University of Tasmania
Browse

Thraustochytrids can be grown in low-salt media without affecting PUFA production

journal contribution
posted on 2023-05-17, 17:58 authored by Svetlana ShabalaSvetlana Shabala, Thomas McMeekin, Sergey ShabalaSergey Shabala
Marine microheterotrophs thraustochytrids are emerging as a potential source for commercial production of polyunsaturated fatty acids (PUFA) that have nutritional and pharmacological values. With prospective demand for PUFAs increasing, biotechnological companies are looking for potential increases in those valuable products. However, high levels of NaCl in the culture media required for optimal thraustochytrid growth and PUFA production poses a significant problem to the biotechnological industry due to corrosion of fermenters calling for a need to reduce the amount of NaCl in the culture media, without imposing penalties on growth and yield of cultured organisms. Earlier, as reported by Shabala et al. (Environ Microbiol 11:1835–1843, 2009), we have shown that thraustochytrids use sodium predominantly for osmotic adjustment purposes and, as such, can be grown in low-salt environment without growth penalties, providing the media osmolality is adjusted. In this study, we verify if that conclusion, made for one specific strain and osmolyte only, is applicable to the larger number of strains and organic osmotica, as well as address the issue of yield quality (e.g., PUFA production in low-saline media). Using mannitol and sucrose for osmotic adjustment of the growth media enabled us to reduce NaCl concentration down to 1 mM; this is 15–100-fold lower than any method proposed so far. At the same time, the yield of essential PUFAs was increased by 15 to 20 %. Taken together, these results suggest that the proposed method can be used in industrial fermenters for commercial PUFA production.

History

Publication title

Marine Biotechnology

Volume

15

Issue

4

Pagination

437-444

ISSN

1436-2228

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Springer New York LLC

Place of publication

233 Spring St, New York, NY 10013 United States

Rights statement

Copyright 2013 Springer Science+Business Media

Socio-economic Objectives

Food safety

Repository Status

  • Restricted

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC