University of Tasmania
Browse

File(s) under permanent embargo

The influence of lateral mixing on a phytoplankton bloom: Distribution in the Kerguelen Plateau region

journal contribution
posted on 2023-05-17, 02:01 authored by Maraldi, C, Mongin, M, Richard ColemanRichard Coleman, Testut, L
A unique phytoplankton bloom appears every year during the austral spring/summer in the northern Kerguelen Plateau region. The Kerguelen Ocean and Plateau compared Study (KEOPS) showed that an increase in subsurface iron coming up from the seafloor through vertical mixing was responsible for the observed increase in chlorophyll-a above the plateau. We demonstrate that the bloom pattern is not a simple increase of biomass over shallow water: it is strongly influenced by the bathymetry and its spatial extent controlled by strong currents around the plateau. Here we focus on lateral mixing process to explain the particular shape of the bloom. We use the Smagorinsky [1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (3), 99–164] formula to estimate and map fields of lateral mixing time scales (ô) due to barotropic tidal currents, barotropic atmospheric forced currents, Ekman velocities and geostrophic velocities. Results show that short time scale mixing is strongly influenced by the tides while the other processes have minor influences. Comparisons of ô and satellite chlorophyll-a images show that the spatial pattern of the bloom seems to be delimited by a barrier of high lateral mixing that is essentially due to tides. This emphasises the role played by the tides over the Kerguelen Plateau in supplying iron to the phytoplankton and containing the horizontal shape of the bloom. This is one of the first times such a link has been demonstrated, which has implications for the study of iron advection in the ocean.

History

Publication title

Deep Sea Research Part 1: Oceanographic Research Papers

Volume

56

Issue

6

Pagination

963-973

ISSN

0967-0637

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Climate variability (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC