Towards standardized postprocessing of global longitudinal strain by feature tracking - OptiStrain CMR-FT study
Methods: We investigated the random component of variability in GLS measurements by optimization steps which incrementally improved observer reproducibility and agreement. Cine images in two-, three- and four-chamber-views were serially analysed by two independent observers using two different CMR-FT softwares. The disparity of outcomes after each series was systematically assessed after a number of stepwise adjustments which were shown to significantly reduce the inter-observer and intervendor bias, resulting standardized postprocessing approach. The final analysis was performed in 44 subjects (ischaemic heart disease n = 15, non-ischaemic dilated cardiomyopathy, n = 19, healthy controls, n = 10). All measurements were performed blind to the underlying group allocation and previous measurements. Inter- and intra-observer variability were tested using Bland-Altman analyses, intra-class correlation coefficients (ICCs) and coefficients of variation (CVs).
Results: Compared to controls, mean GLS was significantly lower in patients, as well as between the two subgroups (p < 0.01). These differences were accentuated by standardization procedures, with significant increase in Cohen's D and AUCs. The benefit of standardization was also evident through improved CV and ICC agreements between observers and the two vendors. Initial intra-observer variability CVs for GLS parameters were 7.6 and 4.6%, inter-observer variability CVs were 11 and 4.7%, for the two vendors, respectively. After standardization, intra- and interobserver variability CVs were 3.1 and 4.3%, and 5.2 and 4.4%, respectively.
Conclusion: Standardization of GLS postprocessing helps to reduce the random component of variability, introduced by inconsistencies of and between observers, and also intervendor variability, but not the systematic inter-vendor bias due to differences in image processing algorithms. Standardization of GLS measurements is an essential step in ensuring the reliable quantification of myocardial deformation, and implementation of CMR-FT in clinical routine.
History
Publication title
BMC Cardiovascular DisordersVolume
19Article number
267Number
267Pagination
1-11ISSN
1471-2261Department/School
Menzies Institute for Medical ResearchPublisher
BioMed Central Ltd.Place of publication
United KingdomRights statement
Copyright 2019 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/Repository Status
- Open