This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.
History
Publication title
Physics of Plasmas
Volume
19
Issue
10
Article number
102111
Number
102111
Pagination
1-13
ISSN
1070-664X
Department/School
School of Natural Sciences
Publisher
Amer Inst Physics
Place of publication
Circulation & Fulfillment Div, 2 Huntington Quadrangle, Ste 1 N O 1, Melville, USA, Ny, 11747-4501