University of Tasmania
Browse

File(s) not publicly available

'Invisible gold' in bismuth chalcogenides

journal contribution
posted on 2023-05-17, 01:48 authored by Ciobanu, CL, Cook, NJ, Pring, A, Brugger, J, Leonid Danyushevsky, Shimizu, M
Gold concentrations have been determined by LA-ICPMS in bismuth chalcogenides (tellurides and sulfosalts, minerals with modular structures; chalcogen X = Te, Se, and S) from 27 occurrences. Deposit types include epithermal, skarn, intrusion-related and orogenic gold. The samples comprised minerals of the tetradymite group, aleksite series, bismuth sulfosalts (cosalite, lillianite, hodrushite, bismuthinite, and aikinite), and accompanying altaite. Gold concentrations in phases of the tetradymite group range from <0.1 to 2527 ppm. Phases in which Bi > X tend to contain lower gold concentrations than Bi2X3 minerals (tellurobismuthite and tetradymite). Cosalite and lillianite contain Au concentrations ranging up to 574 and 3115 ppm, respectively. Bismuthinite derivatives have lower Au concentrations: <2 ppm in bismuthinite and up to 542 ppm in aikinite. In our samples, Au concentrations in altaite range from <0.2 to 1662 ppm. Smoother parts of the LA-ICPMS profiles suggest lattice-bound gold, whereas irregularities on the profiles are best explained by the presence of gold particles (<= 1 mu m in diameter). Plotting Au vs. Ag for the entire dataset gives a wedge-shaped distribution, suggesting that Ag underpins Au uptake in both bismuth tellurides and sulfosalts. In the tellurides, correlation trends suggest statistical substitution of Ag(Au), together with Pb, into the octahedral site in the layers. In sulfosalts, Au follows coupled substitutions in which M1+ (Ag, Cu) enters the structure. In tellurides, the presence of van der Waals gaps at chalcogen-chalcogen contacts provides for p-type semi-conductive properties critical for gold scavenging from fluids. Such weak bonds may also act as sites for nucleation of Au (nano) particles. In sulfosalts, contacts between different species that replace one another are also highly predictable to act as traps for (nano)particulate gold. Invisible gold in Bi-chalcogenides is useful to (i) identify trends of orefield zonation, (ii) discriminate between 'melt' and 'fluid-driven' scavenging, and (iii) interpret replacement and remobilisation processes. Bismuth chalcogenides have the potential to be significant Au carriers in sulfide-poor Au systems, e,g., intrusion-related gold, with impact on the overall Au budget if mean Au concentrations are high enough and the minerals are sufficiently abundant.

History

Publication title

Geochimica Et Cosmochimica Acta

Volume

73

Issue

10

Pagination

1970-1999

ISSN

0016-7037

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

Kidlington, Oxford, England, Ox5 1Gb

Repository Status

  • Restricted

Socio-economic Objectives

Precious (noble) metal ore exploration

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC