University of Tasmania
Browse

File(s) not publicly available

The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'?

journal contribution
posted on 2023-05-17, 01:42 authored by Whiteman, M, Armstrong, JS, Chu, SH, Siau, JL, Wong, BS, Cheung, NS, Halliwell, B, Moore, PK
Hydrogen sulfide (H2S) is a well-known cytotoxic gas. Recently it has been shown to stimulate N-methyl-D-aspartate (NMDA) receptors to enhance long-term potentiation suggesting a novel neuromodulatory role in vivo. Endogenous levels of H2S in the brain are reported to range between 10 and 160 ìM. Considerably lower H2S levels are reported in the brains of Alzheimer's disease (AD) patients, where levels of brain protein nitration (probably mediated by peroxynitrite) are markedly increased. Activation of NMDA receptors leads to intracellular tyrosine nitration by peroxynitrite. Because H2S and peroxynitrite are important mediators in brain function and disease, we investigated the effects of the H2S 'donor', sodium hydrogen sulfide (NaSH) on peroxynitrite-mediated damage to biomolecules and to cultured human SH-SY5Y cells. H2S significantly inhibited peroxynitrite-mediated tyrosine nitration and inactivation of á1-antiproteinase to a similar extent to reduced glutathione at each concentration tested (30-250 ìM). H2S also inhibited peroxynitrite-induced cytotoxicity, intracellular protein nitration and protein oxidation in human neuroblastoma SH-SY5Y cells. These data suggest that H 2S has the potential to act as an inhibitor of peroxynitrite-mediated processes in vivo and that the potential antioxidant action of H2S deserves further study, given that extracellular GSH levels in the brain are very low.

History

Publication title

Journal of Neurochemistry

Volume

90

Pagination

765-768

ISSN

0022-3042

Department/School

Menzies Institute for Medical Research

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC