File(s) not publicly available
The morphological phenotype of â-amyloid plaques and associated neuritic changes in Alzheimers disease
journal contribution
posted on 2023-05-16, 13:20 authored by Tracey DicksonTracey Dickson, James VickersJames VickersWe have utilised laser confocal microscopy to categorise β-amyloid plaque types that are associated with preclinical and end-stage Alzheimer's disease and to define the neurochemistry of dystrophic neurites associated with various forms of plaques. Plaques with a spherical profile were defined as either diffuse, fibrillar or dense-cored using Thioflavin S staining or immunolabelling for β-amyloid. Confocal analysis demonstrated that fibrillar plaques had a central mass of β-amyloid with compact spoke-like extensions leading to a confluent outer rim. Dense-cored plaques had a compacted central mass surrounded by an outer sphere of β-amyloid. Diffuse plaques lacked a morphologically identifiable substructure, resembling a ball of homogeneous labelling. The relative proportion of diffuse, fibrillar and dense-cored plaques was 53, 22 and 25% in preclinical and 31, 49 and 20% in end-stage Alzheimer's disease cases, respectively. Plaque-associated dystrophic neurites in preclinical cases were immunolabelled for neurofilament proteins whereas, in end-stage cases, these abnormal neurites were variably labelled for tau and/or neurofilaments. Double labelling demonstrated that the proportion of diffuse, fibrillar and dense-cored plaques that were neuritic was 12, 47 and 82% and 24, 82 and 76% in preclinical and end-stage cases, respectively. Most dystrophic neurites in Alzheimer's disease cases were labelled for either neurofilaments or tau, however, confocal analysis determined that 30% of neurofilament-labelled bulb-like or elongated neurites had a core of tau immunoreactivity. These results indicate that all morphologically defined β-amyloid plaque variants were present in both early and late stages of Alzheimer's disease. However, progression to clinical dementia was associated with both a shift to a higher proportion of fibrillar plaques that induced local neuritic alterations and a transformation of cytoskeletal proteins within associated abnormal neuronal processes. There data indicate key pathological changes that may be subject to therapeutic intervention to slow the progression of Alzheimer's disease. © 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.
History
Publication title
NeuroscienceVolume
105Pagination
99-107ISSN
0306-4522Department/School
Tasmanian School of MedicinePublisher
Pergamon-Elsevier Science LtdPlace of publication
UKRepository Status
- Restricted
Socio-economic Objectives
Clinical health not elsewhere classifiedUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC