University of Tasmania
Browse

File(s) under permanent embargo

The amyloid beta-protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells

journal contribution
posted on 2023-05-17, 10:03 authored by Sberna, G, Saez-Valero, J, Beyreuther, K, Masters, CL, David SmallDavid Small
One of the characteristic changes that occurs in Alzheimer's disease is the loss of acetylcholinesterase (AChE) from both cholinergic and noncholinergic neurons of the brain. However, AChE activity is increased around amyloid plaques. This increase in AChE may be of significance for therapeutic strategies using AChE inhibitors. The aim of this study was to examine the effect of amyloid β-protein (Aβ), the major component of amyloid plaques, on AChE expression. Aβ peptides spanning residues 1–40 or 25–35 increased AChE activity in P19 embryonal carcinoma cells. A peptide containing a scrambled Aβ25–35 sequence did not stimulate AChE expression. To examine the possibility that the increase in AChE expression was mediated by an influx of calcium through voltage-dependent calcium channels (VDCCs), drugs acting on VDCCs were tested for their effects. Inhibitors of L-type VDCCs (diltiazem, nifedipine, and verapamil), but not N- or P- or Q-type VDCCs, resulted in a decrease in AChE expression. Agonists of L-type VDCCs (maitotoxin and S(−)-Bay K 8644) increased AChE expression. As L-type VDCCs are known to be modulated by cyclic AMP-dependent protein kinase, the effect of the adenylate cyclase activator forskolin was also examined. Forskolin stimulated AChE expression, an action that was blocked by the L-type VDCC antagonist nifedipine. The Aβ25–35-induced increase in AChE expression was mediated by an L-type VDCC, as the effect was also blocked by nifedipine. The results suggest that the increase in AChE expression around amyloid plaques could be due to a disturbance in calcium homeostasis involving the opening of L-type VDCCs.

History

Publication title

Journal of Neurochemistry

Volume

69

Pagination

1177-1184

ISSN

0022-3042

Department/School

Menzies Institute for Medical Research

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

The definitive published version is available online at: http://www3.interscience.wiley.com/

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC