University of Tasmania
Browse

File(s) under permanent embargo

The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

journal contribution
posted on 2023-05-17, 18:41 authored by Zhou, G, Delhaize, E, Meixue ZhouMeixue Zhou, Ryan, PR

Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species.

Methods: HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil.

Key Results and Conclusions: Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants.

History

Publication title

Annals of Botany

Volume

112

Pagination

603-612

ISSN

0305-7364

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

Copyright 2013 the authors.

Repository Status

  • Restricted

Socio-economic Objectives

Barley

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC