University of Tasmania
Browse

File(s) under permanent embargo

The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion

journal contribution
posted on 2023-05-18, 11:17 authored by Matthew, T, Zhou, W, Rupprecht, J, Lim, L, Thomas-Hall, SR, Doebbe, A, Kruse, O, Hankamer, B, Marx, UC, Steven SmithSteven Smith, Schenk, PM
The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H2) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h of sulfur depletion. In addition to the previously reported accumulation of starch, large amounts of triacylglycerides were deposited in the cells. During the early 24- to 72-h time period fermentative energy metabolism lowered the pH, H2 was produced, and amino acid levels generally increased. In the final phase from 72 to 120 h, metabolism slowed down leading to a stabilization of pH, even though some starch and most triacylglycerides remained. We conclude that H2 production does not slow down due to depletion of energy reserves but rather due to loss of essential functions resulting from sulfur depletion or due to a build-up of the toxic fermentative products formate and ethanol.

History

Publication title

Journal of Biological Chemistry

Volume

284

Issue

35

Pagination

23415-23425

ISSN

0021-9258

Department/School

School of Natural Sciences

Publisher

Amer Soc Biochemistry Molecular Biology Inc

Place of publication

9650 Rockville Pike, Bethesda, USA, Md, 20814-3996

Rights statement

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC