Toward a mechanistic understanding of environmentally forced zoonotic disease emergence: sin nombre hantavirus
journal contribution
posted on 2023-05-22, 02:36authored byScott CarverScott Carver, Mills, JN, Parmenter, CA, Parmenter, RR, Richardson, KS, Harris, RL, Douglass, RJ, Kuenzi, AJ, Luis, AD
Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease’s incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and
History
Publication title
Bioscience
Volume
65
Issue
7
Pagination
651-666
ISSN
0006-3568
Department/School
School of Natural Sciences
Publisher
Amer Inst Biological Sci
Place of publication
1444 Eye St, Nw, Ste 200, Washington, USA, Dc, 20005
Rights statement
Copyright 2015 The Authors
Repository Status
Restricted
Socio-economic Objectives
Disease distribution and transmission (incl. surveillance and response)