University of Tasmania
Browse

File(s) not publicly available

The effect of fine structure on the stability of planar vortices

journal contribution
posted on 2023-05-18, 17:48 authored by Hall, IM, Andrew BassomAndrew Bassom, Gilbert, AD
This study considers the linear, inviscid response to an external strain field of classes of planar vortices. The case of a Gaussian vortex has been considered elsewhere, and an enstrophy rebound phenomenon was noted: after the vortex is disturbed enstrophy feeds from the non-axisymmetric to mean flow. At the same time an irreversible spiral wind-up of vorticity fluctuations takes place. A top-hat or Rankine vortex, on the other hand, can support a non-decaying normal mode. In vortex dynamics processes such as stripping and collisions generate vortices with sharp edges and often with bands or rings of fine scale vorticity at their periphery, rather than smooth profiles. This paper considers the stability and response of a family of vortices that vary from a broad profile to a top-hat vortex. As the edge of the vortex becomes sharper, a quasi-mode emerges and vorticity winds up in a critical layer, at the radius where the angular velocity of the fluid matches that of a normal mode on a top-hat vortex. The decay rate of these quasi-modes is proportional to the vorticity gradient at the critical layer, in agreement with theory. As the vortex edge becomes sharper it is found that the rebound of enstrophy becomes stronger but slower. The stability and linear behaviour of coherent vortices is then studied for distributions which exhibit additional fine structure within the critical layer. In particular we consider vorticity profiles with 'bumps', 'troughs' or 'steps' as this fine structure. The modified evolution equation that governs the critical layer is studied using numerical simulations and asymptotic analysis. It is shown that depending on the form of the short-scale vorticity distribution, this can stabilise or destabilise quasi-modes, and it may also lead to oscillatory behaviour.

History

Publication title

European Journal of Mechanics, B/Fluids

Volume

22

Pagination

179-198

ISSN

0997-7546

Department/School

School of Natural Sciences

Publisher

Gauthier-Villars

Place of publication

Paris, France

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC