University of Tasmania
Browse

File(s) under permanent embargo

Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity

journal contribution
posted on 2023-05-21, 03:54 authored by Hassan Ahmed, Svetlana ShabalaSvetlana Shabala, Sergey ShabalaSergey Shabala
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.

History

Publication title

Physiologia Plantarum

Volume

172

Issue

4

Pagination

1997-2010

ISSN

0031-9317

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Blackwell Munksgaard

Place of publication

35 Norre Sogade, Po Box 2148, Copenhagen, Denmark, Dk-1016

Rights statement

© 2021 Scandinavian Plant Physiology Society.

Repository Status

  • Restricted

Socio-economic Objectives

Other plant production and plant primary products not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC