University of Tasmania
Browse

File(s) under permanent embargo

The application of wall similarity techniques to determine wall shear velocity in smooth and rough wall turbulent boundary layers

journal contribution
posted on 2023-05-17, 23:09 authored by Walker, JM
Smooth and rough wall turbulent boundary layer profiles are frequently scaled using the wall shear velocity u*, thus it is important that u* is accurately known. This paper reviews and assesses several wall similarity techniques to determine u* and compares results with data from the total stress, Preston tube, and direct force methods. The performance of each method was investigated using experimental repeatability data of smooth and rough wall turbulent boundary layer profiles at Reθ of 3330 and 4840, respectively, obtained using laser Doppler velocimetry (LDV) in a recirculating water tunnel. To validate the results, an analysis was also performed on the direct numerical simulation (DNS) data of Jimenez et al. (2010, “Turbulent Boundary Layers and Channels at Moderate Reynolds Numbers,” J. Fluid Mech., 657, pp. 335–360) at Reθ = 1968. The inner layer similarity methods of Bradshaw had low experimental uncertainty and accurately determined u* and ε for the DNS data and are the recommended wall similarity methods for turbulent boundary layer profile analysis. The outer layer similarity methods did not perform well, due to the need to simultaneously solve for three parameters: u*, ε, and Π. It is strongly recommended that the u* values determined using wall similarity techniques are independently verified using another method such as the total stress or direct force methods.

Funding

Australian Research Council

Hydro Tasmania

History

Publication title

Journal of Fluids Engineering

Volume

136

Issue

5

Article number

051204

Number

051204

Pagination

1-10

ISSN

1528-901X

Department/School

Australian Maritime College

Publisher

Asme-Amer Soc Mechanical Eng

Place of publication

Three Park Ave, New York, USA, Ny, 10016-5990

Rights statement

Copyright 2014 ASME

Repository Status

  • Restricted

Socio-economic Objectives

Transport energy efficiency

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC