University of Tasmania
Browse

File(s) under permanent embargo

The loss of RBOHD function modulates root adaptive responses to combined hypoxia and salinity stress in Arabidopsis

journal contribution
posted on 2023-05-19, 23:42 authored by Wang, F, Chen, Z-H, Lui, X, Svetlana ShabalaSvetlana Shabala, Yu, M, Meixue ZhouMeixue Zhou, Salih, A, Sergey ShabalaSergey Shabala
Salinity stress in nature is often accompanied by soil waterlogging. The constraints imposed by this additional stress have a profound effect on Na+ and Cl transport from roots to shoots, thus affecting homeostasis of some essential ions such as K+ or Ca2+ and influencing plant growth. The underlying mechanisms, however, remain largely unknown. In this study, we used a range of electrophysiological (ion flux measuring MIFE) and imaging (fluorescence dyes) techniques to investigate the role of Respiratory Burst Oxidase Homolog protein D (RBOHD) in Arabidopsis root responses to combined salinity and hypoxia stress. We found that combined stress causes more damage to plants than salinity stress alone, and the rbohD mutant is more sensitive to both treatments compared with wild type (WT). Mild hypoxia stress (root exposure to N2-bullbed solution for 48 h) reduced detrimental impact of salinity on the magnitude of NaCl-induced K+ loss from the root in wild type; this effect, however, was not observed in rbohD mutant. In salt-treated plants, onset of hypoxia led to increased uptake of Na+ and Cl in plants lacking functional RBOHD protein but not in a wild type. The rbohD mutant lacked ability for stress-induced H2O2 production and accumulated more Ca2+ and Na+ than WT under both salinity and combined stress. These results suggested RBOHD plays an important role in the regulation of downstream Ca2+ signal and H2O2 production, thus affecting plant ionic homeostasis, and that the lack of functional RBOHD proteins compromises plant ability to minimise Na+ accumulation under salinity and combined stress.

History

Publication title

Environmental and Experimental Botany

Volume

158

Pagination

125-135

ISSN

0098-8472

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Copyright 2018 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Other plant production and plant primary products not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC