University Of Tasmania

File(s) not publicly available

Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins

journal contribution
posted on 2023-05-16, 15:07 authored by David RatkowskyDavid Ratkowsky, Olley, J, Thomas RossThomas Ross
The specific growth rate constant for bacterial growth does not obey the Arrhenius-type kinetics displayed by simple chemical reactions. Instead, for bacteria, steep convex curves are observed on an Arrhenius plot at the low- and high-temperature ends of the biokinetic range, with a region towards the middle of the growth range loosely approximating linearity. This central region has been considered by microbiologists to be the "normal physiological range" for bacterial growth, a concept whose meaningfulness we now question. We employ a kinetic model incorporating thermodynamic terms for temperature-induced enzyme denaturation, central to which is a term to account for the large positive heat capacity change during unfolding of the proteins within the bacteria. It is now widely believed by biophysicists that denaturation of complex proteins and/or other macromolecules is due to hydrophobic hydration of non-polar compounds. Denaturation is seen as the process by which enthalpic and entropic forces becomes imbalanced both at high and at low temperatures resulting in conformational changes in the enzyme structure that expose hydrophobic amino acid groups to the surrounding water molecules. The "thermodynamic" rate model, incorporating the heat capacity change and its effect on the enthalpy and entropy of the system, fitted 35 sets of data for psychrophilic, psychrotrophic, mesophilic and thermophilic bacteria well, resulting in biologically meaningful estimates for the important thermodynamic parameters. As these results mirror those obtained by biophysicists for globular proteins, it appears that the same or a similar mechanism applies to bacteria as applies to proteins. © 2004 Elsevier Ltd. All rights reserved.


Publication title

Journal of Theoretical Biology








Tasmanian Institute of Agriculture (TIA)


Academic Press

Place of publication

United Kingdom

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics