Landscape modification can alter the distribution and abundance of wildlife, which can result in irruptions of native species causing significant impacts on economically and ecologically valuable systems. This study investigated the applications of the Spatio-Temporal Animal Reduction (STAR) model, originally designed for the management of feral ungulates, by adapting it for the management of a native pest herbivore (the Tasmanian pademelon, Thylogale billardierii) within an agricultural-forest mosaic, typical of Tasmanian (Australian) agricultural landscapes. Empirical data of habitat and demographic features of a pest population were inputted into STAR to test the cost-effectiveness of three simulated density reduction models. Compared with the projected population growth under no management, simulations demonstrated that low, medium and high density reduction all reduced population abundance over 10 years. Cost increased with the level of population reduction due to increasing difficulty with locating individuals. The revenue gained from a simulated harvest was greatest for medium-intensity density reduction. We propose STAR can be used as a decision support tool to guide situations considering resource availability, browsing intensity and site-specific management objectives. The application of STAR highlights the model's adaptability across diverse pest populations, landscape features and where there is competition for resources between domestic and native populations.
Funding
Department of Natural Resources and Environment Tasmania
History
Publication title
Applied Ecology and Environmental Research
Volume
12
Pagination
163-178
ISSN
1589-1623
Department/School
School of Natural Sciences
Publisher
ALOKI Ltd., Applied Ecological Research and Forensic Institute Ltd.
Place of publication
Hungary
Rights statement
Copyright 2014 Alkoki Ltd.
Repository Status
Restricted
Socio-economic Objectives
Control of pests, diseases and exotic species in terrestrial environments