File(s) under permanent embargo
Using the Schaake shuffle when calibrating ensemble means can be problematic
The Schaake shuffle is a simple and effective method for re-ordering calibrated ensemble forecasts. It is widely used in forecast calibration methods where realistic spatial and temporal sequences are important. We illustrate a previously unidentified problem with the application of the Schaake shuffle. When the autocorrelation of uncalibrated forecasts is markedly different from observations, the Schaake shuffle cannot guarantee that the calibrated ensemble is reliable when ensemble members are accumulated through time. Accumulations in time and space are particularly important for applications that integrate rainfall over these dimensions, notably hydrological modelling. We demonstrate that ensemble means of uncalibrated forecasts tend to be more autocorrelated than observations. This can cause poor reliability if variables are accumulated across lead times under certain conditions, even if forecasts are perfectly reliable at individual lead times. Specifically, if the following conditions occur, ensemble predictions of accumulated variables tend to be too wide:
- 1)
Forecasts are more autocorrelated than observations.
- 2)
Forecasts are skillful; i.e., cross-correlations between forecasts and observations are high.
History
Publication title
Journal of HydrologyVolume
587Article number
124991Number
124991Pagination
1-6ISSN
0022-1694Department/School
Institute for Marine and Antarctic StudiesPublisher
Elsevier Science BvPlace of publication
Po Box 211, Amsterdam, Netherlands, 1000 AeRights statement
Copyright 2020 Elsevier B.V. All rights reserved.Repository Status
- Restricted