University of Tasmania
Browse
Integrated_Performance_Measures12032.pdf (5.93 MB)

Developing Integrated Performance Measures for Spatial Management of Marine Systems

Download (5.93 MB)
report
posted on 2023-08-21, 06:44 authored by Smith,D, Fulton,EA, Johnson,P, Jenkins,G, Colin BuxtonColin Buxton, Barrett,NS

This study is, as far as the authors' are aware the first „whole of system‟ approach to performance evaluation of spatial management. The results of this study should improve effectiveness and efficiency of spatial management, through development of better performance assessment methods. More importantly, is should lead to greater uptake of spatial management approaches to achieve ESD for marine resources and ecosystems.

An important outcome of the project has been that our model (Atlantis-SM) and what we have learned from its development and application, provides a "transportable" framework for developing performance measures. The basic approach, both the telescoping treatment of habitats in and around spatial closures and the management strategy evaluation framework for representing the estimation of indicators, can be applied to other systems via new implementations of the Atlantis framework.

However, even without going that far, it is possible to take the lessons learnt in this case to other systems. In particular it contributes to the policy debate around the implementation of EBM. It highlights the potential for monitoring for EBM performance to be far from simple. Monitoring schemes with small spatial coverage or infrequent temporal repetition (on the order of 3-5 years or more) had no power to rapidly detect changes at the broader system level. In addition, the finding that there is likely to be system specific reference points is particularly important, as the tendency within the literature has been to try and find generic rules and approaches for universal application and broad scale comparisons. The indication from this study that universal reference points (analogous to B0.4 in fisheries) or directions, which do not take into account local specificity, may not be feasible has important consequences as is at odds with recent literature and suggests that adoption of such approaches could lead to a very misleading interpretation of management performance.

There is increasing interest in the spatial management of marine systems worldwide and it is seen as a crucial step towards implementation of ecosystem-based management. This has seen a growing focus on managing marine systems at various spatial scales and assessing the relative roles of different spatial components to large marine systems as a whole. However, the scientific basis for the spatial management of marine systems is limited, although spatial area management, as illustrated by Marine Protected Areas (MPAs), has received considerable attention as the „new‟ tool to control over-exploitation of fish stocks. To properly evaluate the potential merit of spatial management, there is a distinct need for such approaches to have clearly stated objectives, meaningful indicators and effective monitoring of performance with respect to management objectives. Where performance assessment has been undertaken, it is usually focuses on examining the consequences in the immediate area of the spatial management zone (e.g. what accumulates in a closed area) rather than examining the system-wide effects and benefits. In addition, while an enormous number of candidate ecological indicators have been proposed in the literature, these are generally at the whole of system level rather than being spatially explicit.

In this study we reviewed the available information on monitoring for spatial management and associated performance measures, for programs both in Australia and overseas. Overseas monitoring programs reviewed were from the Philippines, the Caribbean, Indonesia, California, New Zealand, South Africa, Kenya, France and Ecuador. Australian programs reviewed were from Queensland, Tasmania, New South Wales, Victoria, and the Great Australian Bight. The majority of these programs were associated with spatial management of marine protected areas (MPAs). In addition the review considered monitoring for social and economic objectives of spatial management, and observational approaches for the spatial management of marine systems. A key outcome from the study into performance measurements of spatial management are the implications for monitoring designs.

The Atlantis modelling framework provided the basis for a model developed explicitly for this study; Atlantis-SM. It was calibrated using time series data from Victoria and Tasmania and was able to spatially simulate MPAs in the south east of Australia. It was developed to evaluate indicators at various spatial scales and how well they perform under a range of specifications and scenarios. We do not address whether or not there should be MPAs, rather the model is designed to develop an effective means to assess the performance of indicators of the system and the spatial management within it. The rationale for this focus is that no-take MPAs are likely to show the strongest contrast in the influence of human activity and so would contain the greatest potential differential and signal strength. If indicators are not effective in evaluating performance here they are unlikely to be useful in other forms of spatial management. To the authors‟ knowledge it represents the first such „whole of system‟ study undertaken on appropriate indicators for assessing the performance of spatial management.

We applied a 3x4x4x4* (productivity x MPA size x sampling schemes x impact type, with the * indicating that one of the impacts (fisheries) was also considered at 3 levels) matrix of specifications and scenarios to assess indicator robustness (ie how well they perform under different conditions), giving 432 individual outputs. The other impacts considered included climate change, nutrients, and illegal, unreported and unregulated (IUU) fishing.

As we were not addressing a specific management objective we drew upon indicators commonly used to address a range of spatial management objectives. The indicators evaluated were drawn from previous studies on ecological indicators and from the results of a literature review undertaken as part of this study. We also chose indicators that could be feasibly calculated and tested in the Atlantis-SM model, which cover the majority of indicators that can be feasibly and repeatedly measured in reality. These indicators cover the primary indicators used to date to monitor MPAs, and the recommended set from past studies of ecological indicators of the effects of anthropogenic impacts (especially fishing).


History

Department/School

Institute for Marine and Antarctic Science

Publisher

CSIRO

Publication status

  • Published

Place of publication

Hobart

Rights statement

Copyright 2011 Fisheries Research and Development Corporation and CSIRO Wealth from Oceans National Research Flagship. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Information may not be stored electronically in any form whatsoever without such permission.

Socio-economic Objectives

Bioethics

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC