University of Tasmania
Browse

File(s) under permanent embargo

Tracing industrial sulfur contributions to atmospheric sulfate deposition in the Athabasca oil sands region, Alberta, Canada

journal contribution
posted on 2023-05-18, 06:52 authored by Bernadette ProemseBernadette Proemse, Mayer, B, Fenn, ME
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.

History

Publication title

Applied Geochemistry

Volume

27

Issue

12

Pagination

2425-2434

ISSN

0883-2927

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Copyright 2012 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Air quality

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC