	Hengill, Midfell	#	90.25	474	73667	1150 2	96824	2460	2464	9	71 1.	561 (.830	0.612	3.339	0.251	0.10	18	722	6	397	34	6	26	
WPM-THIN	OIB	(S19)	01-10	Iceland	Hengill, Midfell	25	89.80	373	76953	1224 2	94765	2672	2303	ŝ	13	591 0	.781	0.601	3.472	0.188	0.05	12	391	5	347	19	9	14	
WPM-THIN	OIB	(S19)	01-19	Iceland	Hengill, Maelifell	2	90.24	426	73533	1155 2	95822	2444	2731	149 6	13	571 0	.923	0.679	3.324	0.228	0.19	6	1381	73	719	17	8	23	
NHT-MHN	OIB	(S19)	03-131	Iceland	Kistufell	67	88.43	295	36728	1335 2	88535	2170	2305	69	2	540	662	0.693	2.502	0.294	0.02	о '	178	4	196	2		9	
VPM-THIN	OIB	(S19)	03-164	Iceland	Kistufell	25	88.84	331	34046	1287 2	91132	2174	2411 .	167 3	1.	531	828	0.696	2.587	0.311	0.05	1	320	~	429	18		80	

Table S2a. Average compositions of most Mg-rich olivine phenocrysts (see text of paper for definition).

S5

20 APRIL 2007 VOL 316 SCIENCE www.sciencemag.org

ntent/full/1138113/DC1	Nii/Mo/Fe/11000 100Ca/Fe X ov Mo/Fe STF Fo wt% 2
cgi/cc	- 100*Ni/M
org/c	100*Mn/E
nag.	Or nom
lcer	Co nom
scie	Ni nnm
ww.	Cannm
J w	Mon pM
teria	maa a M
Mat	
line	Al nnm
On	U L
porting	N
v et al, Sup	Incelia
Sobolev	Georganhin

					u ui, suppu	9			ATACA	1111	> > >	1.00.		3mili	6.01 Q	~81 ~				1001								
GROUP Ge	odynamic setting	g References	Sample	Geographic	Locality	z	Fo Al	ppm Fe	nM mq.	t BM mqq	opm Cap	pm Nipp	m Copp	m Crpp	m 100*Mn/	Fe 100*Ni/	/g Ni/(Mg/Fe)	1000 100Ca/F	e Xpx Mn/Fe	STE Fowt%	6 Al ppn	n Feppn	n Mn ppr	m Mg ppr	n Cappm	Ni ppm	Co ppm (r ppm
WPM-THIN	OIB BIO	(S19) /2401	03-140	Iceland	Kistufell	45 8 50 8	8.56	305 85	3843 10	311 289.	225 21	51 235	9 167 1 160	321	1.527	0.816	0.700	2.517	0.320	0.03	6	223	4 4	186 215	13 13	1 1		9 9
WPM-THIN	OIB OIB	(S19)	01-55	Iceland	Theistareykir, Picrites	24 9	0.30	156 75	11 11	-200 168 296(901 24	39 248	- 6	284	1.594	0.838	0.615	3.327	0.182	90:0	e 6	430	ი	356	31 0	33	- 2	21
WPM-THIN	OIB	(S19)	01-57-4	Iceland	Theistareykir, Picrites	32 9	0.06	379 74	1874 1.	187 295.	369 23	71 246	7	586	1.586	0.835	0.625	3.167	0.199	0.04	15	268	9	343	23	26		15
WPM-THIN	OIB	(S19)	01-56-1	Iceland	Theistareykir, Picrites	48	0.21	200 7.	3806 1	189 295	385 24	35 242		222	1.611	0.819	0.604	3.299	0.147	0.04	9	284	9	227	15	18		13
WPM-THIN	0IB	(S19) / C40)	0141	Iceland	Theistareykir	15 8	9.76	437 7. 1. 1. 1.	7047 1 502 13	178 294 sc7 200	013 21. 004 21.	77 280 26 267	0 147	631	1.529	0.952	0.734	2.826	0.316	0.08	17	584	6 [406 608	8 32	20 22	7	5 5
WPM-THIN	ano OIB	(S19)	01-56-2	Iceland	Theistarevkir. Picrites	0 0 0 0	3.10	+1.0 °		49 2978	27 7 338 7	25 249	1 22	8	1596	0.836	0.602	3.370	0.177	0.10	9 6	716	≥ @	414	6 64	57	t m	8 4
WPM-THIN	OIB OIB	(S19)	01-54	Iceland	Theistareykir, Picrites	, 45 8	7.95		1335 14	107 287(21 21	33 239	7 172	390	1.557	0.800	0.723	2.417	0.258	0.04	3 თ	238	2 vo	226	ç €	5 2	→ ~	;∞
WPM-THIN	OIB	(S19)	01-51	Iceland	Theistareykir	9	1.39	36.7 GE	3650 10	135 303;	239 24	33 228	7 138	88	1.577	0.754	0.495	3.707	0.217	0.15	38	1176	25	359	108	107	4	71
WPM-THIN	OIB	(S19)	03-224	Iceland	Snaefellsness	4 8	9.14	392 82	2132 12	772 293.	273 19	94 236	3 150	513	1.549	0.806	0.662	2.428	0.275	0.25	12	1823	29	1054	17	86	3	27
WPM-THIN	OIB	(S19)	03-226	Iceland	Snaefellsness	15 8	8.28	232 86	3383 14	109 289.	392 20	79 198	4 161	364	1.594	0.685	0.605	2.352	0.181	0.08	6	580	5	736	69	33	ŝ	16
WPM-THIN	OIB	(S19)	03-220	Iceland	Snaefellsness	5	8.93	245 8%	3462 1;	344 291	320 20	73 206	7 156	456	1.611	0.708	0.591	2.483	0.147	0.21	23	1484	17	1033	83	55	9	32
WPM-THIN	OIB 011	(S20)	SM-6	Azores	Sao Migel	26 8	7.43	166 94	4610 1- 250	469 286.	286 20	52 170	6 161	õ i	1.552	0.596	0.564	2.180	0.268	0.05	<i>ო</i> ძ	34	ഹ	243	9	6	- 2	ഹ
WPM-THIN	an an	(SZ0)	SM-10	Azores	Sao Migel	117 8	8.58	184	5252 1	181 287	785 19	19 238	7 151	<u>.</u>	1.385	0.829	0.707	2.251	0.615	0.01	~ ~	/8	N 0	6/ 10	- 4	ۍ ع		
WPM-THIN	alo OIB	(025)	OM-TO	Azores	Sao Migel	2 5	9.18	233	1 7901	194 580 194	81 022	162 21	2 149	2/0	1.349	0.000	0.67a.U	2.234	699010	0.02		727	νĘ	001	⊇ ¥	8	- •	ω ξ
	a a	(02C)	BOC-WC	Azores	Sao Minel	2 ¥2	7 01	70 80 X	1 1/10	140 292	715 23	71 100	0 154 154	35.5	1553	0.69.0	0.560	2.33/	00C.U	0.03	» c	10/	2 7	104	9 2	₽ «	o -	<u> </u>
WFIM-THIN	an an	(02C)	SM-4	AZOFES	Sao Minel	C 4	1.21	77 87	7865 15	107 28FJ	181	100		414	1 476	0.674	0.500	7.147	0.425	0.11	N (*	902	t 40	465	2 vr	° %	- ur	° 4
WPM-THIN	ano BIO	(S20)	SM-33	Azores	Sao Migel	20 °	. 89.6	63 84	172 12	169 287(23 ⊆ 29 J	94 215	6 140 140	4 4	1.508	0.752	0.633	2.844	0.359	0.02	r 0	175	ი ო	121	, t	3 4	o ←	2 ო
WPM-THIN	OIB	qdun	T-18	Azores	Terceria	е 8	3.45	98 66.	3050 12	03 286	761 18	94 244	9 152	447	1.398	0.854	0.735	2.201	0.587	0.12	б	838	32	653	86	219	9	44
WPM-THIN	OIB	qdun	T-6	Azores	Terceria	43 8	3.73	143 84	1248 12	175 288	597 18	97 253	7 144	450	1.513	0.879	0.740	2.251	0.349	0.04	2	277	4	163	4	16	-	7
WPM-THIN	OIB	(S21)	1203a -038R 01W	Pacific Ocean	Detroit smt	57 8	9.53	344 76	3587 1í	60 292	482 18	37 298	7 153	609	1.476	1.021	0.803	2.338	0.426	0.02	7	173	ŝ	182	8	16	-	7
WPM-THIN	OIB	(S21)	1203a -032R	Pacific Ocean	Detroit smt	13 8	9.73	369 7£	392.4 1;	120 292	412 18	13 302	5 151	626	1.456	1.034	0.796	2.357	0.467	0.07	14	520	6	495	9	32	2	16
WPM-THICK	LIP	(S22)	BR-2	Atlantic Ocean	Mull island	17 8	7.25	344 96	3138 1;	384 286.	280 20	00 223	6	445	1.440	0.782	0.752	2.080	0.500	0.07	19	524	6	328	2	35		17
WPM-THICK	LIP	(S22)	BR-5	Atlantic Ocean	Mull island	17 8	7.99	121 90	1; 1;	266 289	91 19	21 293	0	431	1.396	1.014	0.919	2.119	0.592	0.08	1	558	7	423	15	17		12
WPM-THICK	4 S	(S22)	BR-6	Atlantic Ocean	Mullisland	= : 2 %	7.83	435 9: 24 9:	1782 1;	322 288	114 19	32 245	б	222	1.441	0.854	0.783	2.159	0.499	0.12	11	904	₹ 1	376	∞ ₀	58		9
WPM-THICK		(222)	BHL-15 BHL-16	Atlantic Ocean	Mull Island Mull Island	22 4 27 4	7.82	104 63 04 69 05	9264 1. 1074 13	533 291	25/ 21	19 238 51 256	, Q	510	1.493	0.818	0.730	2.374	0.391	0.04	- 16	326	Ω. ÷	230	το δ	1 2		- %
WPM-THICK	5 ₫	(222)	BHL-19 RHL-34	Atlantic Ocean	Mulli Island	0 40	, CO.1	100 av		300 202	02 080	13 265	v u	100	1.403	0.00	0.010	2.300	0.440	0.05	1	Jon you	= «	240	- - -	2 6		3 5
WPM-THICK	; d	(S22)	BCH-14	Atlantic Ocean	Mullisland	1 C	3.50	61 10	1517 13	75 282	942 19	270 270	, -	411	1.355	0.955	0.969	1.875	0.677	0.12	2 E	875	, ⁶	594	ი ი	3 8		2 (2)
WPM-THICK	LIP	(S22)	BCH-24	Atlantic Ocean	Mull island	14 8	9.35 4	137 8(11	95 294	511 20	43 291	2	654	1.482	0.989	0.798	2.533	0.414	0.09	9	688	1	495	16	28		14
WPM-THICK	LIP	(S22)	BCH-27	Atlantic Ocean	Mull island	24 8	. 06.8	126 84	1083 12	233 292	930 20	42 284	6	626	1.466	0.973	0.818	2.428	0.446	0.06	8	423	9	267	80	8		7
WPM-THICK	LIP	(S22)	BCH-33	Atlantic Ocean	Mull island	20 8	8.38	119 87	7922 12	262 290.	959 19.	58 278	5	550	1.435	0.956	0.841	2.227	0.510	0.06	10	434	7	295	7	16		თ
WPM-THICK	en i	(S22)	AM-7a	Atlantic Ocean	Mullisland	9 19 19	6.21	407 10	2948 1	138 280	159 19	56 239	9	326	1.397	0.855	0.880	1.900	0.590	0.06	13	430	-	303	5	8		=
WPM-THICK		(522)	BB-22	Atlantic Ocean	Mull island	12 0	6.68	319 519 61	1. 1.	345 282	319 16	254	თ. ა	ŝ	1.349	0.903	0.900	1.626	0.690	0.12	88	185	6 2	654	121	8 8		33
WPM-THICK		(225)	67-70 B-20	Atlantic Ocean Atlantic Ocean	Mull Island	υ (7 29	103 05	1 12	+1/ 202 155 2855	10 70 70 70 70 70 70 70 70 70 70 70 70 70	72 269	0 4	40	141/	0.943	0.922 0.902	2.101	190.0	0.09	3 5	613	8 €	532	s €	33		ς τ
WPM-THICK	; 4	(S23)	88	Atlantic Ocean	Baffin Bay	, e	2.65	186 55 ⁵	. 60 <u>/</u>	305U	202	51 345	0 118	828	1.613	1.129	0.629	3.682	0.143	0.00	ī		2	100	2	3		2
WPM-THICK	LIP	(S24)	92976	Atlantic Ocean	Greenland	16 9	2.05	187 60	M73 9.	44 304:	500 18	94 374	9 125	886	1.562	1.231	0.745	3.132	0.249	0.08	14	564	9	391	12	6	2	4
WPM-THICK	LIP	(S24)	27141	Atlantic Ocean	Greenland	32 9	0.93	169 68	3080 1(132 296.	916 19.	44 349	9 136	848	1.515	1.178	0.802	2.856	0.344	0.05	14	390	4	286	1	14	-	16
WPM-THICK	4 S	(S24)	G-27142	Atlantic Ocean	Greenland	21 9	1.06	379 67	7782 11	300 300 300 300 300 and 300 an	190 190 190 190 190 190 190 190 190 190	72 312	8 143	725	1.567	1041	0.706	2.762	0.236	0.07	~ ~	500	2	277	, 9	24	2	5
		adun	UIS-1	Atlantic Ocean		۵ ۵	00.0	2010	1 0/20	997 R7	9/4 20	28 300	0 0	64 F		040.1	188.0	2.350	Z67:0	0.03	0 0	12		142	xo (0 r		ۍ م
WPM-THICK*		(010) (S10)	1187A 10R 7 46-49	Pacific Ocean	Ontong Java Plateau Ontong Java Plateau	15 0	3.76		+242 1-1	+00 15 288: 288:	325 15 15	331 213	3 152	743	1.328	1.149	0.964	1.887	0.731	0.08	° 6	204	° ∞	362	o 12	- 48	- ~	° 02
WPM-THICK*	i 占	(S10)	1187A 6R 6 116-119	Pacific Ocean	Ontong Java Plateau	5 4	3.33	92 75	128 12	02 291;	333	10 244	8 157	206	1.504	0.840	0.672	2.390	0.367	0.07	25	377	2	704	3 2	2 02	1 m	5 14
WPM-THICK	LIP	(S25)	P23-9	Africa	Karoo	21 8	9.28	133 87	7816 12	145 287	906 16:	23 268	1 155	836	1.417	0.931	0.818	1.848	0.527	0.04	8	491	7	339	1	44	2	31
WPM-THICK	LIP	(S25)	P23-32	Africa	Karoo	25 8	9.49	361 75	3080 1	138 293.	022 16	32 282	2 149	110	6 1.439	0:963	0.761	2.063	0.484	0.05	7	303	4	240	6	1	2	24
WPM-THICK	e i	(S25)	N356	Africa	Karoo	53	0.42	124 72	2082 9	22 296	170	34 439	5	486	1.279	1.483	1.069	1.504	0.835	0.05	4	390	с Q	276	б	თ :		=
WPM-THICK		(S26)	EM-43	China	Emeishan	- 26 -	0.47	256 72	2181 1.	286 298	304 26	12 256	9 155	410	1.781	0.860	0.621	3.619	-0.207	0.04	<u>4</u> '	284	ω ξ	301	8	₽ 8	-	6 2
WPM-THICK		(176)	EM-55	China	Emeisnan Emeishan	6 7 6 7		213 / 98 71	013 10 11	100 296 101 3011	220 200 DBR 20	5 8	ω σ	100	1.433	1120	0.810	228.2	0.507	070	c 16	3014	8 1	1021	<u>8</u> 8	8 6		5 5
WPM-THICK	; 4	(S27)	EM-58	China	Emeishan	4	0.76	. 39	1052 10	101 298	71 979	354		523	1.431	1.187	0.830	2.567	0.519	0.35	3	2640	98	1104	3 8	143		5 09
WPM-THICK	Ч	qdun	4270	Siberia, Norilsk	Gudchikhinskaya unit	15 7	06.6	70 14	5601 17	70 253	513 19	14 294	5 6	296	1.207	1.161	1.702	1.306	0.982	0.0	ę	601	6	371	8	28		7
WPM-THICK	LIP	qdun	XC51-130	Siberia, Norilsk	Gudchikhinskaya unit	7 8	2.41	12	8631 16	319 262.	206 16	98 301	9	375	1.258	1.150	1.480	1.320	0.877	0.16	9	1071	18	660	25	24		12
WPM-THICK	LIP	qdun	XC51-130(n)	Siberia, Norilsk	Gudchikhinskaya unit	6	2.74	130 12	6790 1	382 264.	503 18	5 310	2 200	383	1.247	1.173	1.487	1.424	0.899	0.10	5	747	11	466	12	18	2	19
S6						20 AF	RIL	200	7 VC	L 31	0 SC	IEN	¥ ĭ	WW.	scienc	emag	.org											

_
τj
Ā
3
31
ã
-
Ξ
Ę
ĥ
nt
ē
Ē
3
Ξ.
ည
50
Ĕ
а С
Ë
ē
ğ
ē.
0
5
Ę
ξ
5
al
.Ë
μ
Ę
4
ne
÷
n L
\mathbf{O}
ер С
Ξ·
СL
ğ
đ
$\bar{\mathbf{v}}$
Ļ
a
et
>
<u>e</u>
0
of
Ñ

GROUP Ge	odynamic setting	References	Sample	Geographic	Locality	N Fo	Al ppn	Fe ppm	Mn ppm	Mg ppm	Ca ppm	Ni ppm (Co ppm (r ppm 100	*Mn/Fe 10	Mi/Mg Ni/(M	g/Fe)/1000 10	0Ca/Fe Xp	x Mn/Fe STE I	Fo wt% /	V ppm F	e ppm M	In ppm Mç	g ppm Ca	ppm Ni pi	om Copi	m Cr ppr	
WPM-THICK	LIP	qann	SU-50	Siberia. Norilsk	Gudchikhinskava unit	22 80.80	163	140093	1691	256505	1930	3017		327 1	.207	.176	1.648	1.378	0.983	0.07	e	501	9	341	7 19		9	
WPM-THICK		(S28) (S28)	AK-31 ΔK-33	Africa, Afar Africa Afar	Zawl-Kelkelti, Emba Tekera, Ertirea Zawl-Kelkelti Emba Tekera Frirea	01.78 c 9.24 p	3/4	7007.7	1382	283503	1933	2112	169	3/1 1 480 1	432 (020	0.743	2003	0.516 1.412	0.16	31	7149	2 0	11/	, x , x		3 5	
WPM-THICK	: 4	(S28)	AG-10	Africa, Afar	Adi Ghebray, Emba Tekera, Eritrea	1 88.30	513	87011	1286	285738	1908	2562	<u>5</u>	493	477	1897	0.780	2.193	0.423	0.00	2	Ę		-	ă 0	2	2	
WPM-THICK	LIP	(S28)	AG-15	Africa, Afar	Adi Ghebray, Emba Tekera, Eritrea	17 84.66	358	112774	1530	270733	1743	2154	182	295 1	.356 (.795 (0.897	1.546	0.673	0.07	8	483	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	259	8	3	15	
WPM-THICK	OIB	(S29)	RY-7	Indian Ocean	Reunion, Piton de Neige	73 85.86	224	105445	1567	278606	1997	2377		329 1	.486 (.853 (0.900	1.894	0.405	0.02	з	149	e	104	-		3	
WPM-THICK	OIB OID	(S29)	RY-11 OPE	Indian Ocean	Reunion, Piton de Neige	13 89.82	262	77028	1125	295786	1675	2970		534	. 460	.004	0.774	2.174	0.459	0.08	თ ი	545 10c	÷ •	444	8 . 8 .		, 12 1	
WPM-THICK	olb Olb	(626)	UPT IKI-22	Indian Ocean Hawaii	keunion, Piton de la Fournaise Kilauea Iki	oz 03.30 8 88.28	255	2302011	1205	288325	1780	3059	161	600	370	.061	0.933	2.023	0.645	0.13	ء 16	957	- - -	441	0 0 0 4	с С	71	
WPM-THICK	OIB	qdun	IKI-44	Hawaii	Kilauea Iki	20 88.54	288	85808	1176	288577	1742	3210	158	614	371	.112	0.954	2.030	0.643	0.05	2 4	368	! w	319	3 2	5 6	9	
WPM-THICK	OIB	qdun	K97-12	Hawaii	Kilauea Iki	34 87.81	236	91085	1259	285538	1868	2915	159	544 1	.382	.021	0.930	2.050	0.621	0.05	9	365	9	207 2	1	-	7	
WPM-THICK	OIB	qdun	K97-14b	Hawaii	Mouna Loa, Puu Wahi	67 88.41	255	86630	1195	287459	1376	3023	161	607 1	.379	.051 (0.911	1.589	0.627	0.03	154	4	220	7	4	7	247	
WPM-THICK	OIB	(S30)	SR-17-9.0	Hawaii	Mauna Loa, HSDP-2	31 90.22	264	73484	966	294988	1352	3300	165	663 1	.357	.119	0.822	1.840	0.671	0.02	2	134	7	131	2	-	15	
WPM-THICK	OIB	(S30)	SR-18-0	Hawaii	Mauna Loa, HSDP-2	19 90.53	257	71919	994	299311	1359	3918		692	382	309	0.941	1.889	0.620	0.08	÷ 5	578	∞ 8	279			27	
	9ID	(053()	SR-31-1.0-2.0 SD 08 2.5 2.0	Hawaii	Mauna Loa, HSUP-2 Maina Loa, HSDP 2	7 89.32 31 80.04	770 770	00518 76677	1034	295986	16/1	2000		240	. 393 ake	310 210	1.010	102.2	1.599 606	0.13	8 -	304	R 4	6/9 376	18 26 14	رىر	<u>4</u> 6	
WPM-THICK	a Bio	(0cc)	SR-98-2.5-3.0(n)	Hawaii	Muana Loa, nour-z Muana Loa, HSDP2	50 89.75 60 89.75	299	76967	1045	293323	1398	3830	151	736	358	306	1.005	1.817	0.670	0.02	- 4	122	n m	165	26	-	≏ ≂	
WPM-THICK	OIB	(S30)	SR-101-7.0	Hawaii	Mauna Loa, HSDP-2	50 90.00	318	74911	1035	293507	1385	3727	150	784 1	382	270 (0.951	. 849	0.621	0.03	4	188	, ,	125	5		9	
WPM-THICK	OIB	(S30)	SR-104-5.5	Hawaii	Mauna Loa, HSDP-2	33 89.89	276	77006	1054	297965	1405	3700		745 1	.368	.242 (0.956	1.824	0.649	0.05	4	387	9	217	3 2,		6	
WPM-THICK	OIB	(S30)	SR-104-5.5(n)	Hawaii	Muana Loa, HSDP2	70 89.77	287	77197	1057	294744	1413	3729	144	735 1	.370	.265 (7.977	1.830	0.646	0.03	2	203	e	149	£	-	80	
WPM-THICK	OIB	(S30)	SR-113-6.5	Hawaii	Mauna Loa, HSDP-2	63 89.58	273	77943	1057	291517	1409	3702		568 1	.357	.270 (0.990	1.808	0.673	0.03	ŝ	210	5	153	2	_	2	
WPM-THICK	OIB	(S30)	SR117-4.0	Hawaii	Mauna Loa, HSDP-2	13 89.67	305	76422	1046	288664	1397	3680		836	.368	.275 (0.974	1.828	0.649	0.11	ę,	782	~	373			35	
WPM-IHICK	GIB OIB	(0530)	SK-120-2.0-2.5	Hawaii	Mauna Loa, HSUP-2	30 89.65	997	189/3	4/0L	29/548	1429	3632	5	132	105	177	1.964	608.1	1.664	0.04	io u	967 - 56	۰ ۵	502	- C		× 0	
WPM-THICK	alo OIB	(DES)	SR-120-2.0-2.5(n) CD 133 10.0	Hawaii	Muana Loa, HSDP2 Maina Kaa, HSDP2	40 89.30 7 87.33	275	80462 06103	1310	292328	1453 2011	3565 2016	150	- ack	349	220	0.981	1.806	0.689	0.04	ۍ ۵	305	ω τ	197	4 2	-	o 5	
WPM-THICK		(ncc)	SR-134-26	Hawaii	Mauria Nea, ITSUF2 Mauna Kea HSDP3	75 86.71	212	08870	1354	280749	2066	2013	170	406	0/02	300	080	080	0.000	0.06	n u	307	= 4	04:0 020	3 0 2 2	ŝ	⊻ o	
WPM-THICK	OIB	(S30)	SR-136-6.1 SR-136-6.1	Hawaii	Mauna Kea, HSDP2	16 89.20	210	82042	1101	294758	1537	3140	2	630	342	.065	0.874	1.873	0.703	0.08	о (9	550	 	426 2	- 6	4	° 1	
WPM-THICK	OIB	(S30)	SR-138-6.5	Hawaii	Mauna Kea, HSDP2	31 89.28	263	80686	1096	292513	1531	3197	157	667	.359	.093	0.882	1.898	0.668	0.05	5	347	9	206	8	-	80	
WPM-THICK	OIB	(S30)	SR-139-9.5	Hawaii	Mauna Kea, HSDP2	39 89.05	243	82338	1125	291274	1666	3077		698 1	.366	.056	0.870	2.024	0.653	0.05	2	349	ŝ	253 1	0 22	~	9	
WPM-THICK	OIB	(S30)	SR-144-2.0	Hawaii	Mauna Kea, HSDP2	23 88.58	168	86738	1181	292769	1719	2961		464 1	.361	.012	0.877	1.982	0.664	0.07	5	470	80	323 2	0 2(14	
WPM-THICK	OIB	(S30)	SR-145-2.5-2.6	Hawaii	Mauna Kea, HSDP2	39 88.55	253	86149	1170	290005	1728	2962	164	656 1	.359	.021	0.880	2.005	0.669	0.05	4	340	- G	189	- -	-	7	
WPM-THICK	OIB	(S30)	SR-148-8.5	Hawaii	Mauna Kea, HSDP2	19 88.00	201	90074	1241	287469	1877	2679		552 1	377 (.932	0.839	2.083	0.630	0.08	7	561	Б	385	9		13	
WPM-I HICK	90 G	(0530)	SR-149-1.0 CD 157.6.1	Hawaii	Mauna Kea, HSUP2 Marina Kaa, HSDP2	31 8/.92	190	91454	1258	979697	1908	QQQZ		248	c/5.	.91/ 06.4	J. 839	980.2	1.034	0.06	× ×	414		107	4 2		~ \$	
WPM-THICK	a a	(0cc)	SR-154-26	Hawaii	Mauria Kea, HSDP2 Mauna Kea HSDP2	42 88.75	244	84807	1154	2011262	1648	3036	159	080	360	+co.	0.000	576	1.041	0.04	t 4	288	- 6	211	5 P	-	2 ∝	
WPM-THICK	OIB	(S30)	SR-170-1.2	Hawaii	Mauna Kea, HSDP2	19 88.30	213	88271	1193	289785	1648	2940	8	627 1	351	.014	0.895	1.867	0.685	0.07	- @	530	~ ~~	347 2	. 0		16	
WPM-THICK	OIB	(S30)	SR-170-3.1	Hawaii	Mauna Kea, HSDP2	46 87.98	218	89822	1217	286190	1668	2933		629 1	.355	.025 (0.921	1.857	0.677	0.04	5	282	4	185 1	1		7	
WPM-THICK	OIB	(S30)	SR-175-5.2	Hawaii	Mauna Kea, HSDP2	36 88.95	241	83748	1123	293387	1546	3210		696	.340	.094	0.916	1.845	707.0	0.05	4	352	9	214 1	6 2(5	
WPM-THICK	OIB	(S30)	SR-184-3.0	Hawaii	Mauna Kea, HSDP2	4 89.35	201	80222	1115	293005	1746	3096	165	513 1	.390	.057 (0.848	2.176	0.604	0.29	10	2119	6	1187 8	8	9	6	
WPM-THICK	OIB	(S30)	SR-188-6.5	Hawaii	Mauna Kea, HSDP2	6 89.55	240	78725	1053	293534	1541	3340	152	556		.138	0.896	1.958	0.712	0.15	ę ,	1109	52	654	8	. e	8	
WPM-THICK	olb Olb	(S30)	SR-277-7.5-8.0	Hawaii	Mauna Kea, HSDP2	2 90.86	198	69347	906	299834	1361	3693	146	380	307	232	0.854	2007	1610	0.14	ь с	006		100	, 10 + -	c	± %	
WPM-THICK	OIB	(S30)	SR-291-3.0-3.8	Hawaii	Mauna Kea, HSDP2	38 89.24	201	81114	1115	292628	1645	3327	149	603	.374	.137	0.922	2.028	0.637	0.04	4	316	4	210	2	-	12	
WPM-THICK	OIB	(S30)	SR-298-6.0	Hawaii	Mauna Kea, HSDP2	27 89.03	247	82446	1102	291201	1575	3328	149	664 1	.337	.143 (0.942	1.910	0.715	0.06	9	424	∞	236 1	0 45	2	1	
WPM-THICK	OIB	(S30)	SR-308-0-0.6	Hawaii	Mauna Kea, HSDP2	12 89.10	277	81993	1099	291738	1557	3478	151	639 1	.340	.192	0.977	1.899	707.0	0.13	9	952	17	611 2	6 10	33	80	
WPM-THICK	OIB	(S30)	SR-310-2.4-2.8	Hawaii	Mauna Kea, HSDP2	70 89.51	265	79437	1082	294797	1548	3305	150	742 1	.362	.121	0.891	1.949	0.662	0.03	e	192	e	130	2	-	5	
WPM-THICK	OIB	(S30)	SR-319-7.5	Hawaii	Mauna Kea, HSDP2	42 89.02 - 22.24	257	82543	1097	291302	1551	3384	153	680	329	.162	0.959	1.879	0.730	0.04	ഹ	316	ы un ș	202	24		₽ 3	
WPM-THICK	OIB	(530)	SR-332-9.8-10.0	Hawaii	Mauna Kea, HSDP2	7 90.31	222	/3336	186	297371	14.76	4121	137	487 1	822	.386	1.016	2.013	111	0.14	ი.	1015	<u>د</u>	623	۰ 1 1		5.	
WPM-THICK	alo alo	(S30)	SR-335-3.2-3.4 cp 227 2 4 2 7	Hawaii	Mauna Kea, HSDP2 Maring Vag, USDP2	55 89.89	286	75966	1037	293764	1500	3345	149	785 1		.139	0.865	1.975	0.656	0.04	4 u	268	4 4	201	5 7		σ ;	
WFM-THICK		(0cc)	SR-357-7-274	Hawaii	Mauria Kea, II-SUF2 Mauna Kea HSDP2	50 03.70 67 88.01	202	ROODR	1210	287179	1660	3108	165	140 553	345	761. 780	9.074	905.1	0.10.0	+0.0		210 236	t e	10	0 G		2 ∞	
WPM-THICK	OIB 0	(S30)	SR-361-2.5-2.8	Hawaii	Mauna Kea, HSDP2	26 89.66	31	77985	1050	294211	1498	3512	148	602	346	.194	0.931	1.921	0.695	0.04	പ	286	> 4	173	, 10 1 12		, ≞	
WPM-THICK	OIB	(S30)	SR-363-7.0-8.0	Hawaii	Mauna Kea, HSDP2	57 89.03	228	82751	1107	292365	1584	3346	151	603	.337	.144	0.947	1.914	0.713	0.03	9	226	4	155	7	-	13	
WPM-THICK	OIB	(S30)	SR-375-0.5-1.0	Hawaii	Mauna Kea, HSDP2	20 89.65	243	78027	1048	294222	1534	3468	146	738 1	.343	.179	0.920	1.967	0.702	0.06	8	444	9	244	37	-	1	
WPM-THICK	OIB	(230)	SR-377-6.7-6.9	Hawaii	Mauna Kea, HSDP2	38 89.36	276	79989	1060	292396	1534	3617	146	731 1	.325	.237 (0.990	1.918	0.739	0.04	5	257	e	210 1	4	-	5	
WPM-THICK	OIB	(S30)	SR-382-4.0-4.4	Hawaii	Mauna Kea, HSDP2	19 88.26	238	87648	1166	286814	1619	3256	156	. 1	.330	.135 (0.995	1.847	0.728	0.08	11	561	80	320	9 28	2	~ _	
					50	APK	IL 2	207	/0L	316	SCIE	NCE		v.scie	ncem	ag.org											S_7	

C1	
13/D	
381	
II/I1	
nt/fu	
conte	
cgi/c	
.org/	
mag	
ence	
v.sci	
NWW	
erial	
Mat	
line	
g Or	
ortin	
Supp	
t al, (
ev el	
lodo	

GROUP Ge	odynamic setting	References	Sample	Geographic	Locality	z	Fo	AI ppm	e ppm N	In ppm N	g ppm C	a ppm N	i ppm Co	ppm Cr	ppm 100*	Mn/Fe 100*	Vi/Mg Ni/(Mg/F	e)/1000 100	Ca/Fe X px	Mn/Fe STE Fo	Mt% Alp	pm Fe	nM mqq	ppm Mg	ppm Cap	pm Nipp	n Copp	n Cr ppr	-
WPM-THICK	OIB	(S30)	SR-389-1.8-2.0	Hawaii	Mauna Kea, HSDP2	35	89.76	303	77207	1041 2	94410	1505	3425	47 7	95 1.	349 1.1	63 0.6	98 1.	949 0.	0 065	4	2	97	4 2	32 3	42	2	£	1
WPM-THICK	OIB	(S30)	SR-565-0.7	Hawaii	Mauna Kea, HSDP2	4	90.28	287	73350	962	96380	1261	1117	49	47 1.	312 1.3	89 1.0	19 1.	720 0.	766 0	10	8	95	5 6	10 11	12	9	3	
WPM-THICK	OIB	(S30)	SR-682-9.8-10	Hawaii	Mauna Kea, HSDP2	50	88.70	289	84690	1138 2	89380	1576	3212	28	23 1.	343 1.1	10 0.5	40	361 0.	701 0	33	5	42	4	33	17	-	2	
WPM-THICK	OIB	(S30)	SR-684-5.0-5.5	Hawaii	Mauna Kea, HSDP2	28	88.91	284	83330	1111 2	90795	1550	3209	61	31 1.	333 1.1	03 0.9	20 1.	360 0.	723 0	13	4	74	4	<u>8</u>	31	2	80	
WPM-THICK	OIB	(S30)	SR-690-4.0	Hawaii	Mauna Kea, HSDP2	16	89.67	307	77869	1032 2	94148	1587	3651 、	20	23 1.	325 1.2	41 0.9	67 2.	0.	738 0	88	9 9	52	5 2	93 11	18	ŝ	10	
WPM-THICK	OIB	(S30)	SR-694-3.0-3.2	Hawaii	Mauna Kea, HSDP2	5 5	89.01	278	82822	1104	92028	1601	3544	22	70	332 1.2	14 1.0	05	933 0.	723 0	20 3	е,	88	4	22	8	9	65	
WPM-THICK	aio	(0530)	SR-930-9.1 CD-04.2.6.7	Hawaii	Mauna Kea, HSDP2 Maina Kea, HSDP2	6 ¢	89.28 88 14	276	80708	1122	92698 87607	1545	2395	6 13 6 13	6. 10	369 1.1 are 1.0	70 0.5	67 1.	913 0. 861 0.	002 274	2 2	~ ~		÷ ۵	2 G	8 €		в 17.	
WPM-THICK	a e	(000)	SR-964-10.7	Hawaii	Maina Kea HSDP2	0 1	80.57	280	76227	1050	00871	1487	, 102 2631	5 4		353 1.0 353 1.0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 		100	5 2	9 0	5 E	+ e		2 €	- v	o ư	
WPM-THICK	OB 0	(S30)	SR-961-14.0	Hawaii	Mauna Kea, HSDP2	\$ \$	89.44	261	79445	1082	92711	1506	3537	F		362 1.2	080	60	395 0.	90 90 0	3 2	• •	1 =	> 4	3 K	23	-	~ ~	
WPM-THICK	OIB	(S30)	SR-962-18.1	Hawaii	Mauna Kea, HSDP2	99	89.51	284	79029	1075 2	93375	1488	3580	52	73 1.	361 1.2	20 0.9	64	382 0.	965 0	8	5	8	е С	47 3	15	-	2	
WPM-THICK	OIB	(S31)	KI-11	Hawaii	Mauna Kea post shield	18	86.98	132	98166	1423 2	85490	2424	2233	.,	66 1.	450 0.7	82 0.7	68 2.	470 0.	180 0	07	.4	72	8	00 ZI	14		6	
WPM-THICK	OIB	(S31)	KI-8	Hawaii	Mauna Kea post shield	6	88.26	181	89202	1229 2	91934	1832	2448	4,	36 1.	378 0.8	39 0.7	48 2.	0.0	330 0	12	8	8	14 6	3	09		10	
WPM-THICK	OIB	(S31)	KI-4	Hawaii	Mauna Kea post shield	£	87.74	139	92943	1295 2	89526	2043	2588	7	46 1.	393 0.8	94 0.8	31 2.	198 0.	98 0	5	6	91	11	99	30		18	
WPM-THICK	OIB	(S31)	KI-3	Hawaii	Mauna Kea post shield	80	88.79	251	84979	1150 2	92785	1590	2916	0	54 1.	353 0.9	96 0.8	46 1.	371 0.	380 0	12	6	5	17 5	35	100		13	
WPM-THICK	OIB	(S31)	KI-3(n)	Hawaii	Mauna Kea, post shield	ŝ	88.82	234	84025	1145	90374	1562	2951	59	42	362 1.0	16 0.8	54	359 0.	961 0	2	€ :	010	28	02	134	ę	20	
WPM-THICK	OIB	(S32)	Koo-10	Hawaii	Koolau, Makapuu	~ !	87.13	179	96799	1263	85148	1274	2967	~ .	79 1.	305 1.0	40 1.0	07	316 0.	80	4	2	8 :	10	: ۵ د	24		∞ !	
WPM-THICK	OIB OIB	(S32)	Koo-17a	Hawaii	Koolau, Makapuu	¢ 4	89.11	241	82175	1085	92709	1 39	3910		e e	321 1.3	36 1.0	98 	159 0.	747 0	8 2				17	88		5 3	
WPM-THICK	aio	(532)	K00-19a	Hawaii	Koolau, Makapuu Koolan, Makapuu	ζ ι ς	86.74 86.74	248	0/7/0	1111	9120U 83601	125/	5/U/ REDE		2 2	518 1.2 363 1.2	73 1.U 36 1.0	34 13	19.7 U.	0 0 F8	 	× ×	c, g	 	2 2	99 1		o 5	
		(200)	N00-304	Lawall	Voolau, Makapuu	7	# / 00	100	93004	9401	00104	102 102 102 102	0000		1 1	2.1 000	21 00		000	0 0	5 2	+ c	60 LC	0 4 0 4	2 2	. 5		7 9	
WPM-THICK	an an	(200)	K00-55	Hawali	Koolau, Makapuu Koolau, Makanuu	\$ 1	09.UU 88.5.2	235	87012	1156 2	92134 02015	1294	2584	., .		C 1 020	27 1.C	89	.0 202 188	734 O	3 2	N 0	3 5	7 F	- 4 - 4	5 8E		2 ►	
WPM-THICK	OB GI	quu	S10(i)	Hawaii	Koolau, Makapuu	83	86.78	194	98745	1289 2	81959	1239	3129	4	75 1:	306	10	96 97	254 0.	51 0	3 2		2 20	2 -	2 E	35 5	-	. 9	
WPM-THICK	OIB	qdun	S10(ii)	Hawaii	Koolau, Makapuu	2	87.86	230	90851	1142 2	86085	1194	, 1503	7 69	82 1.	257 1.5	74 1.4	30	314 0.	379 0	35	3 24	. 33	12 16	67 2	149	3	24	
WPM-THICK	OIB	(S33)	R8-1.1-1197.1	Hawaii	Koolau, KSDP	23	88.67	248	85157	1136 2	89945	1366	3516 `	52	20 1.	334 1.2	13 1.0	33 1.	304 0.	720 0	8	0	66	5 3.	33	49	2	7	
WPM-THICK	OIB	(S34)	LO-02-04	Hawaii	Loihi smt	28	87.70	236	91993	1283 2	85314	1984	2753	4,	28 1.	394 0.9	65 0.8	88 2.	156 0.	395 O	52	7 3	95	7 2.	18	29		10	
WPM-THICK	OIB	(S34)	LO-02-02	Hawaii	Loihi smt	19	88.29	219	88152	1233 2	89083	2036	2811	4,	42 1.	399 0.9	72 0.8	57 23	309 0.	585 0	20	5	15	8	32 6	35		17	
WPM-THICK	OIB	(S35)	158-9	Hawaii	Loihi smt	44	89.15	239	81977	1166 2	92971	1781	3100	Û	59 1.	423 1.0	58 0.8	67 2.	172 0.	36 0	83	-	93	3	31	12		9	
WPM-THICK	OIB	(S35)	186-5	Hawaii	Loihi smt	ĉ	89.43	309	79637	1131 2	93326	2015	2879		12 1.	420 0.9	81 0.7	82 2.	531 0.	542 0	34	4 24	15	45 16	94 8	123		51	
WPM-THICK	OIB	(S35)	187-1	Hawaii	Loihi smt	7	89.67	303	78190	1095 2	95195	1774	3242	•	1 1/	401 1.0	9.0 8.6	59 2.	269 0.	582 0	12	8	86	4	88	121		29	
WPM-THICK	OIB	(S36)	M2343-7	Hawaii	Loihi smt	6	88.14	215	89237	1319	88692	2194	2742	7	83 1.	478 0.9	50 0.8	48 2.	459 O.	121 0	5	7 9	22	14	8	=		12	
WPM-THICK	alo alo	(S36) (S36)	M2335-12 M2340-3	Hawaii	Loihi smt	ب م	89.44 87 56	258	79807	1143	94008 86763	1887	3091 2023		2 2	432 1.0 870 1.0	51 0.8	39 2 87 2	365	516 0 238 0	888	9 % - 4	6 6	5 1 2 1	82 E	155 28		53	
WPM-THICK	OIB OIB	(S36)	M2343-10	Hawaii	Loihi smt	37	87.16	210	9597.8	1382	83538	62.02	781	,	202	140 0.9	81 0.9	41 2	20 10 10	0 005	3 2	3 -	, } %	1	5 ÷	3 ~~		3 @	
WPM-THICK	OIB	(S36)	M2343-8	Hawaii	Loihismt	; <u>.</u> 0	88.16	211	88961	1295 2	88238	2180	2804		34	456 0.9	73 0.8	65 2.	150 0.	9 0 891	1 <u>6</u>	6	4	11 -	22 - 22 - 26 - 26	0 00		36	
WPM-THICK	OIB	(S36)	M2340-1	Hawaii	Loihi smt	ę	88.21	279	88346	1221	87678	1899	2962	Ŷ	20 1.	382 1.0	30 0.9	10 2.	149 0.	320 0	17 4	0	64	14	59 4:	66		28	
WPM-THICK	OIB	(S36)	MK2337-4	Hawaii	Loihi smt	19	87.11	224	96131	1351 2	82756	1826	2823	7	68 1.	405 0.9	98 0.9	60 1.	00 006	573 0	07 1	0	. 54	10 3	22 74	18		1	
WPM-THICK	OIB	(S36)	M2343-9	Hawaii	Loihi smt	17	87.09	228	96726	1358 2	83961	2223	2577	7	45 1.	404 0.9	08 0.8	78 2.	298 0.	576 0	80	6	82	12 3	12 6	40		10	
WPM-THICK	OIB	(S36)	M2343-5	Hawaii	Loihi smt	ŝ	88.87	217	83863	1242 2	91338	2211	2792	4,	04	481 0.9	58 0.8	04 2.	536 0.	116 0	30	9 20	86	23 15	22 27	36		30	
WPM-THICK	OIB	(S36)	M2336-5	Hawaii	Loihismt	9	86.86	220	98509	1385	83269	2150	2695		85	106 0.9	51 0.9	37 2.	183	220	2	6		13	4	28		4	
WPM-IHICK	aio	(336)	M2336-4	Hawaii	Loihi smt	17 3	10.18	235	93496	1296	86500	1996	2/14		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	388 U.9 414 10	4/ U.V	86	0 022	508 513	999	• ¢	، د ۲	5 G	5 7	N 73		4	
WPM-THICK	ano OIB	(S36)	M2336-7	Hawaii	Loihismt	n g	87.20	200	95500	1368	83074	2372	2500	,	5 7	+1+ 133 0.8	83 0.8	43 2. 2	183 0.	516 0	- c	× 0	3 4	19	- 06	5 96		± 53	
WPM-THICK	OIB	(S36)	M2335-R	Hawaii	Loihi smt	22	89.42	232	79649	1143 2	92960	1962	3015	Ű	41	135 1.0	29 0.6	20 2.	463 0.	511 0	98	3	91	3	26 37	32		15	
WPM-THICK	OIB	(S36)	M2335-2	Hawaii	Loihismt	2	87.41	196	94048	1334 2	84070	2341	2870	.,	26 1.	418 1.0	10 0.9	50 2.	189 0.	346 0	19	4	38	27 6	59 4	72		19	
WPM-THICK	OIB	(S36)	M2335-8	Hawaii	Loihi smt	23	86.21	192	03052	1462 2	80346	2559	2438		98 1.	419 0.8	70 0.6	96 2.	483 0.	545 0	90	4	20	8	30	61		1	
WPM-THICK	OIB	(S36)	M2343-4	Hawaii	Loihi smt	13	87.93	207	90549	1334	86982	2045	2715	7	28	473 0.9	46 0.8	57 2.	258 0.	132 0	6	2	74	12	29	3 42		25	
WPM-THICK	OIB	qdun	5328	Hawaii	Kauai-Haena	-	88.92	259	83039	1046	96668	1401	3874		54 1.	259 1.3	36 1.1	60	387 0.	375 0	8 :	-		0	0	0		0	
WPM-THICK	OIB OIB	qdun	0433c-033R	Pacific Ocean	Suiko smt	5 3	88.46	326	86371	1156	87978	1559	3370	5 7	55	338 1.1	70 1.0	1 2 2	305 205	711 0	88	9 · 9 ·	e 8	പ്പ	· 5	19	5 0	£ 4	
WPM-IHICK	ano O	adun	1 C 00 EB	Attentio Occor	Sulko Smt	7 4	80.//	76.7	90024	1290	/9860	102/	242	4 1	7 7	519 1.U	1:1 IC	10 10 10	0 ACC 0.	20 20	8 5		9 5	- a - a	= =	3/ 180	2 0	2 5	
WPM-THICK	an an	(100)	CC-33-30	Atlantic Ocean	Gran Canaria	n ư	89.46	201	2978.0	1180 4	04670	212	, and a	 3 2		481 1.0	34 0.5	35 25	144	115 0	2 1		1 12	0 F	14	<u> </u>	° "	<u>v</u> 9	
WPM-THICK	OIB	(S37)	GC-98-35	Atlantic Ocean	Gran Canaria	о С	89.21	180	81152	1196	91839	1753	. 2662	22	34	474 1.0	27 0.8	33 2	161 0.	130	. 6	, ,	52	. 5	94	209	4	15	
WPM-THICK	OIB	(S37)	GC-1265	Atlantic Ocean	Gran Canaria	ę	89.56	171	78629	1219 2	93671	2085	2705	52	67 1.	551 0.9	21 0.7	24 2.	552 0.:	271 0	23	9 14	81	21 17	05 8.	45	-	37	
WPM-THICK	OIB	(S38)	953C-101R-5 116-123	Atlantic Ocean	Gran Canaria	5	88.23	197	87674	1202 2	86031	1352	3547	57	86 1.	371 1.2	40 1.0	67 1.	542 0.	344 0	17	-1 1	4	18 7	75 4	1	4	13	
WPM-THICK	OIB	(S38)	953C-93R-05 13-21	Atlantic Ocean	Gran Canaria	4	88.67	222	84795	1161 2	88663	1447	3471	52	18	369 1.2	03 1.0	20 1.	206 0.	348 0	88	2	55	8	35 6	39	3	9	_
$\mathbf{S8}$						20 A	PRII	20	> 20	OL 3	16 S	CIE	Ú O	\sim	.scier	ncema	g.org												

•	_
5	\sum
ĺ	1
2	n)
÷	
\$	ŝ
,	_
	_
÷	Ę
5	E
1	пt
,	Ę
	8
	Š,
•	ක්
	्र
	50
	õ
	ğ
	Ĕ
	Ð.
	ă
•	<u>e</u>
	SC
	×.
	5
	È
-	1
•	Ë
,	e e
4	<u>1</u> a
۴	4
	B
;	Ξ
,	Ξ
`	5
	щ
•	E
	ē.
	pp
,	ž
	, ,
	a
	G
	2
	ð
	2
	õ
ζ	2

GROUP	Geodynamic settir.	1g References	Sample	Geographic	Locality	N	o Alp	pm Fepi	m Mnpp	om Mg pp	am Capp	m Nippn	n Coppm	Cr ppm	100*Mn/Fe	1 00*Ni/Mg	Ni/(Mg/Fe)/1000	100Ca/Fe	<pre><pre>K px Mn/Fe STE</pre></pre>	Fo wt%	AI ppm	Fe ppm 1	Vin ppm 1	Mg ppm C	a ppm Ni	ppm Co p	m Cr ppm
WPM-THICK	OIB	(S38)	953C-93R-06 45-55	Atlantic Ocean	Gran Canaria	4 82	31 16	7 1289	22 1748	8 26105	52 193	0 2485	187	219	1.356	0.952	1.227	1.497	0.674	0.20	12	1377	8	908	61 7	4 5	9
WPM-THICK	OIB	(S38)	953C-93R-4 18-24	Atlantic Ocean	Gran Canaria	5 87	.75 16	1 9159	1 1300	0 28549	95 160	2 3239	168	416	1.419	1.135	1.039	1.749	0.544	0.18	13	1284	16	702	53	30 3	26
KOMATIITES	KOMATIITES	(839)	MUN-24	Canada	Munro 2.7 Ga	65 92	34 35	2 5852	3 925	3070	156	2 3316		1441	1.580	1.080	0.632	2.669	0.210	0.03	4	223	4	182	4	**	9
KOMATIITES	KOMATIITES	(839)	MUN-414	Canada	Munro 2.7 Ga	63 89	42 25	4 802	8 1236	8 29486	37 162	5 2942		732	1.543	0.998	0.800	2.026	0.288	0.03	e	205	4	166	2	10	8
KOMATIITES	KOMATIITES	(839)	Ch-11a	Canada	Munro 2.7 Ga	32 88	82 25	9 848(3 1339	9 29300	33 164	5 3034		791	1.579	1.035	0.878	1.940	0.212	0.04	ŝ	327	7	214	80	"	16
KOMATIITES	KOMATIITES	(S40)	M-626	Canada	Alexo 2.7 Ga	11 92	.81 35	4 5513	2 862	3095	149	0 3461		1299	1.564	1.118	0.617	2.703	0.243	0.10	7	772	13	474	7 1	0	20
KOMATIITES	KOMATIITES	(S40)	M-767	Canada	Alexo 2.7 Ga	8 93	53 35	0 4982	9 801	31324	148	4 3481		1308	1.607	1.111	0.554	2.978	0.155	0.14	14	1082	13	575	10	÷	30
KOMATIITES	KOMATIITES	(S40)	M-666	Canada	Alexo 2.7 Ga	33 94	.30 42	1 4386	1 719	31597	79 148	4 3353		1263	1.638	1.061	0.466	3.381	0.091	0.05	6	404	5	274	2	"	20
KOMATIITES	KOMATIITES	(S41)	MZ-4	Zimbabwe	Belingwe 2.7 Ga	9 92	.60 36	1 5637	3 885	30718	39 149	4 3630	128	1327	1.571	1.182	0.666	2.651	0.230	0.11	10	796	13	477	9	3	32
KOMATIITES	KOMATIITES	(S42)	G-21	Canada	Gilmour 1.9 Ga	15 92	.03 35	809 6	1 948	3059(176	2 3351		1058	1.558	1.095	0.667	2.897	0.256	0.08	80	626	6	327	11	80	25
KOMATIITES	KOMATIITES	(S42)	G-18	Canada	Gilmour 1.9 Ga	2 91	.83 35	2 6256	1 968	3058(178	7 3304		1071	1.547	1.080	0.676	2.856	0.278	0.36	3	2662	46	1468	14	5	38
KOMATIITES	KOMATIITES	(S42)	G-15	Canada	Gilmour 1.9 Ga	63 88	74 22	2 8527	7 128'	1 29243	37 179	6 2190		652	1.503	0.749	0.639	2.106	0.371	0.04	3	263	4	156	2	~	5
KOMATIITES	KOMATIITES	(S42)	G-8a	Canada	Gilmour 1.9 Ga	70 88	.67 24	4 8560	7 128/	4 29177	70 179	3 2617		675	1.500	0.897	0.768	2.094	0.377	0.03	9	209	с	124	ŝ	10	6
KOMATIITES	KOMATIITES	(S43)	GOR-94-19	Gorgona	Gorgona 0.9 Ga	71 91	.44 54	9 646(7 105'	1 30045	52 214	0 3593		920	1.626	1.196	0.773	3.313	0.115	0.02	4	126	2	117	2	10	5
KOMATIITES	KOMATIITES	(S43)	GOR94-35	Gorgona	Gorgona 0.9 Ga	13 92	58 50	3 5677	0 930	30833	31 212	0 3447		1167	1.638	1.118	0.635	3.734	060.0	0.08	9	613	1	396	10	9	41
KOMATIITES	KOMATIITES	(S43)	GOR94-34	Gorgona	Gorgona 0.9 Ga	27 91	50 47	3 6476	4 1042	2 3032(12 227	4 3247		1003	1.609	1.071	0.694	3.511	0.150	0.05	12	402	7	256	12	2	15
KOMATIITES	KOMATIITES	(S43)	GOR94-32	Gorgona	Gorgona 0.9 Ga	18 92	79 54	4 5460	2 907	30592	212	1 3482		1195	1.661	1.138	0.622	3.882	0.043	0.07	18	527	6	266	12 1	0	29
Notes	for Table S2	a. Concer	ntrations and sta	andard errors of m	nean (STE) are sho	wn for	eleme	nts in	pm ar	nd for J	-o in n	nol%.															

N-number of averaged high-Mg olivines (see text for definition). Samples marked (i) and (ii) represent different compositional groups of olivine within the same sample. Samples marked (n) represent an additional independent population of olivines analyzed for the same sample. References include samples description, unpb- unpublished. *- Ontong Java Plateau samples were arbitrary classified as WPM-THICK, but actually may belong to WPM-THIN at the time of formation.

	Earth Sc	Poges iences and New	vs from the Geo	logical World		
Home	Books	Journals	News	Resource Center	Contact Us	Information for Authors
	News					

Quick-Ref

We hope that you enjoy this section of Earth Pages. It gives one geologist's personal views about some of the major stories that appeared in leading journals, such as Geology, Science and Nature, in the last month. The items have been written and compiled by Steve Drury author of a number of Earth science books, including *Stepping Stones: The Making of our Home World* (Oxford University Press, 1999) and *Image Interpretation in Geology (3rd edition)* (Taylor & Francis, and Blackwell Science (USA), 2001).

If you have comments on this month's items you can contact the author at s.a.drury@open.ac.uk

• News Archive

Earth-Pages

News for May 2007

- Anthropology and geoarchaeology
- Climate change and palaeoclimatology
- Geobiology, palaeontology, and evolution
- · Geochemistry, mineralogy, petrology and volcanology
- · Planetary, extraterrestrial geology, and meteoritics
- Tectonics

IAS	
Z	2

Magmas from the mantle and recycled crust

May 2007

Two processes result in the Earth's mantle consuming rocks that formed oceanic and continental crust: subduction of oceanic lithosphere, and delamination from the base of thickened continental crust. In both cases the rocks involved are likely to be dominantly basaltic in composition. Those from the continental crust probably include mafic layered complexes, representing magma chambers in which intermediate magmas had resulted from fractional crystallization of basalt magma, and undifferentiated mafic igneous rocks underplated to the crust. Highly fractionated materials from the upper continental crust may also make their way into the mantle in the sedimentary cover to subducted ocean-floor basaltic crust.

New magmas originate in various ways as partial melts of ultramafic mantle rocks. Yet 4 billion years worth or more of consumed masses of crustal rocks must increasingly become involved in the chemistry of mantle melting by adding to its heterogeneity. Mantle heterogeneity is well-established from several lines of evidence provided by isotopic and trace-element analyses of modern basaltic lavas erupted in different tectonic settings. Yet, judging the influence and role of recycled crust have so far been plagued by data that are ambiguous. One outcome of previous research is that some ocean island basalt magmas formed by partial melting of peridotite whose chemistry had been transformed previously by other melts that had flowed through it (see Herzberg, C. 2007. Food for a volcanic diet. *Science*, v. **316**, p. 378-379).

A large team of geochemists, combining forces (and their data) from Russia, Germany, Australia, France, Taiwan, Eritrea, Britain, the USA, the Netherlands and Iceland, have sought to reduce the ambiguities by focussing on the chemistry of olivine phenocrysts found in basaltic lavas, rather than that of whole-rock samples (Sobolev, A.V. and 19 others 2007. The amount of recycled crust in sources of mantle-derived melts. *Science*, v. **316**, p. 412-417). Dominantly basaltic crustal masses in the mantle would melt to form silica-rich magmas. Passing through mantle peridotite, such melts would transform parts of the mantle to olivine-free pyroxenite. Magmas derived by partial melting of pyroxenite in the upper mantle would be basaltic, but enriched in silicon and nickel, and depleted in magnesium, calcium and manganese partly retained in the residual pyroxenes. Olivines crystallising first from basalt magmas carry a chemical signature of the parental melt composition, and thus the source.

The olivine approach by Sobolev and colleagues provides evidence for recycled crust in products of all kinds of basaltic magmatism, ranging from a contribution of 5% in ocean-floor basalts formed at ridges to about 20% in within-plate basalts. The contribution of mantle transformed to pyroxenite by chemical interaction with melt from foundered crustal masses ranges from 10% in mid-ocean ridge basalts to 100% in within-plate basalts formed below thick continental lithosphere. These include the largest volcanic outpourings in Earth's history, in the form of continental flood basalts. The largest of these, the Siberian Traps, accompanied the largest mass extinction of the Phanerozoic at the end of the Permian Period.

GEOCHEMISTRY

Food for a Volcanic Diet

Claude Herzberg

olcanic eruptions have the power to reshape Earth's landscape, alter climate, and affect life. To understand how this works requires that we go deep into the Earth to learn exactly what kind of rock melts to produce magmas and the chemistry of this source rock. These are fundamental problems in geology, and they are also among the most difficult to understand. On page 412 in this issue, Sobolev et al. (1) describe a method for identifying some of these source rocks. We can think of them as food for volcanoes in the sense that they melt to provide the magmas that can erupt to the surface. To understand what Sobolev et al. have done and the ramifications that go beyond Earth science, we need to start with a refresher in geology.

Earth's mantle consists mostly of peridotite, a rock rich in the mineral olivine $(Mg,Fe)_2SiO_4$. When peridotite partially melts, the liquids collect to magmas that rise to the crust, give off gases like SO₂, CO₂, and H₂O, and solidify to basalt, a rock rich in the minerals clinopyroxene [Ca(Mg,Fe)Si₂O₆] and plagioclase [(Ca,Na)(Al₁₋₂Si₂₋₃)O₈]. Portions of these outer layers can be recycled back into the mantle at subduction zones and below thickened continents (see the figure). The recycled basaltic crust is transformed to a new rock called pyroxenite, so-called because it is rich in clinopyroxene. It may pile up on Earth's core, or be mixed back into the mantle with structures that have

Models of Earth's crust and mantle. Oceanic crust (brown) is solidified liquid that forms by partial melting of mantle peridotite (green) at oceanic ridges; together with sediment, oceanic crust can be recycled back into the mantle at subduction zones (2, 3, 6). Continental crust (brown) forms at subduction zones and can be recycled when it thickens by delamination (5, 15). All crust (brown) is transformed to pyroxenite (brown) when recycled. Green arrow denotes melting peridotite. Red arrow denotes melting pyroxenite. Recycled crust may be distributed uniformly throughout the mantle, or it may be concentrated in certain hemispheres or depths. Crustal thickness is exaggerated for clarity, but ranges from ~6 to 40 km at the present time. Recycling is expected to reduce crust to dimensions ranging from micrometers to kilometers.

been described as marble cake (2), plum pudding (3), spaghetti (4), and gumbo (5) (see the figure). Volcanoes like those of Hawaii can melt from source rocks consisting of peridotite and/or pyroxenite from recycled crust. Sobolev *et al.* describe a method for identifying this rock based on the chemistry of lavas on volcanoes.

Sobolev *et al.* determined that many volcanoes melted from recycled crust, a conclusion that is not new (6). However, there has always been some ambiguity with past methods of identifying recycled crust based on the isotope and trace-element geochemistry of lavas at the surface. New interpretations suggest that many oceanic islands melted from mantle peridotite that had been modified by melts that flowed through it $(7, \delta)$, a process called metasomatism (9). Because it makes no difference to an atom of lanthanum, for example, whether it ends up concentrated in the crust or as metasomatized peridotite, using it as a tracer can be ambiguous and nonunique $(7, \delta)$.

Chemical analyses of lava can now reveal the

nature of the rocks deep in the Earth that melted and rose to generate specific volcanoes.

A breakthrough came when Sobolev *et al*. (10) showed that the nickel contents of many

The author is in the Department of Geological Sciences, Rutgers University, Piscataway, NJ 08854, USA. E-mail: herzberg@rci.rutgers.edu

olivine crystals in Hawaiian lavas were higher than those expected from melts of peridotite, and they preferred to explain this with a recycled crust source instead. But a lingering ambiguity is that a high nickel content in olivine can also arise when peridotite is enriched in pyroxene by melt-rock reaction (11). Supporting evidence for the recycled-crust interpretation (10) comes from the calcium contents of the Hawaiian lavas, which are too low to be easily explained by melting peridotite (12). Nickel and calcium are therefore telling the same story. That is, the main shield-building lavas at Hawaii were melted from a pyroxenite source rock that required the involvement of recycled crust as proposed by Sobolev et al. (10). The authors go further in that they examine the problem that arises when nickel, calcium, and manganese are used, and they extend the analysis to a larger population of volcanoes. Their results, together with other recent studies (7, 8, 11), show that it is unlikely that a single rock type will be an appropriate source for all oceanic volcanoes. For example, recycled crust is an important source rock for the Hawaiian islands (1, 10, 12), whereas metasomatized peridotite is the source rock for the Cook islands (7). An outstanding question is whether peridotite sources become metasomatized by melted recycled crust (13) or in some other way (7, 8).

Future studies might allow us to transform our picture from hypothetical models to actual three-dimensional views showing the size and distribution of recycled crust in the mantle. The implications go far beyond geology. For example, it may be no surprise that Sobolev et al. (1) identify pyroxenite as the rock that melted to produce the Siberian Traps. This was a magmatic flood on land so massive in scale that it triggered the largest mass extinction of life on Earth, some 250 million years ago (14). Although the exact causal links remain poorly understood in detail, one can reasonably imagine a different outcome if the mantle diet had less pyroxenite and more peridotite. Under these circumstances, less magma would have been produced and made available for eruptive flooding, and Earth's biosphere could have evolved along different pathways.

References

- A. V. Sobolev *et al.*, *Science*, **316**, 412 (2007); published online 29 March 2007 (10.1126/science.1138113).
- 2. C. J. Allègre, D. L. Turcotte, Nature 323, 123 (1986).
 - J. P. Morgan, W. J. Morgan, Earth Planet. Sci. Lett. 170, 215 (1999).
- 4. W. Abouchami et al., Nature 434, 851 (2005).
- D. L. Anderson, *New Theory of the Earth* (Cambridge Univ. Press, Cambridge, ed. 2, 2007).
- A. W. Hofmann, W. M. White, *Earth Planet. Sci. Lett.* 57, 421 (1982).
- 7. S. Pilet et al., Earth Planet. Sci. Lett. 236, 148 (2005).
- 8. Y. Niu, M. J. O'Hara, J. Geophys. Res. 108, 2209 (2003).
- 9. J.-L. Bodinier et al., J. Petrol. 45, 1 (2004).
- 10. A. V. Sobolev et al., Nature 434, 590 (2005)
- 11. P. B. Kelemen et al., Earth Planet. Sci. Lett. 164, 387 (1998).
- 12. C. Herzberg, Nature 444, 605 (2006).
- 13. R. Dasgupta et al., J. Petrol. 47, 647 (2006).
- 14. I. H. Campbell et al., Science 258, 1760 (1992).
- 15. C. Herzberg et al., Contrib. Mineral. Petrol. 84, 1 (1983).

Published online 29 March 2007; 10.1126/science.1141051 Include this information when citing this paper.