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ABSTRACT

We review the evidence indicating a possible beneficial role for
UVR on three Thl-mediated autoimmune diseases: multiple
sclerosis, type 1 diabetes and rheumatoid arthritis in relation
to recent developments in photoimmunology. Recent work
suggests that UVR exposure may be one factor that can
attenuate the autoimmune activity leading to these three
diseases through several pathways involving UVB and UVA
irradiation, UVR-derived vitamin D synthesis and other routes
such as a-melanocyte-stimulating hormone, calcitonin gene
related peptide and melatonin. Ecological features, particu-
larly a gradient of increasing prevalence of multiple sclerosis
and type 1 diabetes with higher latitude, provide some support
for a beneficial role of UVR. Analytical studies provide
additional support, particularly as low vitamin D has been
prospectively associated with disease onset for all three
diseases, but are not definitive. Randomized controlled trial
data are required. Further, we discuss how associated genetic
studies may assist the accumulation of evidence with regard to
the possible causal role of low UVR exposure and/or low
vitamin D status in the development of these diseases.

* To whom correspondence should be addressed: Murdoch Childrens
Research Institute, Royal Children’s Hospital, Flemington Road, Park-
ville, Melbourne, Australia. Fax: 61 2 62444036;
e-mail: anne-louise.ponsonby@mecri.edu.au

Abbreviations: APC, antigen presenting cell; CD, cluster of differentiation;
°S, degrees South in latitude; HLA, human leukocyte antigen; IFNy,
interferon gamma; Ig, immunoglobulin; IFNYy , interferon gamma; IL,
interleukin; U, international unit; mJ cm , millijoule per centimeter
squared; LC, Langerhans cell; MCIR, melanocortin 1 receptor; MS,
multiple sclerosis; MSH, melanocyte-stimulating hormone; MRI, mag-
netic resonance imaging; ON, optic neuritis; RA, rheumatoid arthritis;
TGF B, transforming growth factor beta; Th 1, T helper type 1; Th 2, T
helper type 2; UVR, ultraviolet radiation; VDR, vitamin D receptor;
1,250H,D5 1,25, dihydroxy vitamin D3; 250HD, 25 hydroxy vitamin D.
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INTRODUCTION

Here, we review the evidence indicating a possible beneficial role for
ultraviolet radiation (UVR) on three T helper type [-mediated
autoimmune diseases: multiple sclerosis, type 1 diabetes and rheumatoid
arthritis, in relation to recent developments in photoimmunology. As in
a previous review (1), the focus is on the photoimmunological and
epidemiological findings. We also discuss how these findings indicate
that public sun exposure messages need to consider the adverse effects of
inappropriate UVR for a wide range of health exposures.

T lymphocyte-mediated autoimmune inflammation appears to
underlie multiple sclerosis, type | diabetes and rheumatoid arthritis
(2). These autoimmune diseases are characterized by a breakdown in
immunological self-tolerance that may be initiated by an inducing
agent, such as an infectious microorganism (2). In these three
diseases, a cross-reactive autoimmune response may occur, attract-
ing a Th 1 cell-mediated response that results in chronic in-
flammation (3) against self-antigens. T helper cells are a subgroup of
T lymphocytes expressing CD4+ markers. They are subdivided by
the pattern of cytokines they produce. Stimulation of Th 1 cells
results in increased levels of interleukin (IL) 2, interferon y and also
IL 12 (3). The latter is not directly secreted from Th 1 cells but from
IFNvy-stimulated macrophages (3). These cytokines are often termed
Th I type cytokines. Th 2 cells produce 114, ILS, IL6 and IL10 (3).
However, it appears that the pathogenesis of these three autoimmune
diseases is more complex than Th I overactivity alone. Recent work
indicates that alterations in T regulatory cell activity may also
contribute to the development of autoimmune diseases (4).

Genetic factors appear to be involved in each of these autoimmune
diseases, but the low concordance among identical twins for MS (5)
and type 1 diabetes (6) and trends of increasing incidence for type 1
diabetes and MS over time (7) suggest environmental factors are also
important disease determinants. Recent work suggests that UVR
exposure may be one factor that can attenuate the autoimmune
activity leading to these three diseases through several mechanisms.

MECHANISMS INVOLVED IN
IMMUNOSUPRESSION DUE TO UVR

AND RELATED EXPOSURES

Photobiologists have classified solar UVR wavelength into regions
as UVC (200-290 nm), UVB (290-320 nm) and UVA (320-400
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nm) (8). High energy UVC is totally absorbed by atmospheric
ozone, thus having minimal penetration to the Earth’s surface (9)
and little effect on human health. Atmospheric ozone also prevents
all but a small fraction of (longer wavelength) UVB reaching the
earth’s surface (9). Ambient UVR experienced at ground level is
a mixture of UVA and UVB with proportions variously estimated
at 94% UVA, 6% UVB (8) and 97% UVA, 3% UVB (10). At any
time and location the relative proportions depend on levels of
atmospheric ozone, season, latitudinal position and cloud cover
(11). Vitamin D is largely UVB-derived via conversion of steroid
precursors in the skin and subsequent hydroxylations in the liver
and kidney (12) and other tissues. Only a small amount of vitamin
D derives from dietary sources (13). Serum 250HD is often used
as a marker of vitamin D status (13).

Immunosuppression Due to UVB Irradiation

Most of the research concerning UVR-induced immunosuppression
has focused on the immunosuppressive effects of UVB. In human
studies, the initial events following UVB exposure include DNA
damage and oxidative stress in keratinocytes and Langerhans cells
(the main antigen-presenting cells of the epidermis) and isomeri-
zation of urocanic acid from the trans- to the cis-form. UVR-
induced DNA damage and other UVR-related changes can deplete
LCs (14,15) and also impair their antigen-presenting function (14).
Irradiation of the epidermis increases the levels of tumor necrosis
factor alpha and IL10 (14) with the latter being a key cytokine
involved in immunosuppression (16) and tolerance (17). The
primary immunological function of IL10 is the modulation of
antigen-presenting cell function, but IL10 release is also associated
with local induction of antigen-specific T cell tolerance (16).

According to numerous laboratory models and some human
data, there is increasing evidence that UVB irradiation can induce
T regulatory (suppressor) cell activity (14,17). The mechanism of
action of T regulatory cells is not yet well understood, but recent
research evidence suggests that there are distinct populations of T
regulatory cells (18), some of which are induced by UV irradiation.
CD25+ CD4+ regulatory T cells expressing CTLA4 are a unique
suppressive T cell line produced normally in the thymus. These
regulatory T cells play an important role in removing self-reactive
T cells that have escaped the process of clonal deletion (negative
selection) in the thymus (19). Some T cells can provide antigen-
specific immune suppression following induction by UVR (14).
IL10 (produced in the epidermis following UVR irradiation [14,16])
may be important for the differentiation and activity of populations
of T regulatory cells in the periphery (14,18). By suppressing self-
reactive T cells, regulatory T cell populations may prevent auto-
immune diseases (18,19).

Immunosuppression Due to UVA Irradiation

In the past, the deleterious effects of UVR exposure have been
largely attributed to damage caused by higher energy UVB
irradiation. More recently, attention has shifted to understanding
the effects of UVA irradiation, in particular, in view of the
wavelength composition of UVR at ground level and the greater
penetration into skin structures of UVA than UVB (20). In a recent
review, Halliday summarized this research and suggested that
UVA has a dose-dependent effect on UVR-induced immunosup-
pression that may be as important as UVB-induced immunosup-
pression (21). At low doses (up to 840 mJ cm 2), UVA appears to

enhance secondary immunity (that is, strengthens the immune
memory response) (21). At medium doses (1680 mJ cm % one half
a minimal erythemal dose), UVA is immunosuppressive, in part,
via nitric oxide-induced depletion of LCs (22). At high doses,
UVA may protect against UVB-induced immunosuppression by
switching on interferon y, IL12 (which can drive Th 1-type
immune responses) and heme oxygenase production, with sub-
sequent inhibition of UVB-induced increases in IL10 (21). Overall,
Halliday concludes that UVA switches on a complex pattern of
signals in a dose dependent way, but UVA is immunosuppressive
in both man and mouse (21).

Immunosuppression Due to Enhancement of
Vitamin D Production

Vitamin D is being increasingly recognized as an important
immunomodulator (23). Some of the main immune actions of the
active form of Vitamin D, 1,25(OH),Ds, are summarized below:

1. 1,25(OH),D5 inhibits the production of Thl type cytokines
such as interferon v, IL2 and IL12, limiting the IL12 driven
expansion of dependent Th 1 cells (24).

. 1,25(0OH),D; and its analogs may suppress the activation of
Th 1 cells by the direct modification of dendritic cells, in-
hibiting the differentiation and maturation into mature anti-
gen-presenting cells (APCs) rendering them unable to
stimulate T cells (25).

3. 1,25(0OH),D3 may enhance the presence and/or function of
T regulatory cells (26). Studies done in animal models of
MS, type 1 diabetes and transplantation support a model in
which 1,25(0OH),D; may augment the function of T sup-
pressor cells to maintain self-tolerance (27).

4. 1,25(OH),D3 may enhance phagocytosis by monocyte and
macrophage populations (28).

5. 1,25(OH),D; may down-regulate acquired immune re-
sponses via an inhibitory effect on major histocompatibil-
ity complex class II antigen expression by professional
antigen-replacing cells (28).

[Se]

Immunosuppression by Other Mechanisms

Neuropeptides, released by sensory nerves, can also be involved in
local and systemic immunosuppression after UV irradiation by
induction of secondary mediators such as cytokines (29). A
neuropeptide called o-melanocyte-stimulating hormone exhibits
anti-inflammatory and immunomodulating activities by its effect
on MCIR-expressing antigen-presenting cells. These cells include
monocytes (30). «-MSH can down-regulate the production of
proinflammatory cytokines and is a strong inducer of IL10 in
monocytes and keratinocytes (30). Another neuropeptide, calcito-
nin gene-related peptide (CGRP), causes mast cells to degranulate
and release IL10 (31). Melatonin may also play a role in
immunomodulation. The sun not only emits ultraviolet electro-
magnetic waves but also visible light waves (400-700 nm) and
infrared waves (700-3000 nm). Visible light waves, and, in
particular, those with a wavelength close to the ultraviolet
spectrum, suppress melatonin levels (32). Activation of melatonin
receptors on T helper cells appears to enhance T lymphocyte
priming and the release of Th 1 type cytokines (33, 34). Thus, Th 1
activity may also be reduced through UVR by increasing
neuropeptides such as o-MSH or through associated visible light
by reducing melatonin levels.
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Although there are several pathways whereby UV irradiation
causes immunosuppression, the clinical outcome of the combined
effects of UVA and UVB irradiation, taking account of the ratios in
which they occur naturally, their relative skin penetration and the
production of vitamin D, remains unclear.

MULTIPLE SCLEROSIS

Multiple sclerosis is a leading cause of neurologic disability in early
to middle adulthood. It is characterized by central nervous system
inflammation, demyelination and scarring with lesions dissemi-
nated in time and location (35). The clinical course can be relapsing/
remitting or progressive. MS is more common in women than in
men, in a ratio of 2:1 and onset is typically between the ages of
20 and 40 years. Approximately 1.1 million individuals worldwide
have MS, with the highest known prevalence in the Orkney Islands
(250/100,000) and the lowest in Japan (2/100,000) (35).

One of the most striking epidemiological features of MS is
a gradient of increasing prevalence with higher latitude. Such
a gradient has been reported in Europe and the USA, with some
exceptions (5). Differences in ethnic ancestry by latitude may
contribute to the latitude gradient (36,37) but environmental factors
may also be important. A protective effect of UVR-induced
immunosuppression on MS is a possible contributing factor
because ambient UVR levels decrease with increasing latitude
(38). An early report showed that the association between MS
prevalence and latitude at birth did not persist after adjustment for
winter solar radiation (39).

For Australia, the decrease in annual averaged ambient UVR is
1 kI m?> per 10° latitudinal increase (40). Also a sixfold increase
in MS prevalence exists from North Queensland (19° South in
latitude) to Hobart, Tasmania (43° South in latitude) (41). The MS
prevalence gradient persists even when the sample is restricted
only to immigrants from the United Kingdom (42). No association
between age of migration and MS risk was found in an Australian
case control study (42), consistent with a strong field environmen-
tal effect operating in Australia beyond the early childhood period.
We have recently reported a strong association (r = —0.91, P =
0.01) between regional UVR levels and MS prevalence in Australia
(43).

Season of birth variation in MS risk has been examined in
several studies. Ambient UVR varies seasonally with a winter nadir
(44). A spring (45,46) birth excess has been reported for most
studies (47) but not all (48), and others have reported an autumn
excess (49) or bimodal pattern (50). A pooled analysis of datasets
from Canada, Great Britain, Denmark and Sweden (n = 42,045)
showed that significantly fewer (8.5%) people with MS were born
in November and significantly more (9.1%) were born in May (51).
This indicates the association between a seasonal factor and MS
risk may not be linear; thus, a smooth sinusoidal curve by season
may not occur, even if a factor that varies seasonally is associated
with MS.

The winter—spring excess of births in schizophrenia has been
hypothesized to reflect inadequate maternal vitamin D during
a critical fetal programming period during early intrauterine life
(50,52) because vitamin D has been shown to have a role in neural
development (52,53). The hypothesis draws from recent advances
in our understanding of the early origin of adult disease and
proposes a ‘critical window’ during which vitamin D levels may
have a persisting impact on adult health outcomes. With regard
to autoimmune disease, vitamin D could also play a role in the
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development of central immunological tolerance, resulting in the
elimination of self-reactive lymphocytes during lymphopoiesis.
Such tolerance develops primarily in fetal life (2). In addition,
serum 250HD concentration from cord blood correlates positively
with IL10 levels (54) and children born in summer compared with
winter have a significantly higher IL10 to total IgE ratio (54).
Because IL10 reduces both Th 1 and Th 2 responses to antigens
(16), it is also possible that UVR and/or vitamin D may influence
the likelihood that an individual shows tolerance to antigens and
allergens in early life.

The onset of some forms of MS may be insidious and thus
seasonal onset patterns are difficult to discern. Optic neuritis,
however, is a common presentation of MS with often a clear
pattern of onset. A seasonal pattern of monosymptomatic optic
neuritis has been reported with a higher spring incidence than
winter and a positive correlation between presentation and average
monthly sunny hours (r = 0.67, P = 0.02) (55). This correlation, at
first examination, may appear inconsistent with previous reports of
an inverse association between UVR and MS. However, the
underlying pathological process may have commenced several
months previously and, if this were the case, optic neuritis disease
initiation, rather than presentation, may still be inversely related to
UVR levels.

The clinical course of relapsing-remitting MS has been
characterized in some studies by a spring excess of relapses (56).
In progressive MS, a winter peak of IFNy and IL12 has been
observed (57). A recent ecological study has shown a striking
inverse correlation (» = —0.85) between population monthly serum
250HD levels, which are largely UVR induced (12), and the mean
monthly number of active MS lesions detectable by imaging scan
two months later, among MS patients in South Germany (58).
Although the distribution of active MS lesional activity in that
study showed a seasonal pattern with a spring excess (58), another
MRI study on 92 people with MS that examined intraindivid-
ual MS lesional activity did not report significant seasonal varia-
tion (59).

There are now several analytical epidemiological studies that
have examined UVR and/or vitamin D and MS. The case control
(60,61) and cohort (62) studies are outlined in Table 1. Although
childhood sun exposure appeared particularly important with
regard to MS onset in the Tasmanian case control study (61),
occupational sun exposure has an inverse association with MS mor-
tality in the U.S. death certificate study (60) and vitamin D supple-
mentation after age 25 in the U.S. nurses cohort was inversely
associated with MS onset (62). Thus, any beneficial action of UVR
and/or vitamin D may operate in adulthood as well as childhood.
Further, in the Tasmanian case control study, winter sun exposure
appeared more important than summer sun exposure (61), consis-
tent with the notion that inadequate UVR/vitamin D beneath a
certain threshold may be involved. The U.S. Nurses Cohort Study
was particularly important, as the reported association was pro-
spective, using vitamin D measurements that had also been re-
lated to other vitamin D insufficiency disorders such as hip
fractures (62).

The Oxford Record Linkage Study found that, in a ten year
follow-up of people admitted to the hospital with MS, subsequent
admission to the hospital for skin cancer was significantly less
common than in a comparison cohort matched on age, sex and
other factors (63). This study did not attempt to assess UVR before
MS onset and thus this finding of a skin cancer deficit may partly
reflect a contribution of lower postdiagnosis sun exposure among
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people with MS. An alternative explanation is a common
antecedent factor, giving rise to both a higher risk of MS and
reduced risk of skin cancer. A small study of vitamin D, calcium
and magnesium supplementation in MS patients showed that, after
a period of 1-2 years, less than half the number of exacerbations
were observed than the expected number based on case histories
(64). More recently, a small (» = 39) randomized control trial
comparing 6 months of 1000 international units of vitamin D and
800 mg calcium compared with 800 mg calcium alone reported
a significant increase in transforming growth factor beta (TGF f)
levels (65), an important anti-inflammatory cytokine (66).
Randomized controlled trials to evaluate the effect of longer term
vitamin D supplementation on clinical and MRI indicators of
multiple sclerosis disease activity are required.

TYPE 1 DIABETES

Type 1 diabetes results from autoimmune destruction of pancreatic
beta cells and consequent insulin deficiency. Onset may be at any
age but is most common before the age of 30 years (35). The
prevalence of type 1 diabetes has been increasing worldwide over
the past two decades. The disease is equally common in men and
women. There is considerable geographic variation in incidence
of type 1 diabetes, from 35/100 000 in Finland to 3/100 000 in
Japan and China (35).

A latitudinal gradient has also been reported for childhood
diabetes (67,68). For example, in Europe an incidence increase has
been observed with increasing latitude (6). An examination of
climatic temperature and latitude appeared to explain 40% of the
variation in type 1 diabetes incidence across 15 countries (67). A
negative correlation between annual ambient UVR and type 1
diabetes prevalence (+ = —0.80, P = 0.018) has been reported for
Australia (69).

A seasonal pattern of births with a spring or summer excess has
been reported in several locations (70-72) but this has not been
found consistently (73). Recently, an investigation of seasonality of
birth in 19 European regions found no uniform season of birth
pattern (74).

Two case control studies (75,76) and one cohort study (77) have
reported that vitamin D supplementation in infancy or cod liver oil
(a vitamin D rich oil) supplementation is associated with a reduced
risk of type 1 diabetes (Table 1). In the Finnish birth cohort,
children with infant rickets, a bone disease reflecting vitamin D
deficiency, had a threefold increased risk of type 1 diabetes (77).
The finding that the risk of type 1 diabetes was sharply reduced at
doses of vitamin D over 2000 international units/day in the Finnish
cohort (77) suggests that the reason that vitamin D supplementation
was not associated with type 1 diabetes in the study by Stene et al.
(76) may be that vitamin D supplements in the latter study were
given at a lower dose (78).

RHEUMATOID ARTHRITIS

Rheumatoid arthritis is a chronic, multisystem inflammatory
condition characterized by persistent inflammatory synovitis
but having a highly variable clinical course (35). It affects
approximately 0.8% of the population with a female-to-male
ratio of approximately 3:1. Prevalence increases with increasing
age, but sex differences decrease with age. The disease affects
all races but is less common in rural sub-Saharan Africa (35).

Disease most commonly develops between the ages of 35 and
40 years and a clear latitudinal gradient has not been established
to the same extent as for MS or type 1 diabetes (69). The disease
is characterized by the overproduction of proinflammatory cyto-
kines and an abnormal Th 1 type response (79). Vitamin D
insufficiency or deficiency (80,81) has been documented in
patients with rheumatoid arthritis.

Low 1,25(0OH),D3; was associated with higher rheumatoid
arthritis disease activity in cross-sectional studies (80-82).
However, the finding of a positive correlation between
1,25(0OH),D5 and alkaline phosphatase indicates this may in part
reflect that people with higher disease activity have increased bone
resorption (80).

Intervention trials of vitamin D or vitamin D analogues such as
lo-vitamin D on disease activity in patients with rheumatoid
arthritis are reviewed by Zitterman (79). Intervention trials with
a dosage of 1 pg lo-vitamin D were not associated with an
improved outcome. However, administration of higher amounts of
1a-D or other vitamin D forms was associated with improved pain
symptomatology and a significant reduction in C reactive protein,
a marker of inflammatory disease activity (79,82).

Dietary and supplemental vitamin D at cohort entry were
associated with a reduced risk of incident rheumatoid arthritis in
the Towa cohort (83) (Table 1). An interesting feature of this study
was that the cohort consisted of women aged 55 years and older at
cohort entry, indicating that the apparent beneficial effect of
vitamin D supplementation was evident in middle or older age.

ARE THESE FINDINGS CAUSAL?

The findings presented above provide some evidence of an
association between low UVR and/or vitamin D and these three
disorders, but these findings are not conclusive. However, many of
the findings suggest that these associations may reflect an
underlying causal protective role for low UVR and/or vitamin D.
A high degree of biological plausibility for a beneficial effect of
UVR-induced immunomodulation is suggested by photoimmuno-
logical work. Some of the pathways for this effect are independent
of vitamin D. The ecological findings are generally coherent but
with some exceptions. In general, the case control and cohort
studies shown in Table 1 are consistent. Many of the associations
in Table 1 are of high magnitude and have a dose-response
gradient. Cohort studies now show that low vitamin D is
prospectively associated with disease onset for all three diseases.
At the time of our last review (1), only one of the three cohort
studies listed in Table 1 had been published. The timing of action
of any UVR/vitamin D effect is not clear. As discussed, fetal and
early life may be important, but at least three analytical studies
(60,62,84) indicate an effect in adult life. The current observational
case control and cohort studies have not fully excluded that
a confounding factor associated with sun exposure behavior or
vitamin D ingestion is contributing to the apparent inverse
association between these factors and disease onset. There remains
a lack of human experimental studies on the effect of UVR and/or
vitamin D on the onset or progression of these three diseases. A
detailed consideration of the relative merits of different types of
intervention studies is beyond the scope of this review. For MS,
randomized controlled trials of vitamin D and/or ultraviolet
irradiation would be more feasible in relation to disease pro-
gression than onset.
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GENETIC STUDIES

Genetic studies can provide indirect information to strengthen the
likelihood that an environmental factor, such as low UVR, is
causally related to autoimmune diseases. First, if the adverse effect
of a low level of exposure to an environmental factor on disease
is specifically observed in individuals with a genetic vulnerability
to develop disease, then this information helps to “‘rule in’" an
environmental factor as a true disease determinant. In addition,
genetic  studies can provide important information on the
mechanisms involved in diseases associated with low UVR and/
or vitamin D.

Individual variation in pigmentation could influence the re-
sponse of UVR. The MCIR plays a key role in the production of
the skin pigment melanin. A fair skin type or low melanin has been
associated with an increased risk of both type 1 diabetes and MS
(61,84). Recently, His294-encoding MCIR variants were associ-
ated with an increased risk of MS (85). MCIR is activated by
MSH. which is also involved in UVR-induced immunosuppres-
sion. The hormone can modulate the function of MCIR expressing
monocytes and also down-regulate the expression of MHC class I
molecules on monocytes (30). In MS, for example, the HLA class I
region has been associated with risk of MS (86), and thus it is
possible that a gene—gene interaction might exist between gene
variants related to MCIR and HLA class L.

Another genetic candidate is the vitamin D receptor (VDR)
gene. VDRs are present in a number of cell types including Th 1
cells. Several polymorphisms have been identified in the VDR
gene, one of which (FokI) has been associated with altered VDR
gene expression or function (87). In MS, some studies (88.89)
found an association between VDR gene polymorphisms and MS
but not all (90). One study also found evidence for interaction
between VDR polymorphisms with HLA class II alleles (89).
Variation in vitamin D receptor gene status has been associated
with type 1 diabetes in two populations (91,92), but no association
has been found for rheumatoid arthritis (93,94).

IMPLICATIONS OF THESE FINDINGS FOR
SUN EXPOSURE GUIDELINES

Photoimmunological work shows that many of the effects of UVR
on immune function appear to be independent of pathways in-
volving vitamin D. Data from human studies are currently not
sufficient to allow a disentangling of the possible relative contri-
bution of low UVR from low vitamin D. Without this information,
it is difficult to be sure that use of a vitamin D supplement among
sun avoidant persons would completely compensate for insufficient
UVR exposure if insufficient UVR exposure was causally related
to disease.

The findings summarized in this review highlight the critical
importance of considering the benefits as well as adverse effects of
UVR for a wide range of human health outcomes, not just skin
cancer or rickets, when formulating public heath policy on UVR
exposure (95). The evidence discussed in this review indicates that
adverse effects related to immune overactivity could potentially be
a problem for people with low personal sun exposure and vitamin
D deficiency. Note that for health effects that are mediated through
vitamin D, dietary vitamin D intake needs to be considered. There
is a need to provide information on the minimum sun exposure
required for beneficial health effects, including the maintenance of
vitamin D levels, and the maximal sun exposure to avoid the
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adverse health effects associated with excessive sun exposure. Sun
exposure advice needs to take into account not only time in the sun
but also time of day, season, residential latitude, area of exposed
skin, pigmentation and dietary vitamin D intake (96). Further work
is required to assess the correct titration of human exposure to
ambient UVR for optimal immune function and overall health.
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