University of Tasmania
Browse

File(s) under permanent embargo

Variation in constitutive and induced chemistry in the needles, bark and roots of young Pinus radiata trees

journal contribution
posted on 2023-05-21, 03:14 authored by Nantongo, JS, Bradley PottsBradley Potts, Noel DaviesNoel Davies, Hugh Fitzgerald, Thomas RodemannThomas Rodemann, Julianne O'Reilly-WapstraJulianne O'Reilly-Wapstra
The capacity of trees to cope with pests and pathogens depends in part on the variation of constitutive and induced chemical defences within the plant. Here we examined the constitutive and induced variation of primary (sugars and fatty acids) and secondary (mono-, sesqui- and di- terpenoids as well as volatile phenolics) metabolites in the needles, bark and, for the first time, roots of 2-year old Pinus radiata. A total of 81 compounds were examined. The plant parts differed significantly in constitutive levels of individual sugars, fatty acids, mono-, sesqui- and di- terpenoids as well as volatile phenolics. Overall, the bark had more compounds and a higher amount of most secondary compounds and the levels of compounds in the roots differed from that of the needles and bark. For example, glucose was the dominant sugar in the needles and bark whereas fructose dominated in the roots. Of the fully identified secondary compounds, monoterpenoids dominated in all plant parts but with different qualitative patterns. Following methyl jasmonate and bark stripping treatments, a marked reduction in sugars but weaker changes in secondary compounds were detected in the needles and bark. Responses in the roots were minor but the few that were detected were mostly in response to the bark stripping treatment. Changes in correlations among chemicals within plant parts and between the same compound across the different plant parts were also detected after stress treatments. Overall, results showed that the constitutive composition in the roots differs from that of the bark and needles in P. radiata and inducibility is stronger in the primary than secondary metabolites and differs between plant parts. This detailed assessment of Pinus radiata chemistry in the needles, bark and roots, including the compounds that respond to simulated biotic stress will potentially facilitate the identification of related chemical defence traits.

Funding

Australian Research Council

Hancock Victorian Plantations Pty Ltd

Radiata Pine Breeding Co Ltd

Scion New Zealand Forest Research Institute Limited

Timberlands Pacific Pty Ltd

History

Publication title

Trees

Volume

36

Pagination

341-359

ISSN

1432-2285

Department/School

School of Natural Sciences

Publisher

Springer

Place of publication

Germany

Rights statement

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Repository Status

  • Restricted

Socio-economic Objectives

Softwood plantations

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC