University Of Tasmania

File(s) stored somewhere else

Please note: Linked content is NOT stored on University Of Tasmania and we can't guarantee its availability, quality, security or accept any liability.

The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation

journal contribution
posted on 2023-09-13, 04:42 authored by Sofie V Hellsten, Emilia Lekholm, Tauseef AhmadTauseef Ahmad, Robert Fredriksson
Amino acids are known to play a key role in gene expression regulation, and in mammalian cells, amino acid signaling is mainly mediated via two pathways, the mammalian target of rapamycin complex 1 (mTORC1) pathway and the amino acid responsive (AAR) pathway. It is vital for cells to have a system to sense amino acid levels, in order to control protein and amino acid synthesis and catabolism. Amino acid transporters are crucial in these pathways, due to both their sensing and transport functions. In this large-scale study, an immortalized mouse hypothalamic cell line (N25/2) was used to study the gene expression changes following 1, 2, 3, 5 or 16 h of amino acid starvation. We focused on genes encoding solute carriers (SLCs) and putative SLCs, more specifically on amino acid transporters. The microarray contained 28 270 genes and 86.2% of the genes were expressed in the cell line. At 5 h of starvation, 1001 genes were upregulated and 848 genes were downregulated, and among these, 47 genes from the SLC superfamily or atypical SLCs were found. Of these, 15 were genes encoding amino acid transporters and 32 were genes encoding other SLCs or atypical SLCs. Increased expression was detected for genes encoding amino acid transporters from system A, ASC, L, N, T, xc-, and y+. Using GO annotations, genes involved in amino acid transport and amino acid transmembrane transporter activity were found to be most upregulated at 3 h and 5 h of starvation.



  • Article

Publication title

FEBS Open Bio













Publication status

  • Published online

Place of publication


Rights statement

© 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. (