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Abstract 

Significant jumps have been found in stock prices and stock indexes, suggesting that jump risk 

is a part of systematic risks. Since jump risk is priced, adding jump risk into the traditional 

finance models has significant empirical and theoretical meanings. This dissertation focuses on 

testing and exploring the usage of the jump-diffusion two-beta asset pricing model. 

The dissertation consists of three essays: The three essays, investigate the dual beta (i.e. 

diffusion beta and jump beta) asset pricing model conditional on the state (i.e. up or down) of 

the market, the quantile relationships between standard beta, diffusion beta and jump beta and 

lastly, the quantile relationships between beta-changes and volume. 

The first essay of this dissertation concerns the capital asset pricing model (CAPM) beta (or 

standard beta), which is assumed to be the sole and constant measure of systematic risk in the 

CAPM model. However, it is now considered an empirical fact that the beta of a risky asset or 

portfolio is not the sole measure of systematic risk but is also time varying. Often, the market 

beta is not enough to explain the cross-sectional variations of average equity returns. For this 

reason researchers have proposed alternatives to the classical CAPM. More specifically, 

Todorov and Bollerslev (2010) showed that the CAPM beta can be further decomposed into a 

diffusion beta and a jump beta. Therefore, the first essay of this dissertation investigates 

whether assets with different decomposed betas are priced more efficiently. In particular, we 

investigate the systematic risk exposures of Japanese banks for both continuous and 

discontinuous market risks.  

Using high frequency data from 2001 to 2012, we decompose the standard betas of Japanese 

banking stocks into its diffusion and jump components. We find that jump betas on average are 

larger than diffusion betas, indicating that stocks respond differently to information associated 

with continuous and discontinuous market movements. We also find that larger stocks are more 

sensitive to discontinuities than their smaller counterparts; high leveraged stocks are more 

exposed to unexpected market-wide news and profitable firms are equally sensitive to both 
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diffusion and jump market risks. By allowing for asymmetric market states we show that 

diffusion and jump betas both carry large and significant premiums in both up and down 

markets, but that these premiums differ substantially during periods of financial crises from 

those present during stable conditions. 

The second essay also applies the CAPM decomposition approach to compute the diffusion 

betas and jump betas. However, this essay takes a step further from the second essay and 

estimates the quantile-relationship(s) between standard betas, diffusion betas and jump betas 

of individual stocks and portfolios in the Japanese market. It also examines whether the beta in 

the standard CAPM is the weighted average of the jump beta and diffusion beta in the 

decomposed (jump-diffusion) CAPM model. A key insight of this essay is that even though 

the diffusion returns and jump returns are orthogonal according to the Todorov and Bollerslev 

(2010) decomposition, the two component betas (i.e. diffusion and jump betas) are neither 

restricted nor found to be orthogonal. Using quantile regression techniques, we find that jump 

betas have a higher variability than the diffusion and standard betas and the relationship(s) 

between the three betas are non-linear. Our findings also demonstrate that standard beta is more 

weighted by diffusion beta than jump beta, although the actual magnitudes of the weights differ 

significantly across the quantiles. We also show that the betas vary systematically across (large 

and small) firm sizes. Empirically, we also find support for the notion that the standard CAPM 

beta is a ‘summary proxy’ for the systematic risks in a jump-diffusion market process, i.e. a 

weighted average of the diffusion beta and the jump beta (at the median quantile). 

The third essay applies the same quantile-regression methodology, as used in the third essay, 

to examine the behaviour of time-vary beta-changes (or beta uncertainty) conditional on trading 

volume. By quantile-regressing the various betas (standard beta, diffusion and jump beta) on 

trading volume, our results depict a non-linear relationship. The volume-beta relationships at 

the tail quantiles are found to be quite different from those at high quantiles and at the mean. 

Since the systematic risk, beta, is a function of price-changes (price uncertainty) (according to 

the CAPM), we also examine whether the observed non-linear linkages between beta and 

volume is also analogously mirrored by price-changes and volume. The findings indicate a 

positive (negative) relationship between stock price changes and volume from top (bottom) 

quantiles. The relation is not entirely contemporaneous since lagged volume also found to 

contain predictive power for price-changes. 
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Chapter 1 

Introduction 

Over the last few decades, global financial markets have experienced major structural changes 

and severe crisis periods. The financial crisis of the late 1990s, and the very recent global crisis 

of 2007–2008, resulted in enormous costs to many countries, with devastating effects on the 

global economy. Triggered by a real estate bubble, overly leveraged financial products, and 

failures of AIG, Lehman, Merrill, and other major financial firms, the “Great Recession” of 

2008–09 saw America’s GDP contract by more than 4 per cent and that of some countries by 

double digits. This has led to a questioning by the community of the credibility of our current 

understanding in finance and financial behaviour. These crises have led to a further growing 

awareness of the need for appropriate risk management techniques and structures within 

organizations. In this dissertation, we seek to understand the driving factors of firm’s risk 

exposure by considering how the market affects asset prices. That is, how an individual firm’s 

equity prices respond to continuous and discrete market moves and how these different market 

price risks, or betas, are priced, as well as, how these different betas behave across different 

firms.   

A firm’s risk is defined as the risk inherent in firm’s operations as a result of external or internal 

factors that can affect a firm’s profitability. Firm risk is typically divided into two parts: 

idiosyncratic risk (firm-specific risk) and systematic risk which results from exposure overall 

market shocks and is often represented as market risk. The portfolio theory of Markowitz (1952) 

decomposes an asset risk into the diversifiable and non-diversifiable risk. Since an asset 

diversifiable risk can be completely removed through the diversification, the price-related risk 

of an asset is non-diversifiable risk. Based on these Sharpe (1964) and Lintner (1965) 

developed the capital asset pricing model (CAPM). Since an asset’s diversifiable risk can be 

completely cancelled out, CAPM says a theoretically appropriate expected return of an asset 
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depends on the asset’s non-diversifiable risk, not its whole risk. As a result, the risk premium 

on an asset is determined by its systematic risk. This thesis examines the relationship between 

systematic risk and stock returns in the financial industry with a focus on banking stocks. 

Cross-sectional asset-pricing studies typically exclude financial institutions because of their 

high leverage and the high level of industry regulations. This suggests that financial firms may 

be suspected to be outliers in any study spanning industries with differences in capitalization 

and regulation.  For example,Fama and French (1992, 1993) exclude financial firms in their 

study. They state ‘‘. . .we did not include financial firms because the high leverage that is 

normal for these firms probably does not have the same meaning as for nonfinancial firms, 

where high leverage more likely indicates financial distress. . .’’ (Fama and French, 1992, pp. 

429). Most of the numerous studies that extended the Fama French model have followed their 

approach and excluded financial firms.1 The fact that the model excludes financial firms is 

problematic because financial firms make up a substantial fraction of the domestic equity 

market. Moreover, the exclusion of financial firms can be questioned on both theoretical and 

empirical grounds. The theoretical structure originally developed by Modigliani and Miller 

(1958, 1963) demonstrates that leverage can change the risk profile (beta) of a firm but it does 

not invalidate the central principles of the CAPM. In this sense, it would be more desirable if 

the pricing model is generally applied rather than restricted to nonfinancial corporations.  

We concentrate on financial firms to examine firms’ reactions to different forms of market 

movements. The recent financial and sovereign debt crisis highlights the multi-dimensionality 

of financial firms’ risk exposures. This thesis focuses on the banking sector as the global 

banking markets were hit hard by the crisis. Although there exists an extensive literature on 

common risk factors in stock returns (Goyal 2012), most research is devoted to industrial firms, 

for example by focusing the single factor CAPM and its extensions. 

Empirical evidence for bank risk remains rather scarce, because empirical studies usually 

exclude banks based on their inherent difference from industrial firms (Gandhi and Lustig 

2015). Banks are different from non-financial firms in many ways. One of the most salient 

distinctions is that banks are subject to bank runs during banking panics and crises, not only by 

depositors, but also other creditors (Gorton 1988, Gorton and Metrick 2012, Duffie 2010). 

Banks also differ from industrials with respect to their business activities, leverage, regulation, 

                                                           
1 Some exceptions are Baek and Bilson (2015), Baele et al. (2015), Viale et al. (2009), and Bessler et al. (2015) 

among others. 
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and systemic importance. Moreover, in financial crisis periods there is a threat of bank runs, 

with the potential to increase the probability of bank failures leading to systemic risk. Therefore, 

understanding the sources of banks’ risk exposures is essential for bank regulators, investors, 

and bank customers. In this dissertation, we investigate the time-varying systematic risk 

exposures of banks in order to better understand the sources and the relative pricing of risk by 

taking advantage of this special nature of banks as compared to regular industrial firms. It is 

important for banks to understand the determinants of equity risk premise, since this premium 

not only affects their investment decision but also their financing decision. As is well known, 

the weighted average cost of capital (WACC) is a weighted average of the costs of debt and 

equity. The higher the equity risk premium, the higher the required rate of return on equity, and 

thus, the higher the WACC. The variation of risk premium is also of interest to regulators 

because it contains information about market perception of bank risk. Thus, if banks have 

increased their exposures to certain risks, regulators should consider actions, such as additional 

loss provisioning, additional capital infusion, as well as revising the required deposit insurance 

premium paid. Thus, this paper contributes to the asset-pricing literature by providing empirical 

evidence on the systematic risk factors that are relevant in pricing bank equities.   

According to Sharpe (1964) and Lintner (1965) CAPM, the systematic component of risk, 

measured by beta, should be priced. Although numerous studies over the past half-century have 

challenged the ability of CAPM to explain the cross-section of expected stock returns, it still 

remains the workhorse of finance for estimating the cost of capital and capital budgeting for 

firms. Meanwhile, more recent empirical evidence pertaining to the equity risk premium and 

the pricing of risk at the aggregate market level suggests that the expected returns variation 

associated with discontinuous moves, or jumps, is priced higher than the expected continuous 

price variation.2  

Although there is no consensus on what constitutes a jump and what distribution it follows, 

evidence generally supports the hypothesis that jumps exist in asset prices. Jumps are 

infrequent but abnormal changes in stock prices, often driven by significant information shocks 

or liquidity shocks. Early empirical evidence of jumps in stock prices and option pricing model 

was provided by Press (1967) and Merton (1976). Subsequent studies such as Ball and Torous 

(1983), Jarrow and Rosenfeld (1984), Akgiray and Booth (1986) and recent studies from 

                                                           
2 See, Pan (2002), Eraker et al. (2003), Bollerslev and Todorov (2011), among others 
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Barndorff-Nielsen and Shephard (2004), Andersen et al. (2007),Lee (2012), amongst others 

provide convincing support for jumps in stock prices and other assets.  

The option pricing literature generated early interest concerning jumps and their consequences 

for asset pricing, starting with the classical papers by Cox and Ross (1976) and Merton (1976). 

They examine the effects of jumps on option pricing beyond the classical diffusion model of 

Black and Scholes (1973). While the classical Black-Scholes diffusion model can generate 

heavy tails in returns, it cannot generate sudden, discontinuous moves in prices. The valuation 

of options becomes more difficult when prices follow processes that include jumps because it 

will no longer be possible to form a risk-free portfolio, as in Black-Scholes approach to option 

pricing, Cox and Ross (1976) and Merton (1976) extend the Black-Scholes diffusion to include 

a jumps representation of the price process. However, their model assume that jumps are 

idiosyncratic risk, i.e. the prices of underlying asset are uncorrelated with price changes in the 

market, and therefore jump risk is not priced. Subsequent studies such as, Naik and Lee (1990), 

Bates (2000), Pan (2002), Eraker (2004) and Yan (2011) demonstrate that incorporating jumps 

contributes to explaining observed option prices. Strong empirical evidence from the effects of 

jumps motivates our research in this dissertation.  

In a jump-diffusion process, the stock price process is characterized by a diffusion Brownian 

motion component plus a pure jump component. The diffusion part is the usual flow of news 

that gives rise to frequent and relatively small price changes i.e. the change in stock prices may 

be due to the variation in capitalization rates, a temporary imbalance between supply and 

demand, or the receipt of any information which only marginally affects stock prices, while the 

jump part is a rarer event, such as release of important information, a liquidity shock, regional 

or global financial crisis or even serious terrorist attack to major industrial country with strong 

economic power in the world, that causes an abnormal changes in price of stock. Naik and Lee 

(1990) study a general equilibrium model, which includes premia for both jumps and diffusion 

risks in order to price European options on the market portfolio. Their model states that option 

traders price the expected variation in equity returns associated with large price discontinuities 

or jumps, differently from the expected variation associated with smooth or diffusion price 

moves. When commenting on Merton’s (1976) model, they point out that a “feature of Merton 

model is the assumption that the jumps in security prices are uncorrelated with return on the 

market portfolio. Clearly, this assumption is violated if the security under consideration is the 

market portfolio itself (p.495)”. An important contribution of the ability of the Naik and Lee’s 
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equilibrium model is to explain the jump risk as systematic risk, an aspect omitted by Merton 

(1976).  

If jump risk is priced in an option, one would expect it will be priced in the underlying stock 

returns themselves, and if the return of stocks should be divided into a jump part and diffusion 

part certainly the risk associated with stock returns should be decomposed into two parts also. 

Decomposing risk into diffusive risk and jump risk components may offer a new perspective 

and answers to the following questions,  

(I) How might diffusive risk and jump risk be measured?  

(II) Are there differences in sensitivities to two types of systematic risk? The possibility 

of identifying and quantifying jump risk also raises interesting questions concerning 

investors’ remuneration for bearing risks.  

(III) Is there a premium for jump and diffusive risk?  

(IV) And what are the levels of risk premia for these factors during normal market 

conditions and when markets are in turbulence? 

To address those questions, we adopt a continuous-time capital asset pricing model framework 

where it is assumed that asset prices follow a correlated jump-diffusion process. In the classical 

capital asset pricing model (CAPM), systematic risk, measured by beta, is determined by the 

asset’s covariance with the market over the market variance.3  

The CAPM assumes that security returns are generated by a continuous process. Return 

distributions, however, are more leptokurtic than the normal one as noted by Fama as early as 

1965. Hence, recent studies on the stochastic behaviour of the stock market generally agree 

that stock returns are generated by a mixed process with a diffusion component and a jump 

component. In this sense, the CAPM beta may only capture a part of a mixed process, and the 

standard CAPM beta is at best a ‘summary proxy’ for the systematic risk of a mixed-process, 

i.e. a weighted average of the diffusion component and the jump component. Therefore the 

beta of the CAPM is not an accurate risk measure when the price process has jumps. If so, it 

would be prudent to be able to split the standard beta into two component betas so as to capture 

the two risks separately: one component for continuous and small changes (diffusion beta) and 

                                                           
3 The CAPM has seen numerous extensions, such as conditional asset pricing factors such as, size, value, and 

momentum (Fama and French (1993), Jegadeesh and Titman (1993), and Carhart (1997)); liquidity (Amihud 

(2002), Pastor and Stambaugh (2003), and Acharya and Pedersen (2005)); preference-based factors such as the 

downside betas of Ang et al. (2006) and the co-skewness of Friend and Westerfield (1980) and Harvey and 

Siddique (2000); and factors relating to deviation from market equilibria, see Lettau and Ludvigson (2001). 
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the other for discrete and large changes (jump beta). These two types of risk are different in 

nature and require different treatments. They should be differently priced, hedged and managed. 

Consequently, being able to estimate them separately has implications for financial services, 

and hence the wider economy. The core of this dissertation is to examine the financial market 

behaviour in the presence of jumps and to analyse the effect of two different sources of 

uncertainty in a jump-diffusion economy using a general CAPM framework.  

The first essay of this dissertation, beginning in Chapter 2, examines the behaviour of diffusive 

and jump systematic risk for the Japanese banking sector and how investors price these two 

systematic risks under different market conditions. The particular interest in studying the 

Japanese market is driven by its specific financial and governance system (relationship-based) 

and there are only few empirical studies of the Japanese market. The contribution of our study 

is to add to the existing literature based essentially on US market empirical and theoretical 

results are less studied countries, in particularly, the Japanese market. Also, the Japanese 

banking sector is strongly developed, but with a distinctly different character from that of most 

Western economies, including particularly strong direct linkages between the banks and 

companies in the real economy – strong enough for a particular form of ‘wealth’ contagion to 

emerge between the financial markets and real economy through the complex web of 

accounting interactions, as shown in Kiyotaki and Moore (2002). CAPM estimates for the 

banking sector are relatively rare, and recent estimates for Japan are rarer still; King (2009) 

provides empirical estimates for banking sectors across a range of countries, and demonstrates 

the differences in Japan where relatively high beta have been maintained for over two decades, 

while a group of papers provide evidence for samples prior to the 21st century; Elyasiani and 

Mansur (2003), Gultekin et al. (1989), and Andersen et al. (2000) characterize volatility in the 

Japanese stock market based on a short sample of high frequency 5 min Nikkei 225 index return. 

To our knowledge there is no study of CAPM on Japan which takes account of recent advances 

in high frequency financial econometrics although Bollerslev and Zhang (2003), Andersen et 

al. (2006), Todorov and Bollerslev (2010), all provide evidence that using high frequency data 

improves estimation of beta over traditional regression based procedures using lower frequency 

data.  
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Chapter 2 uses recent developments in high frequency financial econometrics by Todorov and 

Bollerslev (2010) to estimate beta for the Japanese banking sector using high frequency intra-

day data. The unique aspect of this approach is to decompose the systematic risk into a 

continuous and discontinuous component, following the asset pricing literature which suggests 

the evolution of prices follows a continuous process such as Brownian motion augmented with 

discrete jump events. The expected stock return is dependent on both sources of risk. The 

diffusive component of the return is determined by the covariance between the diffusion 

process driving the market return and the stock processes, a well-known continuous-time 

analogue of the discrete time β-representation. The jump component of the return is captured 

by the covariance between the jump-distributions of the market return and stock processes.  We 

decompose standard CAPM beta into diffusion beta, attributable to general market volatility 

and jump beta associated with sudden disruption in the price process due to arrival of new 

information in the market. We aim to explain how individual stocks are influenced by 

systematic diffusive risk and jumps risk and we find that jump beta exceed the diffusion beta. 

Patton and Verardo (2012) provide an excellent motivation for why these beta may differ, 

arguing that information sufficient to cause disruption may attract greater market reaction 

speeds than the normal process. In addition to beta relationships, Bollerslev et al. (2015) have 

found the risk premiums associated with jump beta is statistically significant, while the 

diffusion beta does not appear to be priced in the cross-section. In another independent study 

on asset pricing Pettengill et al. (1995) showed that market premiums differ between up-

markets and down-markets. These multiple insights lead one to expect not only an analogous 

dual beta behaviour over the entire sample periods but also risk-premium differences between 

up-markets and down-markets.   

We introduce and test a new 4-beta CAPM model by combining the diffusion and jump betas 

of Bollerslev et al. (2015) and the conditional betas of Pettengill et al. (1995) into a single 

model to detect any significant differences under differing market conditions. Therefore, our 

model includes upside market diffusion, upside market jump, downside market diffusion, and 

downside market jump components. Because of this decomposition, the model in this chapter 

is sufficiently general to accommodate the research purpose of revealing how different factors 

are priced. Another feature of the model is that it explicitly allows individual stock prices to 

respond to the separated market components with different magnitudes. Accordingly, we can 

estimate the various exposures of a stock price to different risk factors and the associated risk 
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premiums and specifically identify the most important systematic risk components that explain 

stock returns.  

Our jump-diffusion two-beta asset pricing model provides an alternative to the CAPM. It prices 

both jump and diffusion risks. The empirical tests of this dissertation chapter show that it is a 

better asset pricing model than the CAPM, particularly for the period when jumps are included 

in the price process. In a resulting modified CAPM expected returns are still linear in beta, but 

additional premia are required to compensate the investor for taking on jump risk.  

The jump-diffusion asset pricing model has two different types of beta. It is two dimensional 

instead; where one dimension measures the systematic risk when no jump occurs, and the other 

measures the systematic risk when jumps occurs. These two types of beta are independent by 

definition.  Although the two-way decomposition beta allows us to ask how individual equity 

prices respond to diffusion and jump market moves, it does not allow us to differentiate the 

jump-diffusion model from the conventional CAPM.  

In Chapter 3, we test whether the jump-diffusion model is related to the CAPM. The key insight 

in this chapter is that, although the diffusion returns and jump returns are orthogonal by the 

Todorov and Bollerslev (2010) decomposition, the three realised betas (i.e. standard, diffusion 

and jump betas) are not restricted nor expected to be orthogonal. In fact, a simple correlation 

test indicates some dependencies. We explain the relationship between standard beta, diffusion 

beta and jump beta across different banks and how these different betas behave across different 

banks. We empirically show that jump-diffusion model is related to the CAPM, i.e. the 

systematic risk is equal to the weighted average of diffusion risk and jump risk. We find that 

on average the standard beta is weighted more by the diffusion beta component then the jump 

beta component. The relationship holds across the quintiles. However, the actual magnitude of 

the weights differ across the quintiles. In general, the weights are jointly lower for low standard 

betas until the pick around the 50th-75th quintiles with value dropping down again post 75th 

quantile. Further, when jump risk is diversifiable in the market portfolio the model is reduced 

to the standard CAPM.  

Prior empirical studies of the CAPM assume that a stock’s beta is constant through time, while 

our jump-robust version of the CAPM finds significant evidence of variation in betas at 

monthly frequencies. The variation in a stock's beta may be due to the influence of either micro 

factors such as operational changes in the company, or changes in the business environment 

peculiar to the company, and/ or macro factors such as the rate of inflation, general business 
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conditions and expectations about relevant future events.4 However, the literature suggests that 

the variation in the stock’s beta due to the influence of macroeconomic factors is limited. 

Therefore, in chapter 4, we further investigate the time variation in betas by adopting a 

microeconomic, rather than macroeconomic view on factors. Particularly, we investigate 

whether changes in time-varying betas can be explained by trading volume. Trading volume, 

in addition to price, represents an important source of information in stock markets. As with 

information about prices, information about volumes is publicly available. We hypothesize that 

trading volume can explain time-variation in CAPM beta changes, stemming from market 

microstructure models, such as the well-known mixture of distribution hypothesis (MDH) of 

Clark (1973), which assumes that trading volume is a proxy for speed of information flow to 

the market. The MDH implies a positive relationship between trading volume and price 

variability, and this relationship is a function of a mixing variable defined as the rate of 

information flow. Blume et al. (1994) show that trading volume provides information about 

the quality of information signals rather than the information signal itself. This motivates us to 

use trading volume as a potential explanatory variable for the time variation betas.  

Since the systematic risk, beta is a function of price-changes (according to the CAPM), we also 

examine whether observed linkages between beta and volume is also analogously mirrored by 

the price and volume relationship. Therefore, in the last section of chapter four, we further 

investigate the nature of volume-return relation. We establish a dynamic and significant linkage 

between beta changes and volume as well price changes and a volume-return relation 

relationship, assigning a special importance to trading volume as a proxy for the rate of 

information flow to the market. 

Finally, Chapter five summarises the implications of the research findings of this study, 

presents its limitations and outlines potential avenues for further research.  

 

                                                           
4 See, Sharpe et al. (1974), Bos and Newbold (1984), Ferson et al. (1987), Shanken (1990), Ferson and Schadt 

(1996), Lettau and Ludvigson (2001),  Andersen et al. (2005), Lewellen and Nagel (2006), Mergner and Bulla 

(2008), among others.  
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Chapter 2  

An Empirical Examination of Jump Risk in 

Asset Pricing: Evidence from Japan 

 

 

 

2.1. Introduction 

The Japanese banking sector is an important source of global international capital. Although 

not at the levels at which it previously dominated international cross-border banking in the 

1990s, since 2011 Japanese banks have re-emerged as the largest supplier of international bank 

credit; see Rixtel and Gasperini (2013). This change appears to be at least partly due to the 

historically conservative lending practices of Japanese banks, which have proven attractive in 

the more risk conscious post-2008 environment; see Batten and Szilagyi (2011). The role of 

Japanese banks in the global financial system makes them of significant importance to investors 

and international regulators, with three Japanese institutions identified as globally systemically 

important banks (G-SIBs) by the Financial Stability Board (2013 -2015) and existing evidence 

of global transmission of shocks through the banking sector; for example Elyasiani and Mansur 

(2003), Van Rijckeghem and Weder (2001, 2003), and Dungey and Gajurel (2015). 

The prominence of banks in the Japanese economy and the frequent association of the health 

of the banking sector to the whole economy suggest that understanding of the sources of bank 

risk exposure is essential for bank regulators, investors, and bank customers; individual bank 

failures may result in contagion effects and systemic risk. Financial market crashes, such as 

experienced in 2008 and the European debt crisis of 2010 to 2012, demonstrably impact the 

performance of the real economy, and an important avenue of transmission between the sectors 

is via banking relationships. Our developing understanding of how markets absorb news links 

information assimilation to discontinuities in asset prices; see Patton and Verardo (2012).  
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Our point of departure is the familiar capital asset pricing model (CAPM), which allows a 

simple decomposition of total variation of returns (a standard measure of risk) into a common, 

systematic portion and a firm-specific, idiosyncratic component. We expand this single-factor 

framework to include a range of additional risk factors, the jump systematic risk and diffusion 

systematic risk factors, and then compare significance, explanatory power, stability, and impact 

on the systematic decomposition across the models. Accurately disentangling systematic and 

idiosyncratic factors is critical from a variety of perspectives. Correlation of risks has 

implications for the stability of the financial sector and the macroeconomy via systemic risk 

concerns, and this necessarily reflects systematic factors because idiosyncratic risk, by 

definition, is (or ought to be) cross-sectionally independent. 

Identifying the systematic risk factors among financial firms is important both in understanding 

the pricing of equities generally and for public policy purposes. Financial firms make up a 

substantial fraction of the domestic equity market. Indeed, they have comprised almost 15% of 

the market value of all firms listed on Tokyo Stock Exchange (TSE) in recent years, and their 

stock returns have been found to have a significant relationship with future economic growth 

(see Cole et al. (2008) ). Moreover, extensive deregulation of financial and banking firms’ asset 

and liability powers in the 1980s and 1990s increased the importance of regulatory control over 

the risk-taking behavior of these firms. Following years of discussion over how best to modify 

Basel I capital requirements, the recently adopted Basel III standards increasingly emphasize 

the use of market discipline as a major regulatory device. However, using market factors to 

evaluate and control risk-taking behavior of banks by either private market forces or public 

regulators requires an understanding of the risk factors that are priced in security markets for 

these firms. This study fills a gap in the existing literature by providing empirical evidence on 

the systematic risk factors that are relevant in pricing bank equities using available data for 

Japanese banks. 

Japan presents a particularly interesting case study for several reasons. First, Japan is one of 

the largest advanced economies in the world and a model for many East and South East Asian 

nations’ development ambitions. Second, the Japanese banking sector is very different from 

US banking sector, and plays a crucial role in the Japanese economy. Banks hold a large share 

of the country's finances and bank deposits constitute almost half of household assets (Uchida 

and Udell 2014). For much of the post-war period, banks were the major source of external 

financing for Japanese firms and the country became a bank-centered financial system (Yamori 
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et al. 2013). Japanese banks have built a strong customer base and have cultivated close ties 

with their client firms. Thus, the importance of banks in the Japanese economy and the close 

connection of bank sector health suggest that the systematic risk of Japanese banks may differ 

from those in other jurisdictions5. Finally, the Japanese capital market is unique because the 

institutional setup of the Tokyo Stock Exchange (TSE) is significantly different from the 

commonly analyzed US equity exchange, including lunch breaks, with a batched trading 

process, Itayose, used to clear orders at the start of each trading session, followed by a 

continuous auction. Zaraba  for the rest of the session. The actual trading on the exchange is 

done by specialized security houses, -- Saitori members -- who are responsible for matching 

the orders without taking positions themselves. For more details, see, Amihud and Mendelson 

(1991), Lehmann and Modest (1994), Hamao and Hasbrouck (1995), and Andersen et al. 

(2000). 

In this chapter, we examine unexpected changes, known as jumps, in Japanese bank stock 

prices. The ubiquity of jumps has important implications for investors who rely on portfolio 

diversification for risk control. If jumps are idiosyncratic to individual companies, they might 

be a second-order concern. But if jumps are broadly systematic, portfolio diversification may 

not be an effective jump-risk mitigating strategy. Recent empirical studies find that jumps have 

distinctly different implications for risk measurement and management, portfolio allocation, 

and derivatives pricing and hedging. However, hedging effectiveness may be hindered by 

systematic jump risk. The recent credit crisis attests the significance of such risk and 

undiversifiable systematic jump risk amplifies its economic significance (Jarrow and Rosenfeld 

1984). Das and Uppal (2004) find that returns on international equities are characterized by 

jumps and these jumps tends to occur at the same time across countries leading to systemic risk. 

The systemic jump risk has two effects: it reduces the gains from diversification and it penalizes 

investors for holding leveraged position. Kim et al. (1994) find that Poisson distributed jumps, 

                                                           
5 The Japanese banking system consists of national banks (“city banks”), regional banks, trust banks, long-term 

credit banks, as well as credit cooperatives, foreign banks and postal savings bank. The segmentation is historically 

related to bank-firm relationships, so that larger banks provided loans to larger, and (presumably), more reputable 

and transparent companies(Uchida et al. 2008). Moreover, the segmentation was enforced by the government for 

ease of regulation, so the ban on consolidation across commercial banking, trust banking, long-term credit 

banking, securities and insurance was abolished only by the 1997 revision of the Antimonopoly Law (Harada and 

Ito 2011). While competition on deposit markets is not constrained by bank category, lending may still be 

segmented despite bank deregulation: large banks have entered the market for loans to small and medium-sized 

enterprises (SMEs), but still take second place in this business compared with regional/second-tier banks (Uchida 

et al. 2008). The distinct roles of banks in each bank charter in Japan is similar to the industry equilibrium in the 

U.S., where larger and smaller banks focus on different types of business, obeying the predictions of economic 

theory on the comparative advantages of large and small institutions (DeYoung 2014). 
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observed from both the index and its component stocks are non-diversifiable risk, implying 

that the standard assumption in asset pricing that these jumps are not priced may be invalid.  

A large body of literature has evolved to show both theoretically and empirically that jumps 

explain many of the dynamic features of stylized facts documented in asset prices. The presence 

of jump variations in both individual assets and the aggregate market will affect co-volatility 

estimation and consequently the measurement of realized beta and systematic risk. The 

possibility of identifying and quantifying jumps rises a lot of interesting questions concerning 

investors’ remuneration for bearing risks. Is there a premium for the jump risk? What kind of 

jumps do/ should bear a risk premium? Is there a risk premium for systemic jumps? In this 

chapter, we shed light on the behaviour of jump systematic risks for the banking sector and 

how they are priced.  

To address these questions we use a continuous-time Capital Asset Pricing Model (CAPM) 

where it is assumed that asset prices follow a jump-diffusion process. CAPM estimates for the 

banking sector are relatively rare, and recent estimates for Japan are rarer still; King (2009) 

provides empirical estimates for banking sectors across a range of countries, and demonstrates 

the differences in Japan where relatively high beta have been maintained for over two decades, 

while a group of papers provide evidence for samples prior to the 21st century; Elyasiani and 

Mansur (2003), Gultekin et al. (1989), and Andersen et al. (2000) characterize volatility in the 

Japanese stock market based on a short sample of high frequency 5 min Nikkei 225 index 

returns. To our knowledge there is no study of CAPM for Japan which takes account of recent 

advances in high frequency financial econometrics although Bollerslev and Zhang (2003), 

Andersen et al. (2006), Todorov and Bollerslev (2010), all evidence that using high frequency 

data improves estimation of beta over traditional regression based procedures using lower 

frequency data. 

Given this background, this chapter uses recent advances in financial econometrics to separate 

beta into jump beta and diffusion beta in the Japanese banking sector. Jump beta represents the 

impact of market price disruptions on the firm, while diffusion beta represents the response to 

the evolution of the underlying price process. The motivation for this separation comes from a 

learning argument akin to the one put forward in Patton and Verardo (2012) regarding short-

term changes in beta in response to firm earning announcements. They hypothesize that beta 

may temporarily increase around earnings announcements as the market pays attention to the 

announcements in order to absorb any new information the announcements may contain and 
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convey. Combining this argument with the known association of jumps with the arrival of 

unanticipated news, 6   we expect that jump beta magnitudes to exceed diffusion beta 

magnitudes.  

We implement the approach of Todorov and Bollerslev (2010) to estimate jump and diffusion  

beta for 50 Japanese banking stocks for the period from January 2001 to December 2012. We 

estimate the two separate betas as well as a standard CAPM regression-based beta for each of 

the individual stocks using high frequency 5-minute intra-day data on a non-overlapping 

monthly basis. Estimates for diffusion, Jump and standard betas are computed on a month-by-

month basis. High frequency data permits the use of 1-month non-overlapping windows to 

analyse the dynamics of our systematic risk estimates. As expected, the jump beta exceed the 

diffusion beta for almost all banks in almost all time periods, consistent with the small existing 

literature for firms in the US in Alexeev et al. (2017), Bollerslev et al. (2015), Todorov and 

Bollerslev (2010) and Indian banks in Sayeed et al. (2017) and the analysis of Neumann et al. 

(2016) that jumps play an important role in determining risk premia for the S&P500. 

We characterize the behaviour of the price series for selected Japanese banks using the 

Barndorff-Nielsen and Shephard (2006) jump detection test to establish evidence for the 

existence of jumps. We find 272 jump days out of 2866 trading days, corresponding to 115 

jump months out of 144 months, where jumps are detected in the market. We find that on 

average the jump betas are usually 40% higher than the diffusion betas. These estimates suggest 

that when news is sufficient to disrupt prices, that is to cause a jump, the speed with which 

news is disseminated into the market is likely to be even faster than previously estimated using 

the combined diffusion and jump price process as in Patton and Verardo (2012). This is 

important for risk managers: if an asset behaves differently during a severe market downturn 

than it does at other times, this information offers the potential to significantly improve 

calculations such as Value at Risk (VAR). Moreover, if assets are combined in well-diversified 

portfolio, then an asset’s systematic jump risk is more relevant than the asset’s total jump risk. 

This highlights the importance of decomposing systematic rick into its diffusion and jump 

components.  

                                                           
6 See for example, Chatrath et al. (2014), Dungey and Hvozdyk (2012), Lahaye et al. (2011), Evans (2011), 

Dungey et al. (2009) and Andersen et al. (2007). 
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CAPM says little about how the riskiness of stocks is determined by firm fundamentals. 

Corporate finance research suggests that firms’ systematic risk is a function of firm 

fundamentals (e.g. Hamada (1972), Mandelker and Rhee (1984), Ang et al. (1985), Amit and 

Livnat (1988), Hong and Sarkar (2007)). Therefore, we consider the relationship between 

different betas and firm characteristics and find that bank size, profitability, leverage, affect 

both jump and diffusion  beta, while capital ratios additionally affect diffusion  beta. The 

empirical findings show that a significant portion of the variation in betas can be explained by 

the firm fundamentals. 

Motivated by these empirical findings we now ask, how market diffusive and jump risks are 

priced differently under different market conditions. Using a return decomposition method 

originally proposed by Todorov and Bollerslev (2010), Bollerslev et al. (2015) find that the 

jump betas carry significant risk premiums. In another independent study on conditional asset 

pricing Pettengill et al. (1995) show that market risk premia differ between up-markets and 

down-markets. In this current paper, we introduce a new 4-beta CAPM to enhance our 

understanding of the cross-section of expected returns. The main empirical contribution of this 

chapter is to allow the state of the market to have an effect on the risk-return tradeoff. The 

motivation for this extension lies in the investor’s asymmetric preferences between up-markets 

and down-markets. Investors care differently about downside losses as opposed to upside gain 

and demand additional compensation for holding stocks with high sensitivities to downside 

market movements. To test this conjecture, we introduce and test a new 4-beta CAPM model 

by combining the diffusion and jump betas of Todorov and Bollerslev (2010) and the 

conditional betas of Pettengill et al. (1995), into a single model to detect any significant 

differences under differing market conditions. In the context of portfolio of assets, we 

investigate whether down market risk is priced higher than up market risk. In particular, we 

carryout significance tests for the price difference between diffusion and jump risks in different 

market states. This has practical implications for pricing of diffusion and jump risks and can 

have a direct impact on investor’s decision making. It could also shed some light on how 

investors react to various types of uncertainty. Bearing non-diversifiable jump risk is 

significantly rewarded, as is evident from the expensiveness of short maturity options written 

on the market index with strikes that are far from its current level; see Christoffersen et al. 

(2015) and Driessen and Maenhout (2013) for effects jump risk on options.  
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We find evidence of significant, and differing, relationships between each of the two measures 

of beta and stock returns. The estimated risk premia of the up and down markets are not 

significantly different from the corresponding negative risk premia. The estimated risk premia 

for both the diffusion and the jump risks for the two market states are found to be symmetric. 

However, interestingly, we observe that the estimated risk premia for diffusion risk and jump 

risk are not symmetric during the crisis and post-crisis period. The results imply that investors 

in the Japanese market respond differently to diffusion risk and jump risk in the periods of up 

and down markets associated with different degrees of financial stress. Further, we find that 

large banks tend to have relatively high jump betas. Hence these firms deliver higher returns. 

Our finding that these relationships differ for jump risk and diffusion risk components aligns 

with existing literature suggesting the need for a different risk premia for each component 

(Eraker et al. 2003; Yan 2011; Pan 2002). Consistent with Bollerslev et al. (2015), we find 

evidence for a positive risk-return relationship, as jump beta is associated with higher returns 

on average than diffusion beta, consistent with evidence for bank equities in the US in 

Schuermann and Stiroh (2006) and Viale et al. (2009). 

The remainder of this chapter is structured as follows. Section 2.2 discusses the methodological 

framework. We discuss our sample description in section 2.3. Section 2.4 presents the empirical 

results. Section 2.5 discusses the results the results from the firm level determinates of betas. 

Section 2.6 presents our main results on the pricing of jump and diffusion risk in the cross-

section of stock returns. Section 2.7 concludes the chapter. 

2.2. Jump-diffusions and asset pricing 

The estimation framework for distinguishing jump and diffusion betas in individual asset prices 

consists of two parts. First, a univariate jump detection test is applied to determine days where 

jumps occur.7 This selects the days to be considered in the second stage which uses ratio 

statistics to determine the estimates of the two betas for each stock. We follow the process of 

Todorov and Bollerslev (2010) and apply the Barndorff-Nielsen and Shephard (2006) jumps 

test in the first stage as outlined below.  

                                                           
7 There is no need to test for a jump in the individual stock price, as the estimates of the diffusion and jump betas 

depend only on whether the factor was diffusion or experienced a jump. We focus explicitly on systematic jump 

risk, as measured by the exposure to non-diversifiable market-wide jumps and the jump beta since the seminal 

paper by Merton (1976) hypothesizes that jump risks for individual stocks are likely to be non-systematic.  
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2.1.1 Jump detection methodology 

We use high-frequency equity return data to construct realized volatility and jump risk 

measures. To identify jumps, we rely on economic intuition that jumps in financial markets are 

rare and large. This allow us to explicitly estimate the jump intensity, jump variance and jump 

mean.  

Assuming that the price of an asset (an equity in this paper) follows a jump diffusion process. 

Let 𝑝𝑡 denote the logarithmic price which follows a continuous-time jump-diffusion process 

defined by the stochastic differential equation as follows: 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝑞𝑡                                                                                                         (2.1) 

where 𝜇𝑡 is the instantaneous drift of the price process and 𝜎𝑡 is the diffusion process; with 𝑊𝑡 

a standard Brownian motion. The first two terms correspond to the diffusion part of the total 

variation process. The final term, 𝑘𝑡𝑑𝑞𝑡  refers to the jump component of 𝑝𝑡 , where 𝑞𝑡  is a 

counting process such that 𝑑𝑞𝑡 = 1 indicates a jump at time t, 𝑘𝑡 is the size of jump at time t 

conditional on a jump occurring.  

As empirical studies rely on discretely sampled returns; we denote discrete-time intraday 

returns on trading day t as  

𝑟𝑡,𝑗 = 𝑝𝑡,𝑗 − 𝑝𝑡,𝑗−1, 𝑗 = 1, … , 𝑀; 𝑡 = 1, … , 𝑇                                                                        (2.2) 

where 𝑝𝑡,𝑗 refers to the 𝑗 th intra-day log-price for day t; T is the total number of days in the 

sample and M refers to the number of intraday equally spaced return observations over the 

trading day t, which depends on the sampling frequency. As such, the daily return of the active 

part of the trading day is 𝑟𝑡 = ∑ 𝑟𝑡,𝑗
𝑀
𝑗=1 . 

The two common measures that capture the variation in returns over the period, are the realized 

variation8 and the bi-power variation. The realized variance (RV) is defined as the sum of 

squared intraday-returns, 

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑗
2

𝑀

𝑗=1

, 𝑡 = 1, … , 𝑇                                                                                                        (2.3) 

                                                           
8It is not conventional to subtract the mean to compute realized variance in the high-frequency literature because 

the mean of the high frequency returns, say 5-min returns is close to zero. See, Barndorff-Nielsen and Shephard 

(2004) and Andersen et al. (2007) for more details 
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Where M is the sample length for jump detection (often daily). Using the theory of quadratic 

variation, the realized variation converges uniformly in probability to a quadratic variation 

process, which provides a consistent nonparametric measure of total return variation. We can 

re-write this as: 

𝑅𝑉𝑡

𝑝
→ ∫ 𝜎𝑠

2
𝑡

𝑡−1

𝑑𝑠 + ∑ 𝑘𝑠
2

𝑞𝑡

𝑆 =𝑞𝑡−1

, 𝑡 = 1, … , 𝑇                                                                            (2.4) 

Here ∫ 𝜎𝑠
2𝑡

𝑡−1
𝑑𝑠 is the integrated variance, and ∑ 𝑘𝑠

2𝑞𝑡
𝑆 =𝑞𝑡−1

 is the quadratic variation of the 

jump part over the period from 𝑡 − 1 to 𝑡 (often a day). Jump tests are therefore designed to 

estimate or detect jumps using high-frequency data.  

A number of techniques have been developed to detect the existence of jumps in asset prices; 

For instance, Barndorff-Nielsen and Shephard (2006), Andersen et al. (2007), Lee and 

Mykland (2008), Aït-Sahalia and Jacod (2009), Jiang and Oomen (2008) and Podolskij and 

Ziggel (2010). We follow the non-parametric jump detection test developed by Barndorff-

Nielsen and Shephard (2006) and Huang and Tauchen (2005) which uses the calculated 

realized bi-power variation to proxy the integrated variance. Since jumps are rare and are 

unlikely to occur in two consecutive intraday returns, when intervals are small enough, the 

realized bi-power variation will converge in probability to the integrated variance. 9  The 

difference between realized variance and bi-power variation is then an estimator of the jump 

variation. Bi-power variation (BV) is given by 

𝐵𝑉𝑡 = 𝜇1
−2 ∑|𝑟𝑡,𝑗||𝑟𝑡,𝑗−1|

𝑀

𝑗=2

,     𝑡 = 1, … . , 𝑇                                                                                    (2.5) 

where 𝜇1 = √2/𝜋 . Barndorff-Nielsen and Shephard (2004) show that BV consistently 

estimates the integrated variance when the sampling frequency goes to infinity. Therefore, 

𝐵𝑉𝑡

𝑝
→ ∫ 𝜎𝑠

2
𝑡

𝑡−1

𝑑𝑠, 𝑓𝑜𝑟 𝑀 → ∞                                                                                                  (2.6) 

                                                           
9 Jumps do occur in clusters, a feature similar to volatility clustering (Novotný et al. 2015). However, Bollerslev 

et al. (2015) consider that by their very nature, systematic jumps are relatively rare, and as such it is not feasible 

to identify different jump betas for different jump sizes, let alone identify the small jumps in the first place. This 

assumption also maps directly into the way in which we empirically estimate jump betas for each of the individual 

stocks based solely on the large- size jumps. 

 



19 

 

Consequently the jump contribution to total variation is estimated from a combination of 

equations (2.4) and(2.6), for 𝑀 → ∞ 

𝑅𝑉𝑡 − 𝐵𝑉𝑡 → ∑ 𝑘𝑠
2

𝑞𝑡

𝑆 =𝑞𝑡−1

,     𝑡 = 1, … . , 𝑇                                                                                         (2.7) 

Following Huang and Tauchen (2005), we define the jump ratio statistic  

𝑅𝐽𝑡 =
𝑅𝑉𝑡 − 𝐵𝑉𝑡

𝑅𝑉𝑡
,                                                                                                                                (2.8) 

which converges to a standard normal distribution when scaled by its asymptotic variance in 

the absence of jumps. That is  

𝑍𝐽𝑡 =
𝑅𝐽𝑡

√[(
𝜋
2)

2

+ 𝜋 − 5]
1
𝑀 max (1,

𝐷𝑉𝑡

𝐵𝑉𝑡
2)

𝑑
→  𝑁(0,1)                                                                 (2.9) 

where 𝐷𝑉𝑡 is the quad-power variation robust to jumps as shown in Barndorff-Nielsen and 

Shephard (2004) and Andersen et al. (2007). The quad-power variation is defined as 

𝐷𝑉𝑡 = 𝑀𝜇1
−4 (

𝑀

𝑀 − 3
) ∑|𝑟𝑡,𝑗−3||𝑟𝑡,𝑗−2||𝑟𝑡,𝑗−1||𝑟𝑡,𝑗|,

𝑀

𝑗=4

   𝑡 = 1, … . , 𝑇                                    (2.10) 

The 𝑍𝐽𝑡 statistic in equation (2.9) can be applied to test the null hypothesis that there is no 

jump in the return process on a trading day, t. Huang and Tauchen (2005) show that this test 

has very good size and power.  

Following Tauchen and Zhou (2011), we further assume that there is at most one jump per day 

and that jump size dominates the return when a jump occurs.10 The jump component of the 

realized volatility on that day is defined as: 

𝐽𝑡 = 𝑠𝑖𝑔𝑛(𝑟𝑡,𝑗)  × [𝑅𝑉𝑡 − 𝐵𝑉𝑡]  × 𝐼[𝑍𝐽𝑡 ≥  ∅𝛼
−1]                                                                      (2.11) 

where ∅ is the probability of a standard normal distribution,  𝛼 is the level of significance 

chosen as 0.999 and 𝐼[𝑍𝐽𝑡 ≥  ∅𝛼
−1] refers to the indicator function which takes the value of one 

if there is a jump on a given day, and zero otherwise. Once the realized jumps have been 

established, we can then estimate the jump intensity, mean and volatility. 

                                                           
10 See, Bollerslev et al. (2015) and Tauchen and Zhou (2011) for the asymptotic results. 
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2.2.1 Decomposing systematic risks: diffusion and jump components 

It is common to express daily returns for an asset in terms of a factor model. In traditional 

capital asset pricing model (CAPM), the relationship between the expected return of an 

individual asset or portfolio and its systematic risk is expressed as: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖𝑟𝑚,𝑡 + 𝜀𝑖,𝑡                                                                                                                   (2.12) 

Where 𝑟𝑖,𝑡 is the return on stock i, and 𝑟𝑚,𝑡 is the aggregate market return at time t. The slope 

coefficient 𝛽𝑖  in Equation (2.12) is the systematic risk of asset i, and measures the 

responsiveness of a stock movement to the market.11 The CAPM model basically depends on 

stock and market returns, which in turn, depends the underlying prices of individual stocks. It 

is now widely agreed in the literature that financial return volatilities and correlations are time-

varying and returns follow the sum of a diffusion process and a jump process.12 

If the return of stocks should be divided into a jump part and diffusion part certainly the risk 

associated with returns of securities should be decomposed into two parts also. The CAPM 

states that beta, a diffusion risk, is systematic and non-diversifiable. So is the jump risk when 

taking both diffusion process and jump process into account. The presence of jump variations 

in both individual assets and aggregate market affect co-variance estimations and consequently 

the estimations of realized beta and systematic risk. Thus it would be prudent to disentangle 

the jump component and the diffusion component in prices because they are basically two quite 

different sources of risk; see, e.g. Eraker (2004), Pan (2002), Yan (2011), Todorov and 

Bollerslev (2010), Bollerslev et al. (2015). 

With the presence of jumps in stock prices, the CAPM model needs to be revised, as Todorov 

and Bollerslev (2010) suggest to incorporate the cumulative return from intervals with jumps 

or jump return. We use the recent work of  Todorov and Bollerslev (2010) to consider the 

impact of potential jumps in prices on our main findings. Like Todorov and Bollerslev (2010), 

we decompose the factor return into part attributable to a diffusion component and a part 

attributable to jumps. Hence in the presence of both components, equation (2.12) becomes: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖
𝑐𝑟𝑚,𝑡

𝑐 + 𝛽𝑖
𝑑𝑟𝑚,𝑡

𝑑 + 𝜀𝑖,𝑡                                                                                                (2.13) 

                                                           
11The standard CAPM beta, 𝛽𝑖 =  

𝐶𝑜𝑣(𝑅𝑖,𝑅𝑚)

𝑉𝑎𝑟(𝑅𝑚)
 

12 See, for example, Press (1967), Merton (1976), and Ball and Torous (1983) and among others. 
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Where 𝑟𝑖,𝑡 is the stock return on stock i, 𝛼𝑖is a drift term, market risk (𝑟𝑚,𝑡) is modelled as a 

combination of a diffusion (𝑟𝑚,𝑡
𝑐 ) and jump component  (𝑟𝑚,𝑡

𝑑 ), and 𝛽𝑖
𝑐  and 𝛽𝑖

𝑑  denotes the 

responsiveness of each stock’s movement to the diffusion and jump components of market risk 

and 𝜀𝑖 denotes the idiosyncratic term which may also made up a diffsuion and jump component. 

This decomposition is interesting because standard factor models of risk implicitly assume that 

an asset’s systematic risk is uncorrelated with jumps in the market (i.e. that the asset’s beta 

does not change on days when the market experiences a jump). Equation (2.12) does not 

distinguish between the diffusion and jump components of total return, but does decompose 

total returns into systematic (𝛽𝑖,𝑡𝑟𝑚,𝑡) and nonsystematic (𝛼𝑖 + 𝜀𝑖,𝑡 ) components. Any market 

jump is embedded in 𝑟𝑚,𝑡, while any nonsystematic jump unique to firm i is included in the 

error term. When the systematic risks exposure of a firm to both diffusion and jump price 

movements are identical, i.e. 𝛽𝑖,𝑡
𝑐  =  𝛽𝑖,𝑡

𝑑 , then, the two-factor market of (3.13) model collapses 

to the usual one-factor market model, which relates the stock return 𝑟𝑖,𝑡 to the total market 

return  𝑟𝑚,𝑡 = 𝑟𝑚,𝑡
𝑐 + 𝑟𝑚,𝑡

𝑑  . The restriction that 𝛽𝑖,𝑡
𝑐  =   𝛽𝑖,𝑡

𝑑  implies that the asset responds 

identically to market diffusion and jump price movements, or intuitively that the asset and the 

market co-move in the same manner during “normal” times and periods of “abrupt” market 

moves. If, on the other hand, 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑑  differ, empirical evidence for which is provided 

below, the cross-sectional variation in the diffusion and jump betas may be used to identify 

their separate pricing. The literature suggests that the two betas are not the same, i.e. the 

reactiveness of an asset return of the two components of systematic risk can be different, 

denoted by 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑑  respectively.  

2.2.2 Diffusion and jump betas 

Given that market returns contain two components, both of which display substantial volatility 

and which are not highly correlated with each other, the possibility that different types of stocks 

may have two different betas corresponding to the two components occurs. The decomposition 

of the return for the market into separate diffusion and jump components that formally underlie 

𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑑  in equations (2.13) are not directly observable. Instead, we assume that prices are 

observed at discrete time grids of length M over the active trading day[0, 𝑇]. To allow for the 
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presence of jumps in the price process, Todorov and Bollerslev (2010) consider the following 

specification for stock i and aggregate market m. The log price process evolves as follows13: 

For the market, 

𝑟𝑚,𝑡,𝑗 ≡ 𝑑𝑝𝑚,𝑡 = 𝛼𝑚,𝑡𝑑𝑡 + 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 + 𝑘𝑚,𝑡𝑑𝑞𝑚,𝑡 ,                                                              (2.14) 

and for the stock 𝑖 = 1, … , N, 

𝑟𝑖,𝑡,𝑗 ≡ 𝑑𝑝𝑖,𝑡 = 𝛼𝑖,𝑡𝑑𝑡 + 𝛽𝑖,𝑡
𝑐 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 + 𝛽𝑖,𝑡

𝑑 𝑘𝑚,𝑡𝑑𝑞𝑚,𝑡 + 𝜎𝑖,𝑡𝑑𝑊𝑖,𝑡 + 𝑘𝑖,𝑡𝑑𝑞𝑖,𝑡,               (2.15) 

where,  𝑊𝑚,𝑡 and 𝑊𝑖,𝑡 are standard Brownian motions for the market and asset i; 𝛼𝑚,𝑡  and 

𝛼𝑖,𝑡denote the diffusive volatility of the aggregate market and stock i, respectively; and 𝑞𝑚,𝑡 

and 𝑞𝑖,𝑡  refer to the pure jump Levy processes in the aggregate market and stock i, respectively. 

𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑑  measure the responsiveness of an individual stock to the diffusion and jump 

component of market risk. In this framework,[𝛽𝑖,𝑡
𝑐  , 𝛽𝑖,𝑡

𝑑 ] is assumed constant throughout each 

day but can change from day to day.  

In order to disentangle the 𝛽𝑖,𝑡
𝑐   and  𝛽𝑖,𝑡

𝑑 , Todorov and Bollerslev (2010) propose a non-

parametric beta estimation technique using multipower co-variation/variation between the 

returns of individual stocks and the market portfolio for given diffusion and jump components 

respectively. They show that 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑑  can be theoretically identified. .  

To begin, consider the estimation of diffusion betas. Suppose that neither the market or nor 

stock i, jumps, so that 𝑞𝑚,𝑡 ≡ 0 and 𝑞𝑖,𝑡 ≡ 0 almost surely. For simplicity, suppose also that 

the drift terms in equations in (2.14) and (2.15) are both equal to zero, so that, 

 𝑟𝑖,𝑡,𝑗 = 𝛽𝑖,𝑡
𝑐 𝑟𝑚,𝑡,𝑗 + 𝑟𝑖,𝑡,𝑗̃  ,     where  𝑟𝑖,𝑡,𝑗̃ ≡  ∫ 𝜎𝑠

2𝑡

𝑡−1
𝑑𝑠 ,  

for any j ∈ [t − 1, t]. In this situation, the ratio of the intra-day covariance between an asset 

and the market, and the market with itself will estimate diffusion beta using high-frequency 

intraday returns. The diffusion beta is given by 

𝛽𝑖,𝑡
𝑐 =

∑ 𝑟𝑖,𝑡,𝑗  𝑟𝑚,𝑡,𝑗   𝑚
𝑗=1

∑  (𝑟𝑚,𝑡,𝑗)
2

 𝑚
𝑗=1

                                                                                                                    (2.16) 

                                                           
13 The notation here is simplified relative to that in Todorov and Bollerslev (2010); See their article for more 

details. 
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In general, of course, the market may have jump over the [t − 1, t] time-interval and the drift 

terms are not identically equal to zero. Meanwhile, it follows readily by standard arguments 

that for 𝑚 → ∞, the impact of the drift terms are asymptotically negligible. However, to allow 

for the possible occurrence of jumps, the simple estimator defined above needs to be modified 

by removing the jump components. In particular, following Todorov and Bollerslev (2010), we 

consider their ratio statistics for the discretely sampled data series which consistently estimate 

the diffusion beta for 𝑚 → ∞, under very general conditions. These are: 

𝛽̂𝑖,𝑡
𝑐 =

∑ 𝑟𝑖,𝑡,𝑗 𝑟𝑚,𝑡,𝑗 𝕝{|𝑟𝑡,𝑗|≤𝜃} 
𝑚
𝑗=1

∑  (𝑟𝑚,𝑡,𝑗)
2

 𝕝{|𝑟𝑡,𝑗|≤𝜃} 𝑚
𝑗=1

  ,   𝑖 = 1, … , 𝑁.                                                                        (2.17) 

Where,𝕝{|𝑟𝑡,𝑗|≤𝜃}  is the indicator function, 

𝕝 = {
1
0

 𝑖𝑓
{|𝑟𝑡,𝑗|≤𝜃}

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                          (2.18)   

based on the truncation level, 𝜃, for diffusion component.  

Now, we consider the estimation of jump beta. The actually observed high-frequency returns 

contain both diffusive and jump risk components. However, by raising the high-frequency 

returns to powers of orders greater than two, the diffusion components become negligible, so 

that the systematic jump dominates asymptotically for 𝑚 → ∞ . 14  As formally shown in 

Todorov and Bollerslev (2010), the following estimator is indeed consistent for jump beta when 

there is at least one significant jump in the market portfolio for the given estimation window 

for 𝑚 → ∞. 

𝛽̂𝑖,𝑡
𝑑

= sign {∑ sign{𝑟𝑖,𝑡,𝑗 𝑟𝑚,𝑡,𝑗}|𝑟𝑖,𝑡,𝑗 𝑟𝑚,𝑡,𝑗|
𝜏

𝑚

𝑗=1

} × (
|∑ sign{𝑟𝑖,𝑡,𝑗  𝑟𝑚,𝑡,𝑗}|𝑟𝑖,𝑡,𝑗 𝑟𝑚,𝑡,𝑗|

𝜏𝑚
𝑗=1 |

∑  (𝑟𝑚,𝑡,𝑗)
2𝜏𝑚

𝑗=1

)

1
𝜏

, (2.19)  

Here, the power 𝜏 is restricted to be ≥ 2 so that the diffusion price movements do not matter 

asymptotically. The sign in equation (2.19) is taken to recover the signs of jump betas that are 

eliminated when taking absolute values. 

                                                           
14 The basic idea of relying on higher orders powers of returns to isolate the jump component of the price has 

previously been used in many other situations, both parametrically and nonparametrically; see e.g., Barndorff-

Nielsen and Shephard (2003). 
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Following Todorov and Bollerslev (2010) and Alexeev et al. (2017) we set the parameter values 

for 𝜃,  𝜛, and 𝛼 estimate the 𝛽̂𝑖,𝑡
𝑐   and 𝛽̂𝑖,𝑡

𝑑   on both monthly and daily basis. For estimating 𝛽̂𝑖,𝑡
𝑐  

and  𝛽̂𝑖,𝑡
𝑑 , the truncation threshold,𝜃 = 𝛼∆𝑛

𝜛,  uses 𝜛 = 0.49  and 𝛼 ≥ 0,  suggesting that the 

threshold values may vary across stocks and across different estimation window. The threshold 

for the diffusion price movement, 𝜃 = 𝛼𝑖
𝑐 = √𝐵𝑉𝑖

[0,𝑇]3

 for 𝛽̂𝑖,𝑡
𝑐  suggests that the diffusion 

component discards movements over three standard deviation away from mean, and thus 

unlikely to be associated with diffusion price movements, where, 𝐵𝑉𝑖
[0,𝑇]

 is the bi-power 

variation of the i-th stock at time [0, 𝑇]; the value of 𝜏 = 2 for equation (2.19).  

2.3. Sample and data 

The sample consists of high frequency stock price data for 50 of the 63 commercial banks 

traded on the Tokyo Stock Exchange (TSE) for the period January 2001 through December 

2012, a total of 3053 trading days (There were 13 banks where the data were not available). 

The sample period allow us to investigate the transmission of shock in Japanese market in 

periods of calm and crisis (subprime and global financial crisis).The list of banks in the sample 

is provided in Table 2.1. Data are extracted from the Thompson Reuters Tick history (TRTH) 

database available via SIRCA. We use the Nikkei 225 index as a proxy for the market 

portfolio.15  

The stock prices are sampled at a five minute frequency, as is standard in a large part of the 

high frequency literature (Alexeev et al. 2017,Dungey et al. 2009 , Bollerslev et al. 2009). The 

choice of 5-minute sampling frequency reflects a trade-off between using all available data and 

avoiding the impact of market microstructure effects, such as infrequent or nonsynchronous 

trading; the issue of optimal sampling frequency choice is an ongoing research agenda, see for 

example Zhang (2011). Unlike the more commonly investigated US and European markets, 

daily trading on the TSE is interrupted by a lunch break, trading between 09:00 am-11:00 am 

and 12:30 pm-3:00 pm local time. We sample prices from 9:05 am-11:00 am and 12.35 pm-

3.00 pm, with overnight and over-lunch returns excluded from the data set.16 Missing data at 

5-minute intervals are filled with the previous price creating a zero return. Hansen and Lunde 

                                                           
15The Nikkei is a price-weighted index, consisting of 225 stocks in the first section of the TSE selected subject to 

certain industry-balance considerations. It represents the 50 % of the total market capitalization of the TSE. 
16 We are only concerned with the active trading period, and overnight information is beyond the scope of this 

study. 
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(2006) show that this previous tick method is a sensible way to sample prices in calendar time. 

These restrictions result in a final sample of 2866 active trading days (in 144 months), each 

consisting of 53 intraday day 5 min-returns for a total of 1, 61,809 observations. 

Table 2.2 presents the market capitalization and turnover ratio on TSE over the sample. Market 

capitalization was rising steadily prior to the global financial crisis of 2008-2009 and the 

European debt crisis period, from April 2010 until the end of the sample market capitalization 

rose. By 2012 it was at a level similar to that at the beginning of the sample. The turnover ratio 

peaked in 2007, and has since declined. 

Table 2.1: List of banks 
 

No Banks  No Banks  No Banks  

1 Aichi Bank 21 Hiroshima Bank 41 Shinsei Bank 

2 Akita Bank 22 Hokkoku Bank 42 Shizuoka Bank 

3 Aomori Bank 23 Hokuetsu Bank 43 Sumito Mitsui  Financial Gp 

4 Aozora Bank 24 Hokuhoku Financial Gp. 44 Suruga Bank 

5 Awa Bank 25 Hyakugo Bank 45 Tochigi Bank 

6 Bank Of Iwate 26 Hyakujushi Bank 46 Toho Bank 

7 Bank Of Kyoto 27 Iyo Bank 47 Tokoyo Tomin Bank 

8 Bank Of Nagoya 28 Joyo Bank 48 Yachiyo Bank 

9 Bank Of Okinawa 29 Juroku Bank 49 Yamagata Bank 

10 Bank Of The Ryukyus 30 Kagoshima Bank 50 Yamaguchi Finl.G. 

11 Bank Of Yokohama 31 Keiyo Bank     

12 Chiba Bank 32 Miyazaki Bank     

13 Chugoku Bank 33 Musashino Bank     

14 Daishi Bank 34 Nanto Bank     

15 Fukui Bank 35 Nishi-Nippon City Bank     

16 Fukuoka Financial Group 36 North Pacific Bank     

17 Gunma Bank 37 Ogaki Kyoritsu Bank     

18 Hachijuni Bank 38 Oita Bank     

19 Higashi Nippon Bank 39 San-In Godo Bank     

20 Higo Bank 40 Seventy-seven Bank     
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Table 2.2: Market capitalization and turnover of analysed stock market 
 

Stock Exchange (Country)       

Tokoyo(Japan) Stock market capitalization Turnover ratio  

2001 60.67 72.37  

2002 54.10 73.06  

2003 62.05 85.13  

2004 74.55 98.84  

2005 91.25 119.79  

2006 105.95 135.45  

2007 104.49 142.74  

2008 86.09 140.84  

2009 67.10 127.10  

2010 74.60 114.50  

2011 68.58 108.90  

2012 61.80 99.80  

 

2.4. Empirical results 

In this section, we present the empirical results. In section 3.4.1, we start by examining large 

discontinuous changes, known as jumps, in Japanese bank stock prices. In section 3.4.2 and 

3.4.3, we then examine empirically how individual stock prices respond to diffusion, jump 

market moves in the context of single-factor model, and relate their variation to firm 

characteristics and economic conditions. Finally, in section 3.4.4, we examine how different 

systematic betas explain the stock returns. 

2.4.1 Evidence on asset-prices jumps 

Empirical evidence suggests that asset prices display infrequent large movements that are too 

big to be Gaussian shocks. In the Figure 2.1, we plot the time series of intraday returns on a 

broad market index for the period 2001-2012. Occasional large spikes in the series suggest the 

presence of large moves (jumps). Consistent with this evidence, the kurtosis of market returns 

is 29, relative to 3 for normal distribution, as shown in the Table 2.3. Figure 2.2 shows the 

sample measures of daily-realized volatility, bipower variation and jumps for the Japanese 

stock index. Market volatility was particularly high during the second half of 2008, associated 

with the disruptions to global markets around the period of the failure of Lehman Brothers, the 

rescue of AIG and other financial institutions. The plots reveal interesting volatility clustering 

and time variation of jump size along the sample period. The bottom panel of Figure 2.2 shows 
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that, many of the largest realized volatilities are directly associated with jumps in the 

underlying price process.  

Using the Barndorff-Neilsen and Shepard test we find a total number of 272 jump days in the 

Nikkei index in the sample period. The proportion of jump days of the total is 9.4%, consistent 

with the proportions reported for other developed markets, including for the S&P500, 8.54% 

jump days in Todorov and Bollerslev (2010) from 2001 to 2005 and 3.5% jump days in. 

Alexeev et al. (2017) for  2003 and 2011. Of the 144 months in our sample, 115 contain at least 

one jump day. The results suggest that the frequencies of jump occurrence in Japanese equity 

market are slightly higher than the US market. 

Table 2.3:Summary statistics for daily volatilities and jumps (figure scaled by 100 with the 

exception of skewness and kurtosis) 

  Mean Median Max Min Std. Dev. Skewness Kurtosis 

𝑟𝑡 -0.0005 0.0006 3.2727 -4.3376 0.1330 -0.243 29.466 

𝑅𝑉𝑡 0.0013 0.0004 0.0952 0.0000 0.0044 11.900 186.429 

√𝑅𝑉𝑡 0.2693 0.2119 3.0857 0.0049 0.2472 3.942 29.964 

𝐵𝑉𝑡 0.0012 0.0003 0.0998 0.0000 0.0043 13.111 231.500 

√𝐵𝑉𝑡 0.2435 0.1847 3.1595 0.0034 0.2452 3.994 31.201 

𝐽𝑡 0.0002 0.0000 0.0173 0.0000 0.0006 15.706 362.712 

√𝐽𝑡 0.0905 0.0674 1.3151 0.0000 0.1032 3.029 22.806 

 

Table 2.3 reports the summary statistics for daily volatilities and jumps for the Nikkei 225 

stock index. The mean realized volatility is (√𝑅𝑉) is 0.27%, while average bi-power variation 

(√𝐵𝑉)  is 0.24%. The average absolute jump size (√𝐽)  is 0.09%. The unconditional 

distributions of both volatility measures and jumps (𝐽𝑡), are highly skewed and leptokurtic, 

with the relative jump measure, 𝐽𝑡, clearly indicating a more positive skewness and a higher 

degree of leptokurtosis than the daily realized volatilities, and suggesting that they occur on a 

small number of occasions with large impact on the Japanese index return.  

From Table 2.3, we observe that, for the equity index, approximately 85% (BVt/RVt) is due to 

diffusion components of returns and the jump contribute 14% (Jt/RVt) of realized variation. 

Andersen et al. (2007) find a similar jump contribution to RV for the S&P 500 index. 
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Table 2.4:Yearly statistics of significant jumps 
 

Year No of Jump days No of Jump months 

2001 14 8 

2002 26 11 

2003 14 7 

2004 39 11 

2005 33 12 

2006 20 11 

2007 10 6 

2008 17 6 

2009 25 11 

2010 30 11 

2011 23 10 

2012 21 11 

Total no of Jumps 272 115 

Note: number of jumps denote the number of days with jumps. Number of jump months denotes months containing with at 

least one jump day. 

 

Table 2.4 provides an annual picture of the identified jump months for the period January 2001- 

December 2012.17 The number of jumps ranges from 10 to 39 in the Japanese market. The 

prevalence of jumps decreases during the period of most global financial stress in 2007 and 

2008, consistent with Chatrath et al. (2014) and Dungey et al. (2014) who show that jump 

frequency does not increase in periods of stress. Overall, the results show that the numbers of 

jumps does not vary a great deal across the sample period – in most years the majority of 

months contain jumps. A plausible explanation for our findings is that investors may underreact 

to new about shocks as they already revising their expectations of the aggregate economy using 

the information from the economy. Patton and Verardo (2012) propose a simple learning model 

in which investors use information on firm announcements to revise their expectations about 

other firms and the entire economy. Another possible explanation is that during the crisis period 

the threshold of jump identification increases with the overall market volatility. Therefore, 

some large price discontinuities, generally classified as jumps during the calm period, may be 

classified as continuous movements during the crisis period.  

                                                           
17  Using high frequency data, a number of large literatures have established a link between jumps and 

macroeconomic news. See, for example, Dungey et al. (2009), Lahaye et al. (2011), Evans (2011), Gilder et al. 

(2014), and among others. Appendix Table A1 reports a complete list of theses significant jump days. A formal 

evaluation of the link between jumps and news in a more rigorous manner is surely valuable to pursue, but is 

beyond the scope of the study.  
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Figure 2:1: Intraday returns for the Nikkei 225 index at 5 minute frequency for 2001 through 

2012 

 

Motivated from these identified jump days (with their corresponding jump months) we now 

estimate monthly diffusion systematic risk (diffusion beta) and jump systematic risk (jump beta) 

for the sample period. Particularly, we estimate the diffusion and discontinuous betas of 50 

listed Japanese banks on a daily and month basis using the Todorov and Bollerslev approach. 

We then investigate the relationship between different betas and other firm characteristics. 
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Figure 2:2: Realized volatilities, bi-power variations and jumps 
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A. A case study: the Sumito Mitsui Financial Group 

To make the methodology concrete this subsection presents a case study for a particular bank. 

The results in Section 3.4.3 identified that the bank with both the highest diffusion and jump 

beta in the sample banks was Sumito Mitsui Finance Group (SMFG). We present a brief case 

study of this bank as an illustration of firm level analysis using the tools presented in this paper. 

Figure 2.3 plots the intraday prices and returns for the stock at 5 minute frequency. The price 

for SMFG peaked at the end of 2007 and subsequently declined, stabilizing near the end of the 

sample period. 

SMFG is a bank holding company, associated with the Sumitomo Mitsui Banking Corporation, 

which in turn the second largest bank in Japan (after Mitsubishi) and ranked 31st largest bank 

in the world in March 2015 with USD55billion of assets.18 This bank’s operations include retail, 

corporate, and investment banking. SMFG has some 500 domestic branches and another 20 

branches abroad. Other units of SMFG include credit card company Sumitomo Mitsui Card, 

brokerage SMBC Friend Securities, management consulting firm Japan Research Institute, and 

Sumitomo Mitsui Finance and Leasing. In the US it operates California-based Manufacturer’s 

Bank. The bank has a total capital ratio of 15.02% and a tier I ration of 11.15%. Of the three 

mega Japanese banks, SMFG has the highest total capital adequacy ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
18 Ranking from www.relbanks.com. 

http://www.relbanks.com/
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Figure 2:3: Prices and returns for the Sumito Mitsui Financial Group 
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2.4.2 Decomposing systematic risk into diffusion and jump components 

We undertake our analysis on the estimates of diffusion and jump betas at a monthly, and not 

daily, frequencies as both Todorov and Bollerslev (2010) and Alexeev et al. (2017) show that 

daily betas do not provide analytically tractable results.19   

Table 2.5: Average monthly beta 
 

    95% confidence interval   95% confidence interval 

Banks Beta C CI_low CI_up Beta J CI_low CI_up 

Aichi Bank 0.10 0.018 0.180 0.78 0.765 0.804 

Akita Bank 0.14 0.046 0.207 0.77 0.753 0.795 

Aomori Bank 0.09 0.000 0.146 0.64 0.620 0.651 

Aozora Bank 0.38 0.266 0.496 1.14 1.088 1.191 

Awa Bank 0.16 0.080 0.235 0.82 0.801 0.843 

Bank of Iwate 0.15 0.063 0.224 0.77 0.748 0.796 

Bank of Kyoto 0.40 0.318 0.486 0.92 0.902 0.946 

Bank of Nagoya 0.21 0.123 0.296 0.93 0.903 0.955 

Bank of Okinawa 0.10 0.014 0.174 0.70 0.676 0.715 

Bank of The Ryukyus 0.24 0.149 0.318 0.76 0.734 0.779 

Bank of Yokohama 0.63 0.538 0.720 1.09 1.067 1.123 

Chiba Bank 0.65 0.554 0.735 1.16 1.141 1.185 

Chugoku Bank 0.29 0.211 0.372 0.85 0.827 0.869 

Daishi Bank 0.21 0.118 0.288 0.92 0.904 0.940 

Fukui Bank 0.10 0.011 0.165 0.73 0.713 0.747 

Fukuoka Financial Group 0.68 0.587 0.782 1.47 1.433 1.508 

Gunma Bank 0.44 0.348 0.529 1.07 1.051 1.099 

Hachijuni Bank 0.39 0.297 0.472 1.08 1.058 1.102 

Higashi Nippon Bank 0.15 0.041 0.224 0.74 0.720 0.763 

Higo Bank 0.18 0.099 0.262 0.81 0.793 0.828 

Hiroshima Bank 0.33 0.241 0.411 0.95 0.931 0.974 

Hokkoku Bank 0.17 0.088 0.250 0.83 0.818 0.848 

Hokuetsu Bank 0.10 -0.014 0.157 0.70 0.673 0.726 

Hokuhoku Finl.Gp. 0.41 0.298 0.515 1.21 1.180 1.250 

Hyakugo Bank 0.23 0.135 0.302 0.89 0.871 0.915 

Hyakujushi Bank 0.22 0.133 0.302 1.02 0.999 1.047 

Iyo Bank 0.32 0.237 0.404 0.93 0.905 0.947 

Joyo Bank 0.40 0.306 0.487 1.12 1.098 1.142 

Juroku Bank 0.25 0.160 0.334 0.94 0.914 0.958 

Kagoshima Bank 0.20 0.114 0.278 0.81 0.794 0.827 

                                                           
19 Estimates of diffusion and jump betas are computed on a month-by-month basis. High frequency 5 minute data 

permits the use of 1-month non overlapping windows to analyses the dynamics of our systematic risk estimates. 

We also estimated the daily betas and the daily betas estimates are obviously somewhat noisy and difficult to 

interpret. Meanwhile, the estimated monthly betas appear much more stable, while still showing interesting and 

clearly discernable pattern over time.  Therefore, we concentrate on monthly betas. 
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Keiyo Bank 0.25 0.149 0.316 0.84 0.824 0.865 

Miyazaki Bank 0.09 0.002 0.162 0.62 0.609 0.640 

Musashino Bank 0.34 0.247 0.416 0.99 0.971 1.015 

Nanto Bank 0.01 -0.046 0.053 0.50 0.499 0.505 

Nishi-Nippon City Bank 0.34 0.242 0.442 1.16 1.121 1.198 

North Pacific Bank 0.08 0.289 0.496 1.13 0.361 1.183 

Ogaki Kyoritsu Bank 0.20 0.116 0.281 0.91 0.878 0.935 

Oita Bank 0.11 0.030 0.194 0.77 0.749 0.783 

San-In Godo Bank 0.24 0.159 0.325 0.90 0.875 0.924 

Seventy-Seven Bank 0.41 0.316 0.498 1.06 1.036 1.092 

Shinsei Bank 0.50 0.383 0.620 1.35 1.310 1.393 

Shizuoka Bank 0.62 0.536 0.702 1.06 1.033 1.081 

Sumito Mitsui Finl.Gp 0.88 0.768 0.977 1.50 1.463 1.543 

Suruga Bank 0.44 0.351 0.533 1.04 1.019 1.068 

Tochigi Bank 0.13 0.039 0.198 0.69 0.668 0.706 

Toho Bank 0.15 0.058 0.224 0.73 0.703 0.754 

Tokoyo Tomin Bank 0.36 0.260 0.451 1.09 1.065 1.119 

Yachiyo Bank 0.14 0.045 0.230 0.46 0.431 0.489 

Yamagata Bank 0.09 0.016 0.162 0.71 0.697 0.720 

Yamaguchi Finl. Gp 0.45 0.361 0.538 1.21 1.187 1.242 

 

Table 2.5 reports the average monthly diffusion and jump beta estimates for each of the 50 

banks in the sample along with their respective 95% confidence intervals. The jump betas 

exceed the diffusion beta for every institution. Using the corresponding 95% confidence 

intervals in Table 2.5, we find no evidence of overlapping interval between the jump betas, 𝛽̂𝑖
𝑗
 

and diffusion betas, 𝛽̂𝑖
𝑐 for any stock. 

The highest betas are observed for Sumito Mitusui Financial Group, with a diffusion beta, 𝛽̂𝑖
𝑐 

of 0.88, and jump beta 𝛽̂𝑖
𝑗
 of 1.50. The lowest diffusion beta, 𝛽̂𝑖

𝑐 is 0.01 for the Nanto Bank, 

𝛽̂𝑖
𝑗
 is 0.46 for the Yachiyo bank.  

The diffusion betas, are below unity for all Japanese banks during the sample period except for 

the Sumito Mitusui Financial Group, which has a beta very close to the market beta. This 

implies that stock returns of Japanese banks associated with diffusion market movement 

respond less to aggregate market. The issue still remains as to why the average diffusion beta 

values are on the whole much lower than was expected in finance theory. One of the possible 

reasons of our findings is that these firms stock might not have sufficient trading volume to 

respond sufficiently to changes in the market. If high proportions of these companies’ stocks 

are held by parties such as government, institutions or other companies who are not interested 
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in trading actively, the returns of these companies may not be as sensitive to shocks in the 

market. The result is that these firms’ returns might become less correlated with the market 

returns, and therefore have a lower beta value. Alternatively, the lower beta values may result 

from the market becoming more volatile over time. Over the past decades, there have been 

increasing numbers of IT and telecommunications listing in the stock market. These companies’ 

stocks are considered as highly volatile stocks. As such, the banking industry may have become 

relatively less volatile due to the presence of these highly volatile stocks. Since the beta values 

measures the relative volatility in stock returns between individual companies and the market, 

the beta values for these stocks may indeed have fallen.   

As expected, the resulting values jump betas, 𝛽̂𝑖
𝑗
 are higher than the diffusion betas,   𝛽̂𝑖

𝑐 , 

consistent with the small existing literature for firms in the US in Alexeev et al. (2017), 

Bollerslev et al. (2015), Todorov and Bollerslev (2010). The results for the Japanese banks are 

also similar to those for the Indian banks recorded in Sayeed et al. (2017) in that the average 

diffusion beta is generally smaller than one, which implies that in response to the diffusive 

market movements, the returns of banking stocks move less than the market return for the wider 

variety of stocks contained in the CNX500 index, but the diffusion beta for Japanese banks 

indicates considerably more defensive capacity than evident in the Indian banks. This result 

supports the notion that the returns on individual stocks are most strongly correlated with 

market returns on days when the market experiences a jump (as jumps are associated with news 

arrival). Across individual stocks, 40% of the banks have jump betas higher than the market 

beta.  

Figure 2.4 plots the cross-sectional average of the betas estimated for the standard single factor 

CAPM model, and the diffusion, and jump betas. It is immediately apparent from Figure 2.4 

that in every case where jumps are present, the Japanese banks have a jump beta which exceeds 

the diffusion beta estimated for that month, on average by 0.75. The sample contains two 

periods of readily identifiable stress - the first in the third quarter of 2008 associated with the 

bankruptcy of Lehman Brothers, and the second in the first half of 2010 associated with the 

Greek debt crisis - and in both of these periods the gap between the diffusion and jump betas 

reduces. That is, there is more attention paid to volatility risk (the diffusion component of the 

systematic risk) in the market than jump risk caused by news. This can be partly explained by 

the high market volatility during the crisis periods. During times of high market stress, the 

overall market environment becomes relatively more important than unexpected news shocks 
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to the system. The reaction to frequent unexpected news during stressed market times may be 

a feature of the overall market conditions. The results for the Japanese banks are similar to 

those for the US financial sector stocks recorded in Gajurel (2015) in that there is a consistently 

positive gap between the jump and diffusion betas for these stocks, but the diffusion beta for 

Japanese banks indicates considerably more defensive capacity than evident in the US financial 

sector. Overall, the plot demonstrates that the diffusion beta is generally lower than the standard 

CAPM estimate, but that the jump beta can sometimes be considerable higher. If the jump beta 

is viewed as the response to unexpected news entering the market, following the Patton Patton 

and Verardo (2012) reasoning, then this supports the much faster reaction to new information 

sufficient to disrupt market pricing than to the evolution of information through the diffusion 

price process. The difference in the estimated diffusion and jump betas estimated leads us to 

consider the importance of segregating these results for portfolio diversification. 

2.5. Firm-level determinants of beta 

A large literature in corporate finance has established that the systematic risk of a firm can be 

explained by a number of variables including firm size, profitability, leverage, and capital 

ratio.20 Breen and Lerner (1973) argued in the context of decision making that changes in firm’s 

financing, investing and operating decisions can influence its stock return and risk 

characteristics, in particular, the beta.  

 

 

 

 

 

 

 

 

 

                                                           
20 See, for example, Hamada (1972), Mandelker and Rhee (1984), Ang et al. (1985), Amit and Livnat (1988), 

Scherrer and Mathison (1996), Saunders et al. (1990), Anderson and Fraser (2000), Hong and Sarkar (2007), Lee 

and Jang (2007), Campbell et al. (2009) and among others. 
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Figure 2:4:Cross-section monthly mean betas for continuous and jump months 
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Influential variables from the existing literature include leverage, which has a positive 

relationship with beta, for example Hamada (1972) and Mandelker and Rhee (1984), with 

Buiter and Rahbeir (2012) specifically signalling the potential systemic risk of high leverage 

in the banking sector. Hong and Sarkar (2007) also find that beta is an increasing function of 

leverage. 

The effect of size on bank systematic risk is debated. While Demsetz and Strahan (1997) find 

that large banks tend to diversify their business more efficiently and are less prone to 

bankruptcy, Saunders et al. (1990) and Anderson and Fraser (2000) find that bank systematic 

risk increases with bank size as large banks could be more sensitive to general market 

movements than small banks.  

By maintaining a capital buffer to absorb losses that may arise from unexpected shocks higher 

capital ratios are expected to decrease bank beta; representing higher bank solvency and lower 

perceived risk (Furlong and Keeley 1989; Keeley and Furlong 1990). Prior empirical studies 

also provide evidence of an inverse relationship between profitability and systematic risk 

(Logue and Merville 1972; Scherrer and Mathison 1996). Other work, Borde et al. (1994), finds 

a positive relationship between return on assets and beta during the period, 1988-1991, for US 
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insurance companies, indicating that finance industries with higher profitability are exposed to 

greater systematic risk because they are be more profitable when taking more credit risks in 

business.  

Based on the above discussion, we anticipate the following relationships between beta and 

these five explanatory variables; that beta increases with leverage, increases with bank size and 

with profitability, but decreases with higher capital ratios. We now proceed to investigate these 

relationships for both jump and diffusion systematic risk using the following regression 

framework. 

𝛽𝑖,𝑡 = 𝛼0 + ∑ 𝛾𝑋𝑖,𝑡

𝑚

𝑖=1

+ ∑ 𝜃𝑡(𝑡𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑖𝑒𝑠)

2002−2012

𝑡=1

+ 𝜇𝑖,𝑡                                                               (2.20) 

where 𝛽𝑖,𝑡 = either diffusion  beta (𝛽̂𝑐 ) or Jump beta (𝛽̂
𝑗

)  for bank 𝑖, at period 𝑡; 𝑋𝑖,𝑡 represents 

the firm characteristics variables -- firm size, profitability, debt leverage, and capital ratio -- 

and µ𝑖,𝑡 is the model residual. We also include the time dummies to control for macro-level 

shocks and unobserved time heterogeneity. The monthly firm characteristics data come from 

the DataStream database. Following previous studies, we measure firm size by the market value 

of equity. Profitability is computed as earnings before interest, taxes, depreciation, & 

amortization over total assets. Leverage is the ratio of total debt to total assets. The capital ratio 

is measured as book value of equity divided by total assets. The descriptive statistics for bank 

characteristics variables are presented in Table 2.6.  

Panel B of Table 2.6 reports the correlation matrix amongst all variables amongst all variables 

including the standard on factor, jump and diffusion beta estimates. The three betas are 

positively and highly correlated with each other (with values ranging from 0.67 to 0.80), as 

evident in Figure 2.421. Standard beta is highly correlated with diffusion beta and jump beta 

with correlation coefficients of 0.80 and 0.67 respectively. In terms of firm characteristics 

variables, diffusion beta, and jump beta are positively correlated to size, leverage and 

profitability. Multicollinearity amongst the firm characteristics variables is limited to 0.38, 

between leverage and firm size.22 

 

                                                           
21 To ease our analysis we exclude months for which we do not find a significant jump in the market. 
22 As a rule of thumb, multicollinearity is likely to exist when the independent variables are highly correlated (i.e., 

r = 0.80 and above (Gujarati and Porter 2009). 
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Table 2.6: Descriptive statistics and correlation matrix 
 

Panel A: Descriptive statistics of the firm characteristics 

Variable  Obs Mean Std. Dev. Median 25th percentile 75th percentile 

Firm size 6510 8.20 0.34 8.16 7.95 8.42 

Profitability (%) 6450 12.08 16.30 14.17 10.47 17.99 

Leverage (%) 6585 94.24 1.41 94.35 93.58 95.13 

Capital ratio (%) 6585 5.96 3.10 5.47 4.58 6.30 

       

Panel B: Correlation matrix of all the variables 

Variables Std. beta Diff beta 
Jump 

beta 
Firms size Profitability Leverage 

Capital 

ratio 

Std. beta 1       

Diffu beta 0.80 1      

Jump beta 0.67 0.38 1     

Firms size 0.56 0.56 0.26 1    

Profitability 0.08 0.04 0.08 -0.04 1   

Leverage 0.20 0.23 0.10 0.38 -0.24 1  

Capital ratio 0.01 0.02 0.01 -0.02 0.06 0.02 1 

 

Table 2.7 reports the results from regression analysis. The first three columns of results 

consider the role firm characteristics in the behavior of the diffusion beta and the final three 

columns for the jump beta. The first two columns explore subsets of the explanatory variables, 

with leverage included (excluded) in column 1(2) and the capital ratio excluded (included). It 

is clear from a comparison of columns 1-3 that in the continuous case when both leverage and 

capital ratio are included neither have a significant effect, but when they are included 

individually they do so. This is not the case for the jump betas. 

The preferred results of column (3) in each case reveal that diffusion beta is positive affected 

by both firm size and profitability, as anticipated. The effects of leverage (positive) and bank 

capital (negative) are insignificant. Jump beta is also affected by firm size and profitability, but 

additionally a significant positive effect from leverage, while the capital ratio is insignificant. 

The results support that larger Japanese banks are more sensitive to market movements than 

smaller institutions, regardless of whether they occur through a jump or not. However, the 

effect of size is larger for the jump beta than diffusion beta, implying that large banks react 

more to information transmitted by abrupt changes even more than they do to continuous 

changes. The result is consistent with previous studies particularly for US bank holding 
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companies and European banks (e.g. (Saunders et al. 1990,Anderson and Fraser 2000, Haq and 

Heaney 2012). 

Table 2.7: Betas and firm characteristics 
 

  𝜷̂𝒄  𝜷̂
𝒋

  

Variables (1) (2) (3) (1) (2) (3) 

Firm Size 0.321*** 0.312*** 0.318*** 0.421*** 0.363*** 0.421*** 

  (0.023) (0.022) (0.024) (0.044) (0.040) (0.045) 

Profitability 0.002*** 0.002*** 0.002*** 0.001** 0.001** 0.001** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Leverage 0.008*  0.004 0.033***  0.034*** 

  (0.004)  (0.006) (0.010)  (0.011) 

Capital ratio  -0.006** -0.004  -0.006 -0.001 

   (0.003) (0.003)  (0.004) (0.005) 

Constant -3.311*** -2.439*** -2.876*** -6.156*** -2.480*** -6.219*** 

  (0.540) (0.175) (0.655) (1.135) (0.330) (1.296) 

N 6450 6450 6450 5194 5194 5194 

Chi-squared 4053.5 4056.7 4056.5 1089.7 1077.4 1087.2 

R-squared 0.49 0.48 0.49 0.21 0.20 0.21 

Note: The sample consists of 6522 observations from 47 banks in Japan, available from Thompson DataStream database 

from 2001-2012. Firm Size= natural log of market capitalization. Profitability= Earnings before interest, taxes, depreciation 

& amortization /Total assets. Leverage Ratio= Total debt over total assets. Capital Ratio= book value of equity divided by 

total assets. All firm characteristics data are obtained from the DataStream database. Time dummies are a dummy variable 

that accounts for the year fixed effects (FE). Standard errors are displayed in parentheses below the coefficients. Time 

dummies are included but not shown. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% level, respectively. 

The baseline econometric model is: 

𝜷𝒊,𝒕 =  𝜸𝟏𝑭𝒊𝒓𝒎 𝒔𝒊𝒛𝒆𝒊,𝒕 + 𝜸𝟐𝑷𝒓𝒐𝒇𝒊𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝒊,𝒕 + 𝜸𝟑𝑳𝒆𝒗𝒆𝒓𝒂𝒈𝒆𝒊,𝒕 + 𝜸𝟒𝒄𝒂𝒑𝒊𝒕𝒂𝒍 𝒓𝒂𝒕𝒊𝒐𝒊,𝒕 + 𝒕𝒊𝒎𝒆 𝒅𝒖𝒎𝒎𝒊𝒆𝒔𝒊,𝒕 + 𝜺𝒊,𝒕 

 

Profitable banks are more sensitive to both diffusion and jump systematic risk than their less 

profitable counterparts, supporting the hypothesized positive risk-return relationship. A 

decrease of one percentage point in the profitability ration is estimated to lead to decrease of 

0.002 in the diffusion beta, assessed at the mean value of profitability, this is equivalent to a 

decrease in the profitability ratios for Japanese banks from 12% to 11% resulting in a decrease 

in diffusion beta of 0.002. It immediately apparent that a large change in profitability would be 

required to alter beta to economically meaningful extent.  However, in this case the impact of 

continuous movements is slightly more impactful than jump movement; that is the effect for 

profitable banks is not importantly different if the information arrival through price arrives 

abruptly or continuously. A possible reason is that profitable banks often employ aggressive 

business strategies and consequently exhibit higher risk. Borde et al. (1994) reach the same 

conclusion for US insurance companies.  
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While leverage is not statistically significant in determining diffusion beta, it has a positive 

effect on jump beta. The results reveal that financial firms with higher leverage (debt capital) 

are more responsive to jumps in the market. As higher leverage ratios make financial firms 

riskier, these highly leveraged firms are more sensitive to market jumps. Information arrival 

through abrupt price movements may cause banks to adjust their business behavior, whereas 

planning should have eliminated this channel in relation to the known continuous price process. 

To gain some sense of the economic relevance of these results we calculate that an increase in 

bank size by 1 percentage point (assessed at the mean) is associated with a 0.32 percentage 

point increase in diffusion beta and 0.42 percentage point increase in jump beta. An increase 

in profitability and leverage by 1 percentage point would increase bank diffusion systematic 

risk by a mere 0.001 point and 0.008 point respectively, while the jump beta effects are for 

increases by 0.001 point and 0.034 point respectively. Bank size is clearly the largest economic 

effect in our firm characteristic set. 

The recent global financial crisis (GFC) is an exogenous shock to a firm’s investment choices 

and thus it provides an opportunity to understand the relative importance of these determinates 

of bank systematic risk and jump risk and how these factor evolved with the changes in world 

economy during the crisis period. Yamori et al. (2013) suggest that Japanese experience with 

their economic collapse in the 1990s enhanced the ability of the financial system to respond; 

through programs implemented including deferrals for interest rate and principal payments and 

the extension of further loans. The government also introduced support measures which partly 

explain the willingness of banks to extend credit, applying guarantee measures which absorbed 

their risk of loss, and loosening capital adequacy requirements. Whilst the drop in business 

conditions reported from Tankan was severe, the contraction of credit conditions was much 

less so; see Yamori et al. (2013).  

Although  no major failures took place in the Japanese financial industry during the GFC period 

Miyakoshi et al. (2014) find evidence of the transmission of risk from the manufacturing 

industry to the financial industry, observing that the Japanese exporting industry, including the 

Toyota, Honda, and Nissan motor vehicle companies, suffered extraordinary deficits in the two 

fiscal years following the crisis. To characterize the betas and to aid our discussion, we split 

the sample period into crisis (July 2007 to May 2009) and the non-crisis period.23  

                                                           
23 We use the crisis period identified in Dungey and Gajurel (2014). 
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The following model is used to explore the impact of the financial crisis on the relationship 

between different betas and its determinants: 

𝛽𝑖,𝑡 = 𝛼0 + ∑ 𝛾𝑋𝑖,𝑡

𝑚

𝑖=1

+ ∑ 𝛾1𝑡

𝑚

𝑖=1

𝑋𝑖,𝑡 + ∑ 𝛾2𝑡

𝑚

𝑖=1

𝐷𝑡𝑋𝑖,𝑡 + ∑ 𝜃𝑡 (𝑡𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑖𝑒𝑠) + 𝜇𝑖,𝑡    (2.21) 

where we introduce a GFC dummy 𝐷𝑡= 1 for the crisis period July 2007- May 2009.  

Table 2.8 reports the results of the impact of the GFC on the relationship between the betas and 

firm characteristics. Focusing on column (3) for each of the beta regressions in Table 2.8 shows 

that the effects of firm size, profitability and leverage reported in Table 2.7 are retained – 

diffusion beta is positively related to firm size and profitability, and jump beta is positively 

related to firm size, profitability and leverage.  

In relation to how the GFC affected the association between different betas and bank 

characteristics variables, we observe some interesting results from the multiplicative terms. 

The estimated coefficients on Profitability*GFC dummy is positive and statistically significant. 

This suggests that the impact of profitability on diffusion beta increased during the GFC period.  

There are two important further results. For diffusion beta, there is a significant addition to the 

impact of profitability on beta during the crisis period. In the crisis period the impact of 

profitability is increased by almost 60 percent, more profitable firms reflected more of the 

market movements (or perhaps in the context of the environment, the market was strongly 

associated with the loss of profitability of the banking sector). The jump beta, however, does 

not show any change in its relationship with profitability between the non-crisis and crisis 

periods. Rather, it has a dramatic increase (almost doubling) of the impact of leverage. During 

the crisis period being more leveraged resulted in a greater beta in response to abrupt price 

movements. There is also a statistically significant shift in the intercept term for the jump beta, 

supporting a more negative intercept during the crisis than non-crisis periods. Banks with larger 

debt obligations (relative to equity) are more sensitive to market fluctuations during financial 

distress. It is not surprising that banks with low debt are seen as attractive during volatile times 

and become safe havens for investors. 

Overall, the results show that the four firm characteristic variables significantly influence not 

only diffusion systematic risk but also jump risk of banks.  
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Table 2.8: Betas and firm characteristics (the impact of GFC period) 
 

  𝜷̂𝒄  𝜷̂
𝒋

 

Variables (1) (2) (3) (1) (2) (3) 

Firm Size 0.320*** 0.313*** 0.313*** 0.426*** 0.374*** 0.443*** 

  (0.023) (0.022) (0.024) (0.043) (0.039) (0.041) 

Profitability 0.001*** 0.001*** 0.001*** 0.001** 0.001** 0.001** 

  (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Leverage 0.007  0.003 0.029***  0.028*** 

  (0.005)  (0.006) (0.010)  (0.011) 

Capital ratio  -0.005* -0.004  -0.006 -0.003 

   (0.003) (0.003)  (0.004) (0.004) 

Profitability*GFC dummy 0.001** 0.001** 0.001** -0.0001 -0.001 -0.001 

  (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Leverage*GFC dummy -0.005  -0.007 0.029  0.044** 

  (0.005)  (0.006) (0.019)  (0.021) 

Capitalratio*GFC dummy  -0.001 -0.002  0.005 0.014 

   (0.002) (0.002)  (0.008) (0.009) 

GFC dummy 0.575 0.085*** 0.740 -2.748 0.022 -4.159** 

  (0.511) (0.018) (0.572) (1.808) (0.064) (2.021) 

constant -3.211*** -2.450*** -2.701*** -5.825*** -2.573*** -5.872*** 

  (0.544) (0.175) (0.663) (1.131) (0.316) (1.198) 

N 6450 6450 6450 5194 5194 5194 

Chi-squared 4155.3 4157.9 4153.4 1100.0 1092.5 1128.6 

R-squared 0.49 0.49 0.49 0.21 0.20 0.21 

Note: This table represents the impact of the financial crisis on the relation between different betas and their determinants. 

𝐷𝑡= GFC dummy equals 1 for crisis period if the year is July 2007- May 2009 and otherwise zero to account for non-crisis 

period; 𝐷𝑡 × 𝑋𝑖.𝑡 = interaction term between GFC dummy ( 𝐷𝑡)  and each bank-specific variable 𝑋𝑖.𝑡  (i.e. firm size, 

profitability, debt leverage, and capital ratio). Time dummies are a dummy variable that accounts for the year fixed effects 

(FE). Standard errors are displayed in parentheses below the coefficients. Time dummies are included but not shown. 

Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

 

2.6. The risk-return relationship 

Theoretically, Merton (1976) assumes stock jump risk is diversifiable, while papers such as 

Santa-Clara and Yan (2010) assume market jump risk is priced. We consider whether jump 

risks are priced cross-sectionally. The conventional CAPM implies that securities have same 

expected returns if they have same betas. The expected risk-return relationship of the jump-

diffusion model is different. The jump-diffusion model has two different types of betas instead 

one. One measures the systematic risk when no jump occurs, and the other measures the 

systematic risk when jump occur. Different securities have different diffusion and jump beta 

risks. Hence, securities will have different expected returns even if they have the same diffusion 

betas.  
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The conventional CAPM implies two-fund separation which claims that all investors hold the 

same portfolios, a market portfolio and a riskless asset. This is no longer true in the jump-

diffusion model because investors may have different preferences to diffusion and jump betas. 

It would be difficult, if not impossible, to find a portfolio that is optimally invested and which 

has the same premium for both the diffusion and jump risks of its component securities.  

The importance of these risks is now a fundamental premise of the option pricing literature and 

those studies have argued that the risk premia associated with jump risks are different from the 

premia associated with diffusion risks (see, e.g., Eraker (2004); Pan (2002); Todorov (2009) 

and references therein). This motivates our test of whether the two types of betas carry separate 

risk premia. It is especially important to determine the contribution of jumps to periods of 

market stress because jump risk, either in returns or in volatility, cannot typically be hedged 

away, and investors may demand a large premia to carry these risk; for instance, Pan (2002).  

We focus on the contemporaneous relationships between realized factor loadings and realized 

stock returns, as in (Ang et al. 2006), and others.  

The test assets we use in our pricing regressions are individual stocks rather than portfolios. 

Ang et al. (2010) show that constructing portfolios ignores important information (especially, 

as stocks within particular portfolios have different betas) and leads to larger standard errors in 

cross-sectional data. In our empirical analysis, we choose panel regression with both period 

and cross-section fixed effects over the conventional Fama and MacBeth (1973) cross-sectional 

regressions. Although Fama and Macbeth (FM) regression is a standard methodology to 

validate an asset pricing model, Petersen (2009) and Pasquariello (1999) indicate that FM two 

step procedures do not properly explain estimation errors and lack independence between 

cross-sectional errors. Therefore, we focus on individual stocks rather than portfolios, 

estimating panel regressions using all stocks in our sample as follows: 

𝑟̅𝑖,𝑡 = 𝛼0 + 𝛾𝑐𝛽𝑖,𝑡
𝑐̂ + 𝛾𝑗𝛽𝑖,𝑡

𝑗̂
+ ∅𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝜃𝐵𝑀𝑖,𝑡 + 𝜀𝑖,𝑡                                                             (2.22) 

where 𝑟̅𝑖,𝑡 is the realized excess return on stock 𝑖 the 𝑡-th month. We use the average monthly 

return as a proxy for realized excess returns, as there are no risk-free rates in Japan comparable 

to U.S. Treasury bill rates.24  𝛽𝑖,𝑡
𝑠  𝛽𝑖,𝑡

𝑐 , 𝛽𝑖,𝑡
𝑗

 are the standard beta, the diffusion beta, and the jump 

beta of firm 𝑖 at month 𝑡, from our estimates in section 2.2.2. For comparison, we also estimate 

                                                           
24 Alexeev et al. (2017) also use the average monthly return as a proxy for realized excess returns in order to 

extract the risk premia. 
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similar regressions by replacing the two betas by the standard CAPM beta, 𝛽𝑖,𝑡
𝑠 . Based on these 

panel regressions equations, with fixed effects in both the cross-section (firms) and period (time) 

dimensions, we then estimate the risk premiums associated with the different betas and 

explanatory variables.  

Table 2.9 presents the unconditional regression results for the stock returns and each of the 

three betas ignoring the possible conditional beta/return relationship. The first three models 

show results for univariate regressions of returns on each beta. In model (4) of Table 2.9, we 

examine the effect of including both the diffusion and jump beta estimates without considering 

the influence of size and BM effects.  Model (5) in Table 2.9 examine the effect of including 

both the diffusion  and jump beta estimates after controlling for size and BM effects.  

The parameter loadings on the standard beta, the diffusion beta, and the jump beta in models 

(1) to (3) of Table 2.9 are all positive and significant, consistent with CAPM theory. Model (4) 

in Table 2.9 shows that the diffusion beta becomes insignificant when controlling for jump beta. 

However, the effect of jump beta remains significant even after controlling the effect of 

diffusion beta. From Table 2.9, it can be observed that, even in combination with variable size 

and BM, the significantly relationship between average returns and jump beta still persists in 

all bivariate regressions. This implies that stocks with high sensitivities to jump risk can expect 

higher returns, that is, jump risks carry a positive market price for risk. 

2.6.1 Diffusion and jump risk in up and down markets 

The unconditional results are consistent with existing asset pricing tests in a broad setting. 

However, we claim that the unconditional specification above is not appropriate for 

determining whether there is actually any relation between betas and returns. Since excess 

returns may behave differently in up and down markets, the results above may not be reliable 

as they do not account for the effects of up and down markets. In view of this, we now consider 

the up and down market risk-return model.25  

 

                                                           
25 For instance, Pettengill et al. (1995) find a positive (negative) relationship between beta and return by taking 

into account whether the excess market return is positive (up market) or negative (down market) in the US markets. 

Following Pettengill et al. (1995), Faff (2001), Lam (2001), Elsas et al. (2003), and Hung et al. (2004), studying 

the Australia, Hong Kong, German and UK markets, respectively, all find a significant beta-return relationship. 

Using cross-sectional regression method, Hodoshima et al. (2000) find, on the Japanese market, that taking into 

account positive and negative market excess returns produces a significant relationship between stock returns and 

beta in Japanese market. 
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Table 2.9: Unconditional risk-return trade-off for individual banks 
 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

Standard Beta 0.007*         

  (0.004)         

Diffusion  Beta   0.007*   0.006 0.005 

    (0.004)   (0.004) (0.004) 

Jump Beta     0.003* 0.003* 0.003* 

      (0.001) (0.002) (0.002) 

Size         0.708 

          (1.08) 

BM         0.028*** 

          (0.007) 

Constant -0.009*** -0.008*** -0.009*** -0.009*** -0.088 

  (0.002) (0.002) (0.002) (0.002) (0.131) 

R-squared 0.04 0.04 0.04 0.04 0.04 

Note: Unconditional panel regressions of monthly stock returns without splitting markets into up and downs for individual 

stocks, rather on stock market betas (Beta), Size (in natural logarithm) and BM (in natural logarithm) over the whole sample 

period. The sample consists of 47 banks in Japan that are constituents of Nikki 225 index over the period 2001-2012. 

Clustered Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate 

significance at 10%, 5%, and 1% levels, respectively. 

 

Bollerslev et al. (2015) find that the risk premium associated with jump beta is statistically 

significant, while the diffusion beta does not appear to be priced in the cross-section. The 

decompositions of  Todorov and Bollerslev (2010) and Bollerslev et al. (2015) do not make a 

distinction between upside market and downside market risk. The arguments based on 

asymmetric preferences by investors are, however, equally applicable in a context where we 

disentangle diffusion risk and jump risk. In particular, given the pricing results of  Bollerslev 

et al. (2015), it is unclear whether down market risk is priced higher than up market risk. In 

particular, we test for the price diffusion risk and jump risk between different market states. 

We examine this for two reasons. First, information on the states of any asset market is relevant 

for investors. Investors who may follow a market timing strategy can obtain a long position 

under a bull (up) market and a neutral or short position under a bear (down) market. Investors 

who do not engage in market timing strategies may incorporate the different behavior of asset 

returns in their risk management  (Perez‐Quiros and Timmermann 2000). Further, up and 

down markets can affect asset pricing, as they are an important source of time variation in risk 

premia (see, for example Ang et al. (2006)). 
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To examine the relationship between beta and realized returns, conditioning on the sign of 

market return, testing is modified by including a dummy variable in the panel regression 

Equation. (2.22), thus allowing of positive and negative market returns to be separated out. 

This is in accordance with the methodology of Pettengill et al. (1995). This is shown as follows: 

𝑟̅𝑖,𝑡 = 𝛼0 + 𝛾𝑐 𝑢𝑝 𝛿. 𝛽𝑖,𝑡
𝑐̂ +  𝛾𝑐 𝑑𝑜𝑤𝑛 (1 − 𝛿). 𝛽𝑖,𝑡

𝑐̂ + 𝛾𝑗𝑢𝑝𝛿. 𝛽𝑖,𝑡
𝑗̂

+ 𝛾𝑗𝑑𝑜𝑤𝑛(1 − 𝛿). 𝛽𝑖,𝑡
𝑗̂

 

+  ∑  

𝑝

𝑛=1

[∅𝑢𝑝 𝛿. 𝑋𝑖,𝑡 + ∅𝑑𝑜𝑤𝑛 (1 − 𝛿). 𝑋𝑖,𝑡] + 𝜀𝑖,𝑡                                           (2.23) 

where 𝛿 =1 if  𝑟𝑚𝑡 > 0  (an up market) and 𝛿 =0 if  𝑟𝑚𝑡 < 0 (a down market). In this study, we 

include diffusion beta, jump beta, standard beta as well two firm-specific explanatory variables: 

firm size (SIZE) and book-to-market ratio (BM). Incorporating a dummy variable into the 

regression allows for the existence of a negative realized market risk premium. We expect 

𝛼𝑖,𝑡 = 0 and 𝛾𝑐 𝑢𝑝 (𝛾𝑐 𝑑𝑜𝑤𝑛 ) to be positive (negative) and statistically significant, implying the 

significance of beta as a risk measure. Monthly estimates 𝛾𝑐 𝑢𝑝  are averaged from (𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅ ) from 

which the following hypotheses are tested:  𝐻𝑜 :  𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅  = 0  against the alternative  𝐻𝑜 : 

𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅  > 0, and  𝐻𝑜 : 𝛾𝑐 𝑑𝑜𝑤𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 0 against the alternative 𝐻𝑜 : 𝛾𝑐 𝑑𝑜𝑤𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ < 0. 

Table 2.10 presents our baseline results. In an ex post context, Model (1) in Table 2.10 shows 

a significant positive (negative) relationship between standard beta and return during up and 

(down) markets. When we decompose the CAPM beta into a diffusion beta and jump betas in 

up and down markets as in model (2) to (4) we see that both the betas carry a significant 

premium at the 1% level. The result also show that the jump beta carries the larger premium of 

the two in both up and down market. The null hypothesis of no beta–return relations 

(𝐻𝑜 : 𝛾𝑐 𝑢𝑝 = 0 and 𝐻𝑜 : 𝛾𝑐 𝑑𝑜𝑤𝑛 = 0) is clearly rejected. Using the results in Table 2.10 for 

our preferred model (5), a 2-standrad-deviation difference in jump beta during the whole 

sample period, for the 5-min sampling frequency will lead to a difference in expected return of 

2*0.6404* 0.6%*12 = 9.22% and 2*0.6404* 0.6%*12 = 9.22% per year, respectively for the 

up and down markets, which are large and economically meaningful difference in expected 

return.  These are very close to estimates in Bollerslev et al. (2015) in the US market. This 

supports the argument that when the market is doing well the higher risk firms, as measured by 

the two betas, have greater returns than less risky firms. On the other hand, higher risk firms 

do worse than less risky firms when the market is overall is doing poorly.  This finding is 
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constant with Pettengill et al. (1995); Hur et al. (2014); Morelli (2011); Cotter et al. (2015); 

Hodoshima et al. (2000) in the US, the UK and the Japanese markets, respectively.  

This study also consider the effect of size and BM on the relation between betas and returns 

when markets are segmented into up and down and markets. We find that diffusion and jump 

beta remain significant even after controlling for size and BM effects in up and down markets. 

The improvements in the adjusted-R2 statistics as compared to the 2-beta model support the 

modelling of the up and down market conditional relationships.  

Observing the relationship between size and returns, size is virtually not priced at all during up 

market and is priced negatively during down markets. The observe results argues against the 

distress risk explanation between the beta and size relationship. A number of authors have 

suggested that the size premium represents payment for some sort of distress risk. Campbell 

and Vuolteenaho (2004) suggest that the payment to small firms represents payment for a 

greater sensitivity to cash flow risk. Other authors (see for example Chan et al. (1985) and 

Vassalou and Xing (2004)) have suggested that the size premium may exist because small firms 

have greater default risk than large firms. Likewise, Chan and Chen (1991) argue that many 

small-firm securities are “fallen angels” that have declined in market value because of adverse 

market conditions and face the possibility of further distress. To the extent that small-firm 

securities do attract a premium for some form of distress or default risk, a relationship between 

the size effect and market conditions is clearly suggested. If small-firm securities attract a 

premium for distress risk, this premium ought to be realized when investors are generally 

optimistic. In market states where investors are pessimistic, firms with higher distress risk 

should experience low returns as investors re-value these securities downward to compensate 

for high default risk. Thus, in down markets small-firm securities should perform poorly 

relative to large-firm securities, but in up-markets investors in small-firm securities is rewarded 

for holding distress or default risk. 

The hypothesis that a size effect resulting from payment to risk should be paid in up markets 

is consistent with arguments made by Lakonishok et al. (1994). They argue that value stocks 

ought to underperform glamor stocks in adverse market conditions if the value premium results 

from compensation for risk. This follows because in adverse market conditions high-risk value 

stocks ought to be unattractive to risk-averse investors. Further support for the hypothesis that 

a distress risk premium should be paid to size in up markets rather than in down markets is 

provided by Perez‐Quiros and Timmermann (2000). They argue that small firms rapidly lose 
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asset value in recessions; therefore small firms should experience greater losses than large firms 

in bear market periods associated with economic recessions. Thus the size premium, if paid for 

distress risk, ought to be paid in up markets. 

As reported in Table 2.10, statistics revealed size is virtually not priced at all during up markets 

and is priced negatively, with a monthly premium of 0.35%, during down markets. There is no 

relationship between size and returns in up markets after considering the role of beta. Contrary 

to the distress risk explanation of the size effect, the relationship between size and returns 

comes entirely from down markets. The observed results appear to contradict the generally 

hypothesized pricing relations. Our results are inconsistent with Campbell and Vuolteenaho 

(2004), Chan et al. (1985), Vassalou and Xing (2004), and Chan and Chen (1991) arguments 

that the payment to small firms represents payment for a greater sensitivity to cash flow risk 

and greater default risk or these firms are more likely to get adversely affected in bad market 

states. Therefore our findings indicate that ‘relative distress’ argument used in Fama and 

French (1996) to justify risk adjustment using factor loadings on SMB portfolios can be 

questioned.  

It is plausible however that if small firms do face higher financial distress cost, they may 

optimally structure themselves (e.g. through financial leverage or other operating decisions) to 

insulate themselves against bad states of the world. Under those circumstances the stock returns 

may behave as we find here even though other aspects of financial performance may be more 

affected by bad times. This explanation is consistent with George and Hwang (2010) argument 

for distress risk and leverage puzzle in stock returns. Another explanation is that, the unique 

risk characteristics of firms in Japanese market may imply the existence of a significant 

negative size effect in down markets. To the extent that size reflects diversification of activities, 

liquidity, timeliness and quality of corporate information disclosure, and the level of 

transactions costs involved, larger firms tend to have lower non-market risk. However, a special 

feature of the Japanese market is that, unlike the US market, most large firms are in the finance 

and real estate property sectors, which are exposed heavily to systematic risk factors on an 

international scale, such as interest rate risk, inflation risk, and political uncertainties, whereas 

most small firms are engaged in trading or manufacturing business which is less vulnerable to 

market risk. So, large firms possess large betas and small firms possess small betas. This gives 

rise to a positive correlation between size and beta (See, Table 2.6). In sum, it may be 

generalized that large firms in Japanese market have large total risk (large market risk plus 
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small non-market risk) and small firms have small total risk (small market risk plus large non-

market risk). This helps explain the positive (negative) size effect during up (down) markets. 

Thus, in the Japanese market, it may be argued that size also proxies for risk but with a pricing 

effect reverse to that generally suggested by theory and evidence.  

With respect to BM, a statistically significant negative relationship is found during the down 

markets, consistent with Pettengill et al. (2002). The results suggest that in good times, when 

the market returns are up, the market is less worried about bankruptcy. However, in bad times 

when the market returns are down, the market is more concerned about bankruptcy; distressed 

companies with high BM ratios will suffer low returns (security prices decrease) as the 

distressed risk is priced back into the security. Such an explanation implies a negative BM 

pricing effect during down markets.  

Overall, our findings provide strong evidence that high-risk stocks outperform low-risk stock 

markets when the realized world market is positive and similarly the high-risk stock markets 

incur higher losses when the realized world market return is negative. 

2.6.2 Extensions 

This section describes several extensions of basic analysis in section 3.6.1. To check the 

robustness of our empirical findings, following Wu and Lee (2015), we first extend the 

Equation (2.23) to a model with regime dependent constant term: 𝛼𝑖,𝑡 =  𝛼1,𝑡 for up market and 

𝛼𝑖,𝑡 =  𝛼2,𝑡 for down market. The empirical results are reported in Table 2.11.  

The estimates of 𝛼1,𝑡  and 𝛼2,𝑡  are now significantly positive and significantly negative, 

respectively, which captures the positive mean excess return in the up market and the negative 

mean excess return in down market. As for the coefficients for continues beta and jump beta 

are qualitatively similar to those with a time-invariant constant term reported in Table 2.10. 

As Lanne and Saikkonen (2006) point out the presence of a constant term renders conditional 

mean estimation very inaccurate when the constant term estimates appears to be significant, 

we therefore employ the restriction 𝛼𝑖,𝑡 =  0 to address this estimation problem. As shown in 

Table 2.11, the estimated coefficients are qualitatively similar those reported in Table 2.10.  
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Table 2.10: Risk-return trade-off for individual banks during up and down markets 
 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

  Up Market 

Standard Beta 0.077***     

  (0.004)     

Diffusion Beta  0.089***  0.028*** 0.015*** 

   (0.005)  (0.004) (0.004) 

Jump Beta   0.040*** 0.033*** 0.006*** 

    (0.003) (0.003) (0.002) 

Size     0.328 

      (0.207) 

BM     -0.002 

      (0.005) 

  Down Market 

Standard Beta -0.086***         

  (0.004)         

Diffusion  Beta   -0.102***   -0.024*** -0.016*** 

    (0.005)   (0.006) (0.006) 

Jump Beta     -0.045*** -0.039*** -0.006** 

      (0.004) (0.004) (0.003) 

Size         -0.350* 

          (0.200) 

BM         -0.017*** 

          (0.002) 

Cons 0.001 0.002 0.001 0.001 0.004 

  (0.001) (0.001) (0.003) (0.003) (0.025) 

R-squared 0.45 0.29 0.43 0.44 0.57 

Note: Pooled regressions of monthly stock returns in up and down markets for individual stocks on just their stock market 

betas (Beta) over the whole sample period. The sample consists of 47 banks in Japan that are constituents of the Nikki 225 

index over the period 2001-2012. Clustered Standard errors are displayed in parentheses below the coefficients. Asterisks 

*, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

 

The existing literature indicates that risk factors such as conditional volatility (Lundblad 2007) 

or implied volatility (Connolly et al. 2005) are elevated during recessions. Investors also tend 

to avoid risky assets and behave differently under extreme market conditions. Thus we 

investigate whether extreme market movements, such as a financial crisis, could alter the 

parametric estimates of the risk-return relationship. We re-estimate our jump-diffusion model 

under the pre-crisis and post-crisis, crisis and post-crisis periods and show how the risk-return 

relationship varies under different economic conditions. Each of the three sub periods describes 

a different episode of the stock market. We again concentrate on up and down markets.  
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Table 2.11: Risk-return trade-off for individual banks during up and down markets with a 

regime dependent constant term 
 

  Monthly Return 

Risk Premia Constant#0 Constant=0 

  Up Market 

Diffusion  Beta 0.013*** 0.029*** 

  (0.004) (0.005) 

Jump Beta 0.005** 0.034*** 

  (0.002) (0.002) 

Constant 0.045*** - 

  (0.002)   

  Down Market 

Diffusion  Beta -0.006 -0.024*** 

  (0.005) (0.006) 

Jump Beta -0.008*** -0.038*** 

  (0.002) (0.003) 

Constant -0.046*** - 

  (0.003)   

R-Squared 0.56 0.44 

Note: Premia estimates and their standard errors as in Table 2, but for different constant terms. Clustered Standard errors 

are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively. 

 

Table 2.12: Risk-return trade-off for individual banks during up and down markets: sub sample 

analysis 
 

  Sample Periods     

Risk Premia Pre-crisis Period Crisis Period Post-Crisis Period 

  Up Market 

Diffusion  Beta 0.035*** 0.057*** 0.006 

  (0.007) (0.008) (0.005) 

Jump Beta 0.040*** 0.016*** 0.046*** 

  (0.004) (0.005) (0.005) 

  Down Market 

Diffusion  Beta -0.023*** -0.046*** -0.008 

  (0.007) (0.013) (0.010) 

Jump Beta -0.038*** -0.022** -0.041*** 

  (0.004) (0.009) (0.006) 

Constant 0.001 -0.004 -0.009* 

  (0.002) (0.006) (0.005) 

R-Squared 0.41 0.45 0.52 

Note: Premia estimates and their standard errors as in Table 2, but for different subsamples. Clustered Standard errors 

are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively. 
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Table 2.13: Test of symmetry hypothesis 

 

Panel A     

 Full Sample period Pre-crisis  Crisis  Post-crisis  

 t-statistic 

𝛾𝑐 𝑢𝑝 −  𝛾𝑐 𝑑𝑜𝑤𝑛 = 0 0.37 1.13 0.51 0.04 

𝛾𝑗 𝑢𝑝 −  𝛾𝑗 𝑑𝑜𝑤𝑛 = 0 0.61 0.08 0.24 0.20 

Panel B     

 Full Sample period Pre-crisis  Crisis Post-crisis 

 t-statistic 

𝛾𝑐 𝑢𝑝 −  𝛾𝑗 𝑢𝑝 = 0 0.50 0.22 15.64*** 23.46*** 

𝛾𝑐 𝑑𝑜𝑤𝑛 −  𝛾𝑗𝑑𝑜𝑤𝑛 = 0 2.74* 1.75 1.37 5.17** 

Note: The table report the t-statistic for testing the symmetry hypothesis between the risk premia 𝛾𝑐 𝑢𝑝 𝑎𝑛𝑑 𝛾𝑗 𝑑𝑜𝑤𝑛  in 

up and down markets. Results are for the full testing period as well as sub sample periods. Asterisks *, **, and *** indicate 

significance at 10%, 5%, and 1% levels, respectively. 

 

Table 2.14: Risk-return trade-off for size-sorted stock portfolios during up and down markets 
 

  Size Sorted Portfolios (Qunitiles) 

Premia Small 2 3 4 Large 

  Up Market 

Diffusion  Beta 0.031*** 0.022** 0.0320*** 0.065*** 0.054*** 

  (0.007) (0.010) (0.012) (0.017) (0.017) 

Jump Beta 0.019*** 0.039*** 0.026*** 0.034*** 0.046*** 

  (0.006) (0.007) (0.005) (0.007) (0.008) 

  Down Market 

Diffusion  Beta -0.049*** -0.021** -0.033** -0.065*** -0.050** 

  (0.008) (0.010) (0.015) (0.016) (0.024) 

Jump Beta -0.028*** -0.035*** -0.045*** -0.032*** -0.042*** 

  (0.007) (0.006) (0.006) (0.006) (0.013) 

Constant 0.012** -0.003 0.011*** 0.003 0.007 

  (0.005) (0.005) (0.004) (0.004) (0.007) 

Note: Estimates of the risk prices from pooled OLS regression using size sorted portfolios, rebalanced each year. Standard 

errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively. 

 

 

Table 2.12 presents the results. In the pre-crisis period, exposures to diffusion and jump risks 

are rewarded with returns during up markets, and are penalized with losses during down 

markets. In transitioning from the pre-crisis to the crisis period, we find that both the premium 

and discount for diffusion beta increase whereas both the premium and discount for the jump 

beta decrease in the crisis period. By contrast, both the premium and discount for the diffusion 

and jump beta show opposite results in transitioning from the crisis to the post-crisis period. In 
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the pre-crisis (or stable) period both the betas are priced significantly, with the jump premium 

larger than the diffusion premium. Large surprises are priced higher than small surprises. In 

the crisis (or unstable) period both the betas are still significantly priced but the diffusion 

premium is now larger than the jump premium. Small surprises are priced higher than large 

surprises. In the post-crisis (or recovery) period only the jump risk is priced significantly. Any 

large good news is rewarded largely and any further large bad news is penalized heavily. 

Table 2.15: Fama-Macbeth cross-sectional regressions 
 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

  Up Market 

Standard Beta 0.025         

  (0.058)         

Diffusion  Beta   0.004   0.002 0.025 

    (0.086)   (0.020) (0.026) 

Jump Beta     0.037*** 0.031*** -0.006 

      (0.005) (0.006) (0.021) 

Size         -0.006 

          (0.219) 

BM         -0.001 

          (0.006) 

  Down Market 

Standard Beta -0.093***         

  (0.008)         

Diffusion  Beta   -0.091***   -0.019 -0.067* 

    (0.024)   (0.012) (0.037) 

Jump Beta     0.046*** -0.045*** -0.011 

      (0.005) (0.007) (0.016) 

Size         -0.377* 

          (0.225) 

BM         -0.017 

          (0.017) 

Constant 0.002 0.002 0.001 0.001 0.035 

  (0.004) (0.004) (0.004) (0.004) (0.029) 

R-squared 0.40 0.29 0.39 0.45 0.55 

Note: Cross-sectional pricing of jump and continues risk in up and down markets. Sample period is from January 2001 to 

December 2012. We run Fama–MacBeth regressions of 12-month excess returns on contemporaneous realized betas. 

Observations are at monthly frequency and we adjust standard errors accordingly using 2 Newey–West lags. Standard errors 

are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, 

respectively. 
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Given the above relationship found between betas and returns, we test the symmetrical 

relationship between betas and returns during up and down markets over the full sample and 

the three periods to compare the relative magnitudes of the different premia for both the 

diffusion and jump betas. A two population t-test is used to test the symmetrical relationship 

between the mean of estimated up market risk premia and the estimated down market risk 

premia from the Equation, (2.24). The results of a two-population t-test, as reported in Panel A 

of Table 2.13 clearly do not reject the null hypothesis of symmetry over the total testing period, 

and the three sub periods with the exception of the pre-crisis period (only at the 10% 

significance level).  We can safely say that the absolute values of the premiums for both the 

diffusion and jump risks are generally symmetrical for up and down markets. The result 

provides significance evidence to support the symmetrical relationship between betas and 

return during up and down markets. This is supportive to Pettengill et al. (1995) who found a 

symmetrical relationship are in US security returns. 

In addition, since the risk premia associated with discontinuous, or jump, risks often appear to 

be quite different from the premia associated with diffusion risks, we examine whether the risk 

premia associated with diffusion and jump risk are of equal magnitude and symmetrical 

relationship exists between them during up and down markets by testing the equality of pairs 

of the regression coefficients (𝛾𝑐 𝑢𝑝 𝑎𝑛𝑑 𝛾𝑗 𝑢𝑝 ;  𝛾𝑐 𝑑𝑜𝑤𝑛 𝑎𝑛𝑑 𝛾𝑗 𝑑𝑜𝑤𝑛  ) as shown in Panel B of 

Table 2.13. Comparing the relative magnitudes of the different premiums, we see that the 

symmetrical relationship only exists in the up markets of the total sample and the pre-crisis 

sub-sample periods. However, the estimated risk premiums for diffusion risk and jump risk 

reject symmetry for the down markets of all periods and the up markets of the crisis and post-

crisis periods. We also notice (in conjunction with Table 2.12) that for the crisis period the 

diffusion component for up markets are the dominant pricing ingredients whereas for the post-

crisis period the jump component is the dominant factor. During the crisis period, we do not 

expect positive jumps and consequently the market does not have a premium for positive jumps. 

In post-crisis, the market compensates by having a higher premium for positive jumps (i.e. 

expecting a fast recovery), and at the same time having a higher discount for the negative jumps 

as still remember the recent past crisis. For the pre-crisis period, we do not observe a clear 

difference between the estimated risk premiums for diffusion and jump risks during up markets 

and down markets. 
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For our robustness checks, we use the size sorted portfolio analysis to see whether our base 

line results remain valid; see Table 2.14. Our results indicate that when compared with low-

beta portfolios, high-beta portfolios earn higher returns in up markets and incur losses in down 

markets. For comparability with previous studies, we also use Fama–MacBeth regressions to 

estimate model (3) of Table 2.10. We present the regression results in Table 2.15. Our base line 

results remain robust. The results are consistent with Bollerslev et al. (2015) who observed a 

positive relation between a stock’s return and its jump beta for all stocks that are constituents 

in the S&P 500 index over 1993-2010. That is, the jump beta may have a different price of risk 

than the diffusion beta. The results are broadly consistent with Schuermann and Stiroh (2006) 

and Viale et al. (2009) who provide evidence on the risk factors priced in bank equities. 

Schuermann and Stiroh (2006) examine the weekly returns for the U.S. banks form 1997-2005 

and show that the market risk factor dominates in explaining bank returns, followed by the 

Fama-French factors. Viale et al. (2009) identify common risk factors in US banks stocks from 

1986-2003 applying CAPM, Fama-French factors , and ICAPM and find that market factor are 

significant explanators of the cross section of bank stock returns.  

The results support the initial hypothesis of this paper that jump beta is larger than that of 

diffusion beta, in line with the approach of Patton and Verardo (2012) emphasizing that the 

role of learning in disseminating information to the market is supported by higher beta around 

information rich events (such as jumps). Further, our panel results show that the jump betas 

convey more information than the diffusion beta in the explanation of average returns, 

supporting the importance of separating jump and diffusion beta in assessing risk premia. 

2.7. Conclusions 

Jumps are infrequent but large changes in stock prices potentially driven by significant 

information shocks. Detecting jumps and studying their dynamics is important because of the 

consequences in applications including asset pricing and risk management. As jump risk, either 

as large negative returns or as high volatility cannot typically be hedged away, and investors 

may demand a large premium to carry jump risk.  

In this paper, we identify jumps in the Japanese banking sector, which is well known as a bank-

centered financial system. Using high-frequency price data for 50 commercial banks in the 

Nikkei 225 index over the period 2001-2012, we find 272 jump days out of 2866 trading days, 

corresponding to 115 months out of 144 months. We use an extension of CAPM to relate a 
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stock’s return to two types of systematic risk exposures as measured by two types of beta: the 

diffusion beta and the jump beta. The diffusion beta is associated with the stock’s sensitivity 

to a market continuous movement while, jump beta is associated with the stock’s sensitivity to 

a market discontinuous movement.  

Jump betas are consistently larger than the diffusion betas in our empirical results, and firm 

fundamentals play important roles in determining firm's cost of capital in the 2-beta model. We 

find that large banks are more sensitive to jumps than the small banks and high leverage stocks 

are more exposed to market jumps. Profitable firms are sensitive to both continuous and jump 

market moves. We introduce and test a new 4-beta CAPM model by combining the diffusion 

and jump betas of Todorov and Bollerslev (2010) and the conditional betas of Pettengill et al. 

(1995), into a single model to detect any asymmetries in response. A distinguishing feature of 

our approach is that we allow for a conditional relationship between beta risk and premiums in 

our tests. In a separate investigation of up and down markets, we find that both the diffusion 

and the jump beta are significantly priced. In an up market, exposure to diffusion beta and to 

jump beta is rewarded with larger returns. These exposures are penalized with greater losses 

during down markets. Consistent with CAPM, we present evidence that stocks with high 

sensitivities to jump systematic risk ask for higher returns, supporting a positive risk-return 

relationship. We also provide evidence that under extreme market movements, such as during 

the recent financial crisis, the absolute value of the beta premiums can differ substantially in 

significance and magnitude.     

Overall, the results reveal that on average the response of each individual stock differs 

significantly with respect to continuous and discontinuous market movements highlighting the 

importance of decomposing the CAPM beta into diffusion and jump betas. 
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Chapter 3  

 

Quantile Relationships between Standard 

Beta, Diffusion Beta and Jump Beta across 

Japanese Banks  

 

 

 

3.1 Introduction 

In the one factor capital asset pricing model (CAPM), systematic risk, measured by beta, is 

determined by the asset’s covariance with the market over the market variance (Sharpe 1963; 

Lintner 1965).  The traditional way of estimating the asset’s constant beta has been by linear 

regression, typically based on 5 years of monthly data. However, the advent of even more 

powerful computers and easy access to high frequency data has revived interest in alternative 

non-parametric approaches to more accurately estimate betas. Compared with traditional 

parametric methods, a non-parametric approach using high frequency data trivializes 

calculation and avoids many distortive assumptions necessary for parametric modelling. 

Studies have shown that the use of high frequency data results in statistically superior beta 

estimates relative to the traditional regression based procedures (Bollerslev and Zhang 2003). 

In addition, unlike the constant beta computation, the realized beta computational approach 

allows a continuous evaluation of the time varying betas and thus provides a simple and robust 

estimator for measurement of time varying systematic risk, see, Wang et al. (2013). 

From a pricing perspective, the empirical failure of the unconditional Capital Asset Pricing 

Model (CAPM) has led to three possible approaches to relaxing the overly restrictive CAPM 

assumptions. The first is to use additional systematic factors, as in Merton (1973), allowing 

extra-market factors to capture additional systematic risks. The ad-hoc three-factor model of  

Fama and French (1993) and the four-factor model of Carhart (1997) are some of the widely 
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accepted examples of such multifactor models. The second approach is to relax the static 

relationship between expected return and risk by allowing time variation in the systematic 

factors. In that sense, Jagannathan and Wang (1996), Lettau and Ludvigson (2001) and Petkova 

and Zhang (2005) find that betas of assets with different characteristics move differently over 

the business cycle and Campbell and Vuolteenaho (2004), Fama and French (1996) and Ferson 

and Harvey (1999) show that time-variation in betas helps to explain anomalies such as value, 

industry and size. However, this conditional time-varying framework does not seem to be 

enough to improve the weak fit of the CAPM, as shown by Lewellen and Nagel (2006). 

The third approach is the use of dual or conditional betas whereby the market beta is 

conditioned on market states, that is bullish or bearish or positive or negative market returns. 

Bhardwaj and Brooks (1993), Howton and Peterson (1998) and Pettengill et al. (1995) and 

among others have investigated the relationship between beta risk and stock market conditions.  

For example, Pettengill et al. (1995) observe that larger firms experience larges betas in down 

market conditions than in up market conditions, the reverse being true for smaller firms; 

Fabozzi and Francis (1977) first tested the stability of betas over the “bull” and “bear” markets. 

Using an alternative return decomposition method, Campbell and Vuolteenaho (2004) 

decomposes CAPM betas into discount rate betas and cash flow betas. Following Campbell 

and Vuolteenaho (2004), Botshekan et al. (2012) construct a return decomposition 

distinguishing cash flow and discount rate betas in up and down markets. They find that for 

larger companies, the priced components of risks become more symmetric (both upside and 

downside market).  

In all of the above three approaches, the various beta estimates assume a continuous data 

generation process, while in fact the empirical papers in high frequency literature support the 

occurrence and persistence of jumps in the observed data generation process. A large body of 

literature has evolved to show both theoretically and empirically that jumps explain many of 

the dynamic features of stylized facts documented in asset prices. Studies on the stochastic 

behaviour of the stock market generally agree that stock returns are generated by a mixed 

process with a diffusion component and a jump component. If so, the standard CAPM beta is 

at best a ‘summary proxy’ for the systematic risk of a mixed-process, i.e. a weighted average 

of the diffusion component and the jump component. It would be prudent to be able to split the 

standard beta into two component betas so as to capture the two risks separately: one for 

continuous and small changes (diffusion beta) and the other for discrete and large changes 



60 

 

(jump beta) as in Chapter 2. In this light, Todorov and Bollerslev (2010) provide a new 

theoretical framework for disentangling and estimating the sensitivity towards systematic 

diffusive and jump risk in the context of factor models. They focus on the decomposition of 

systematic risk by recognizing the jump occurrence at aggregate market level and show that 

diffusion and jump betas with respect to aggregate market portfolio differ significantly and 

substantially. Furthermore, the use of high frequency data ensures that both betas are also time-

varying.  

The key insight in this paper is that, though the continuous returns and jump returns are 

orthogonal by the Todorov and Bollerslev (2010) decomposition, the three realised betas (i.e. 

standard, diffusion and jump betas) are neither restricted nor expected to be orthogonal. In fact, 

a simple correlation test indicates some dependencies. The rich cross-sectional and time–series 

heterogeneity in our estimates of monthly betas enable us to study how standard beta, diffusion 

beta and jump betas vary both across quantiles and over time. To explore the cross-sectional 

relationships of the betas over quantiles, we adopt a quantile regressions (QR) approach. By 

doing so, it is possible to model the relationship between standard betas and diffusion and jump 

betas not just for the mean of the conditional distribution, but also at various quantiles. While 

the classical linear regression only describes the conditional mean, the quantile regression 

method allows us to estimate the effects of diffusion beta and jump beta on standard beta (e.g. 

Koenker and Hallock (2001)).  

Our empirical investigations are based on high-frequency stock data of the 50 Japanese banks 

included in the Nikkei 225 index over the 2002-2012 sample period. We begin by estimating 

two separate betas; the diffusion and jump betas as well as a standard CAPM beta for each of 

the individual stocks on a monthly basis over the whole sample period. We rely on 5-minute 

intraday sampling frequency for the beta estimation, as a way to guard against the market 

microstructure complications that arise at the highest intraday sampling frequency. We regress 

the standard beta against  the diffusion and jump beta and we find that the quantile regression 

relations between standard beta and diffusion and jump beta varies widely depending on the 

quantile level of standard beta, where the quantile ranges from zero to one. 

We find that on average the standard beta is weighted more by the diffusion beta component 

then the jump beta component. The relationship holds across the quintiles. However, the actual 

magnitude of the weights differ across the quintiles. In general, the weights are jointly lower 
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for low standard betas until the pick around the 50th-75th quintiles with value dropping down 

again post 75th quantile.  

Sorting stocks based on the size, we find that large banks have high betas and small banks have 

low betas. The results holds for all the three betas; indicating that larger Japanese banks are 

more sensitive to market movements than smaller institutions, regardless of whether they occur 

through a jump or not. However, the ratios across the betas differ substantially. The ratios of 

large equity to small equity standard beta is 2.81 than the ratios of large equity diffusion beta 

over small equity diffusion beta is 5.81. On the other hand, the ratios of large equity to small 

equity jump beta is 1.16. Over and above this, a unique feature of small equity portfolio, is the 

jump-diffusion beta ratio, where the jump beta disproportionately is larger than its associated 

diffusion beta, indicating another layer of a possible size effect. 

This study also makes a comparison between the jump-diffusion model and the conventional 

CAPM. At the 50th quantile, the hypothesis that standard beta is the weighted average of jump 

beta and diffusion beta cannot be rejected at 10% significance level. All other quantiles have 

rejection at 1% significance level. Empirical findings from this study agree with the model is 

that the systematic risk of an asset is the weighted average of both diffusion and jump risk.  

The rest of the paper is organised as follows. In Section 3.2, we present our theoretical 

framework. Section 3.3 presents the methodology used in this study. Section 3.4 describes the 

data. The empirical analysis are present in Section 3.5. Section 3.6 describes the jump-diffusion 

model and the CAPM. Section 3.7 concludes the paper.  

3.2 Theoretical framework 

3.2.1 Capital asset pricing model 

The standard capital asset pricing model (CAPM) is formulated as follows: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖𝑡𝑟𝑚,𝑡 + 𝜀𝑖,𝑡                                                                                                                    (3.1) 

where 𝑟𝑖,𝑡 is the monthly excess stock return on stock i, and 𝑟𝑚,𝑡 is the aggregate excess market 

returns at time t;  𝛼𝑖 is the constant term for the asset i ; the error term 𝜀𝑖,𝑡  is the idiosyncratic 

risk of stock i, which is uncorrelated with 𝑟𝑚  or the idiosyncratic risk of any other stock under 

CAPM assumptions. The slope coefficient, 𝛽𝑖,𝑡 , in Equation (3.1), commonly known as the 

Standard Beta, is the systematic risk of asset i, and measures the responsiveness of the changes 
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in stock’s prices to changes in market prices. According to the CAPM, the equilibrium expected 

return on all risky assets are a function of the covaraiance with the market portfolio. 

The Standard Beta, in CAPM is defined as, 

 𝛽𝑖,𝑡 =  
𝐶𝑜𝑣(𝑟𝑖,𝑡𝑟𝑚,𝑡)

𝑉𝑎𝑟(𝑟𝑚,𝑡)
                                                                                                                              (3.2) 

The CAPM model basically depends on stock and market returns, which in turn, depends the 

underlying prices of individual stocks. It is now widely agreed in the literature that financial 

return volatilities and correlations are time-varying and returns follow the sum of a diffusion 

process and a jump process.26 

We consider that the log-price (𝑝𝑡) process of an asset at time t follows a continuous-time 

jump-diffusion process defined by the stochastic differential equation as follows:  

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝑞𝑡                                                                                                        (3.3)  

where 𝜇𝑡  is the instantaneous drift of price process and 𝜎𝑡  is the diffusion process; 𝑊𝑡  is 

standard Brownian motion. These first two terms correspond to the diffusion part of the total 

variation process. The diffusion part is responsible for the usual day-to-day price movement. 

These changes in stock prices may be due to variation in capitalization rates, a temporary 

imbalance between supply and demand, or the receipt of information which only marginally 

affects stock prices. The final term, 𝑘𝑡𝑑𝑞𝑡 refers to the jump component of the total process, 

where 𝑞𝑡  is a counting process such that 𝑑𝑞𝑡 = 1  indicates a jump at time t and 𝑑𝑞𝑡 = 0 

otherwise and 𝑘𝑡 is the size of jump at time t if a jump occurred. The jump part is due to the 

receipt of any important information that causes a more than marginal change (i.e. abnormal 

change) in the price of stock. The arrival of this kind on information is random and the number 

of such information arrivals is assumed to be distributed according to a Poisson process. If the 

return of stocks should be divided into jump part and diffusion part the risk associated with 

returns of securities should be decomposed into two parts also, as seen in Chapter 3.  

3.2.2 Decomposing systematic risk: diffusion and jump components 

Our framework motivating the different betas and the separate pricing of  diffusion and  jump 

market price risk relies on the theory originally developed by Todorov and Bollerslev (2010) 

for decomposing market returns into two components: one associated with  diffusion price 

                                                           
26 See, for example, Press (1967), Merton (1976), and Ball and Torous (1983) and among others. 
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movement and another associated with jumps. Hence in the presence of both components, 

equation (3.1) becomes:  

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖,𝑡
𝑐 𝑟𝑚,𝑡

𝑐 + 𝛽𝑖,𝑡
𝑗

𝑟𝑚,𝑡
𝑗

+ 𝜀𝑖,𝑡                                                                                                (3.4)  

where the total market return (𝑟𝑚,𝑡) is decomposed into the diffusion return (𝑟𝑚,𝑡
𝑐 )  and the 

discontinues (jump) market return (𝑟𝑚,𝑡
𝑗

).  Correspondingly, the systematic risk also comprises 

two components, diffusion beta (𝛽𝑖𝑡
𝑐 ), and jump beta (𝛽𝑖𝑡

𝑗
), which represents the sensitivities of 

ith asset return to 𝑟𝑚,𝑡
𝑐   and 𝑟𝑚,𝑡

𝑗
. If the systematic risks exposure of a firm to both diffusion and 

jump price movements are identical, i.e. 𝛽𝑖,𝑡
𝑐  =  𝛽𝑖,𝑡

𝑗
, equation (3.4) would be equivalent to 

equation (3.2). However, if, 𝛽𝑖,𝑡
𝑐  ≠  𝛽𝑖,𝑡 

𝑗
, the beta computed from equation (3.2)  may be used 

to identify the reactiveness of an asset return of the two components of systematic risk, denoted 

by 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 respectively.  

We have shown that market returns contain two components, both of which display substantial 

volatility and which are not highly correlated -with each other. This raises the possibility that 

different types of stocks may have different betas with two components of the market.  Chen 

(1996) shows that under the same assumption of CAPM, except the normality of asset returns, 

the jump-diffusion model takes two different types of beta when pricing the underlying asset. 

One is diffusion beta, which measures the systematic risk when no jumps occurs. The other is 

the jump beta, which measures the systematic risk when jumps take place in the market. In a 

similar form to that of CAPM, the jump-diffusion two beta model is as follows: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[(1 − ∅)𝛽𝑖,𝑡
𝑐 + ∅𝛽𝑖,𝑡

𝑗
] + 𝜀𝑖,𝑡                                                                                   (3.5) 

The left hand side of (4.5) is the monthly stock return on asset i. The right hand side of  (4.5) 

is weighted average of two betas: the diffusion beta, with a weight of (1 − ∅) and the jump 

beta, with a weight of ∅. 𝛽𝑖𝑡
𝑐  is the diffusion beta as defined by 𝛽𝑖,𝑡

𝑐 =  
𝐶𝑜𝑣(𝑟𝑖,𝑡𝑟𝑚,𝑡

𝑐 )

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑐 )

 ;       

 𝛽𝑖𝑡
𝑗
 is the jump beta  as defined by 𝛽𝑖,𝑡

𝑗
=  

𝐶𝑜𝑣(𝑟𝑖,𝑡𝑟𝑚,𝑡
𝑗

)

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑗

)
 . If there are no jumps in the market, 𝑘 =

0 which implies ∅ = 0, and equation (3.5) collapses to the conventional CAPM,  

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[𝛽𝑖,𝑡
𝑐 ] + 𝜀𝑖,𝑡                                                                                                             (3.5𝑎) 
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On the other hand, if asset returns are generated by a pure jump process, 𝜎2(𝑟𝑚) = 0 which 

implies∅ = 1, then equation (3.5) reduces to pure jump CAPM, 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[𝛽𝑖,𝑡
𝑗

] + 𝜀𝑖,𝑡                                                                                                              (3.5𝑏) 

Equation (3.5𝑎) and (3.5𝑏) are two special cases of equation (3.5), the jump-diffusion two-

beta asset pricing model.27 The two-way decomposition beta allows us to ask how individual 

equity prices respond to diffusion and jump market moves.  

3.3 Methodology 

In this paper we study the relationship between standard beta, diffusion beta and jump beta 

across Japanese banks, building on the analysis of the previous chapter. 

3.3.1  Realized beta 

Standard betas are not directly observable. The traditional way of addressing the estimation 

problem of betas has relied on using rolling linear regressions, typically requiring 5 years of 

monthly data to satisfy sample size requirements.28 However, the advent of readily available 

high frequency data in recent years, have now made it possible to compute realized betas over 

varying frequencies that can be used as proxies for standard betas.  

Realized beta is defined as the ratio of realized covariance of stock and market to the realized 

market variance. Andersen et al. (2005) argue that realized beta is a more accurate measurement 

of the standard beta because it employs more information than the traditional regression on 

monthly returns. 

The estimate of realized beta for individual stock, 𝛽̂𝑖,𝑡
𝑠  is defined as: 

𝛽̂𝑖,𝑡
𝑠 =

𝑅𝐶𝑂𝑉𝑖,𝑡,𝑠
𝑠

𝑅𝑉𝑚,𝑡,𝑠
𝑠 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠  𝑛
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2

 𝑛
𝑙=1

                                                                                               (3.6) 

Despite the numerous advantages of realized beta, it is important to note that equation (3.6) 

still defines the standard beta in a one-factor CAPM model.  

The same readily high frequency data that made possible the computation of the realized betas 

has also made possible the disentanglement of these realized betas into diffusion betas and 

                                                           
27 See, Chen (1996) for more details. 
28 see, e.g., the classical work by Fama and MacBeth (1973). 



65 

 

jump betas, thus effectively giving rise to a two-factor CAPM model for pricing assets which 

follow not only a diffusion process but also a jump process.  

3.3.2 Diffusion and jump betas 

We follow the procedure proposed by Todorov and Bollerslev (2010) to estimate the diffusion 

beta and jump beta for each individual stock. See section 2.2.2 in Chapter 2 from more details.  

3.4 Sample and data 

The sample and data section draw on the same data set described in Chapter 2, Section 2.3. 

3.5 Empirical results 

3.5.1 Betas 

Our main empirical results are based on monthly standard, diffusion and jump beta estimates 

for each of the stocks in the sample. We rely on fixed intraday sampling frequency of 5 minutes 

in our estimation of the standard, diffusion and jump betas, with the returns spanning 9.05am 

to 3.00pm. We compute the means and standard deviations of the time varying betas for period 

2003- 2012 and three sub periods (pre-crisis period, crisis period and post-crisis period) and 

present the results in Table 3.1. The statistics show that the jump beta has a higher mean of 

0.912 and volatility of 0.626, relative to the 0.501 and 0.280; and 0.324 and 0.309 estimated 

for standard betas and diffusion betas respectively for the sample period. The difference in 

means of diffusion beta and jump beta (0.65) are significant based on the pooled variance t-

tests. When we split the period into three sub periods: pre-crisis, crisis and post-crisis period, 

we see a clear contrast in the means and standard deviation between three betas. The standard, 

diffusion and jump betas are higher and more volatile in crisis period compared to pre-crisis 

and post-crisis period. 
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Table 3.1: Summary statistics for standard, diffusion and jump betas. 
 

          

  Standard Beta Diffusion Beta Jump Beta   

Full-sample Period         

Mean 0.501 0.280 0.912   

Std.Dev 0.324 0.309 0.626   

t-test of difference   -0.649***     

Pre-crisis Period         

Mean 0.390 0.223 0.759   

Std.Dev 0.276 0.276 0.572   

t-test of difference   -0.557***     

Crisis Period         

Mean 0.702 0.452 1.095   

Std.Dev 0.342 0.321 0.746   

t-test of difference   -0.647***     

Post-crisis Period         

Mean 0.548 0.248 1.042   

Std.Dev 0.306 0.308 0.552   

t-test of difference   -0.819***     

Note: The table summarizes the time varying betas estimated using the Jump-Diffusion CAPM model. The statistics include 

mean and standard deviations (in parentheses) for the full sample periods and three sub-periods. We include the pooled 

variance t-test of the difference between the two sample means for the standard beta, diffusion beta and jump beta. Asterisks 

*, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

 

To get a sense of what the relationship across the different betas looks like, Figure 3.1 plots the 

kernel density estimates of the unconditional distributions of the three different betas averaged 

across time and stocks. The jump betas tend to be somewhat higher on average and also more 

right skewed than the diffusion and standard betas. At the same time, the figure also suggests 

that the diffusion betas are the least dispersed of the three betas across time and stocks. Part of 

the dispersion in the betas could be attributed to estimation errors.29 

In order to visualize the temporal and cross-sectional variation in different betas, Figure 3.2 

shows that the time series of equally weighted portfolio betas, based on monthly quintile sorts 

for each of the three different betas and all of the individual stocks in the sample. The figure 

suggests that the variation in the standard beta and diffusion beta sorted portfolios in Panel A 

and B are clearly fairly close, as would be expected. The plots for the jump beta quintle 

portfolios in Panel C, are distinctly different and more dispersed than the standard and diffusion 

                                                           
29 Based on the expressions derived in Todorov and Bollerslev (2010), Bollerslev et al. (2015) report that the 

asymptotic standard errors for diffusion and jump betas averaged across all of the stocks and months in the sample 

equal 0.06 and 0.12, respectively, compared with 0.14 for the conventional OLS- based standard errors for the 

standard beta estimates. 
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betas quintile portfolios. Jump beta is significantly different from diffusion and standard beta. 

Motivated by these above findings and in order to shed light on this issue in the face of the 

significant heterogeneity observed across the Japanese banking sector, we depart from the 

previous literature and employ quantile regression analysis to estimate the relationship between 

standard, diffusion and jump betas. 

Overall, our estimates shows that there is interesting variation across assets and across time in 

the two components of the market beta. Consistent with Chapter 3, we confirm that stocks have 

higher jump betas than diffusion betas. 

Figure 3:1: Distributions of betas 
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Note: The figure displays kernel density estimates of the unconditional distributions of the three different betas averaged 

across firms and time. 
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Figure 3:2: Time series plots of betas 
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Note: The figure displays the time series of betas for equally weighted beta-sorted quintiles portfolios. Panel A shows the 

result for the standard beta sorted portfolios, Panel B the diffusion beta sorted portfolios and Panel C the jump beta sorted 

portfolios.  

Panel (B): Diffusion beta 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2002 2004 2006 2008 2010 2012

High quintile 4th quintile

3rd quintile 2nd quintile

Low quintile

C
o
n
ti
n
u
o
u
s
 B

e
ta

 

 

 



69 

 

Panel (C): Jump beta 
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3.5.2 Quantile regression model 

An ordinary least squares determines the average relation between the dependent and a set of 

relevant explanatory variable. It focuses on the estimation of the conditional mean, whereas a 

quantile regression (QR) model allows us to estimate the relationship between a dependent and 

independent variables at specific quantiles.  Moreover, it is well know that quantile regression 

is robust to heteroskedasticity, skewness and leptokurtosis, which are the features of financial 

data (Koenker and Xiao 2006). Thus, quantile regression methodology provides a better picture 

in testing how the relationship between diffusion and jump betas vary across quantiles of the 

conditional distribution. 

The quantile regression approach has been widely used in many areas of applied economics 

and econometrics such as the investigation of wage structure (Buchinsky 1994) earnings 

mobility (Trede 1998; Eide and Showalter 1999), and educational quality issues (Eide and 

Showalter 1998; Levin 2001). There is also growing interest in employing quantile regression 

methods in the financial literature. Applications in this field include work on Value at Risk 

(Taylor 1999; Chernozhukov and Umantsev 2001; Engle and Manganelli 2004), option pricing 

(Morillo 2000), and the analysis of the cross section of stock market returns (Barnes and 
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Hughes, 2002), return distributions (Allen et al. 2013), mutual fund investment styles (Bassett 

Jr and Chen 2002), the investigation of hedge fund strategies (Meligkotsidou et al. 2009), the 

return- volume relation in the stock market  (Chuang et al. 2009), and the diversification and 

firm  performance relation  (Lee and Li 2012). Following this line of thought, a QR technique 

developed by Koenker and Bassett Jr (1978) is used in this study to examine the relationship 

between the standard beta, diffusion beta and jump beta.  

The quantile regression takes the following form 

𝑦𝑖 =  𝑥′
𝑖𝑏

𝜏 + 𝜀𝑖  
𝜏                                                                                                                                   (3.7) 

where 𝑦𝑖  is the dependent variable of interest and 𝑥𝑖  the vector of predictor variables. The 

parameter vector 𝑏𝜏 is associated with the 𝜏-quantile while 𝜀𝑖  
𝜏 is the error term, allowed to have 

a different distribution across quantiles. Note that the local effect of 𝑥𝑖  on the 𝜏-quantile is 

assumed to be linear. The slope coefficient vector 𝑏𝜏 differs across quantiles and the estimator 

for 𝑏𝜏is obtained from 

𝑚𝑖𝑛 ∑ 𝜏 × |𝜀𝑖  
𝜏 | + ∑ (1 − 𝜏) × |𝜀𝑖  

𝜏 |

𝑖:𝜀𝑖  
𝜏 <0𝑖:𝜀𝑖  

𝜏 >0

=  ∑ 𝜏 × |𝑦𝑖 − 𝑥′
𝑖𝑏𝜏| + ∑ (1 − 𝜏) ×  |𝑦𝑖 − 𝑥′

𝑖𝑏𝜏|

𝑖:𝑦𝑖−𝑥′
𝑖𝛽𝜏<0𝑖:𝑦𝑖−𝑥′

𝑖𝛽𝜏≥0

         (3.8) 

The quantile function is estimated by minimizing a weighted sum of absolute residuals, where 

the weights are functions of the quantiles of interest. The coefficient estimates are computed 

using linear programing methods. For more details, see, Koenker (2005). For 𝜏 = 0.5, i.e., the 

conditional median of 𝑥, the problem collapses to the well known least absolute deviation 

(LAD) estimation. The value of 𝑏 can be obtained using linear programming algorithms and 

standard errors can be bootstrapped. We conduct the minimization procedure at quantiles of 

𝜏 =  0.05, 0.25, 0.50, 0.75, 0.95 and thus obtain a full picture of the relationship between 

dependent and independent variables across the whole distribution of the former, not just for 

its mean value.  

3.5.3 Quantile regression analysis 

As a preliminary exercise, we first explore what OLS regressions say about the relationships 

of the three beta across Japanese banks. Table 3.2 presents the results from OLS regressions to 

explain the cross-sectional and time series variation in the standard betas as a function of the 
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variation in the two other betas, diffusion and jump betas. Model (1) in Table 3.2 shows that 

the diffusion beta exhibits the highest explanatory power for standard beta, with an average 

adjusted R-squared of 0.64. To get an impression of the contribution of jump betas, we include 

model (2). The jump beta explain 48% variation in standard beta. When we add the diffusion 

beta and jump beta as in model (3), we see that altogether, 80 % of the variation in standard 

beta may be accounted for by the high frequency betas, with diffusion beta having by far largest 

and most significant effect. It is also noted that the OLS regression results is consistent with 

our earlier results in Figures 3.1 and 3.2. 

Table 3.2: The relationship between standard, diffusion and jump betas across Japanese banks 
 

Dependent Variable=Standard Beta       

  (1) (2) (3) 

Diffusion Beta 0.874***   0.678*** 

  (0.029)   (0.027) 

Jump Beta   0.362*** 0.229*** 

    (0.022) (0.011) 

Constant 0.257*** 0.164*** 0.107*** 

  (0.013) (0.015) (0.008) 

R-squared 0.64 0.48 0.80 

Note: Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance 

at 10%, 5%, and 1% levels, respectively. 
 

However, it should be noted that the OLS estimator focuses only on the central tendency of 

distributions. Therefore, they do not allow us to examine the relationship between the three 

betas in non-central regions. A quantile regression offers more information as it looks at 

whether coefficients change significantly across quantiles. To help further gauge this relations, 

the QR analysis used in this paper to investigate how the standard, diffusion and jump betas 

are related to each other at their various quantiles.30 

The quantile regression procedures yields a series of quantile coefficients, one for each sample 

quantile. We may thus test whether standard beta respond differently to changes in the 

regression depending on whether the bank is in the left tail of distribution (low risk bank) or in 

                                                           
30 We proceed to examine the relations relationship between standard beta, diffusion beta and jump beta across 

Japanese bank using the following quantile regression model: 

Q(τ)βs  (βs

i,t
) = a0(τ) + b1(τ)βc

i,t
+ b2(τ)β

j

i,t
+ εi,t                                                                  

The variable of primary interest is the coefficient of diffusion and jump betas on the standard betas. The slopes of 

the regressors are estimated at five different quantiles τ −the 5th, 25th, 50th, 75th, 95th- using the same set of 

explanatory variables for each quantile. 
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the right tail of the distribution (high risk bank). In Table 3.3, we present the parameter 

estimates for selected quantiles ranging from 0.05 to 0.95. A closer look at the individual 

conditional quantiles reveals that the relation between standard, diffusion and jump betas 

changes in magnitude across the distribution quantiles. For example, while the response rate 

for diffusion beta and jump beta at the 5th quantile are, respectively, 0.55 and 0.16, at the 

median they are 0.71 and 0.28, and at the 95th quantile they are 0.68 and 0.22. All coefficients 

are strongly statistically different from zero. Additionally, our results show that the conditional 

mean approach is also misleading in terms of goodness-of-fit. While the R-squared of 0.80 of 

the conditional mean would suggest that the convariates are relatively successful at explaining 

the variation in standard beta, the quantile regressions show that while this is true for high-risk 

firms (for example, the pseudo R-squared at the 75th quantile is 0.60), for low-risks firms the 

empirical variables have much less explanatory power (for example, the pseudo R-squared at 

the 5th quantile is 0.48). This indicates that high risk firms are more sensitive to diffusion risks 

than the jump risks compared with low risk firms. 

In order to check the significance of the differences with regard to the coefficients of diffusion 

beta and jump beta across different quantiles, this study employs a bootstrap procedure 

extended to construct a joint distribution to test various pairs of quantiles (Chuang et al. 2009).  

Table 3.4 presents the F-test results for the null hypothesis of equal slopes across quantiles to 

formally test whether the slopes of explanatory variables change across quantiles. These results 

indicate that the coefficients are significantly different from each other between all quantiles. 

Further, we observe that there are significant differences between the coefficient of 5th quantile 

and 95th quantile, supporting the notion that at low and high of standard betas within the 

Japanese banking sector the relationships between standard, diffusion and jumps betas differ 

significantly. More importantly our results indicate that the relationship may be far more 

complicated than can be described using least-squares regression. Indeed, the relationships 

between standard betas, diffusion betas and jump betas for Japanese banking stock may be non-

linear across quantiles and the relationships at tail quantiles may be quite different from those 

at middle quantiles and at the mean. 
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Table 3.3: The relationship between standard beta, diffusion beta and jump beta different 

quantiles 
 

Dependent Variable= Standard Beta       

  5th quant 25th quant 50th quant 75th quant 95th quant 

Diffusion Beta 0.555*** 0.689*** 0.709*** 0.684*** 0.677*** 

  (0.025) (0.012) (0.010) (0.012) (0.028) 

Jump Beta 0.157*** 0.245*** 0.281*** 0.291*** 0.222*** 

  (0.006) (0.004) (0.006) (0.010) (0.018) 

Constant -7.77e-16 -3.28e-15 0.0410*** 0.120*** 0.376*** 

  (0.003) (0.000) (0.005) (0.008) (0.018) 

Pseudo R-squared 0.48 0.58 0.61 0.60 0.53 

Note: Standard errors are displayed in parentheses below the coefficients. Standard errors are obtained by bootstrapping 

with 100 replications. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 
 

Table 3.4: Post estimation linear hypothesis testing 
 

H0: Test whether diffusion beta and Jump beta coefficients are equal  across different quantiles 

H0: Q5=Q25 F(  2,  5401) =214.87***     

  Prob > F = 0.0000     

H0: Q25=Q50 F(  2,  5401) = 48.98***     

  Prob > F = 0.0000     

H0: Q50=Q75 F(  2,  5401) = 3.18**     

  Prob > F = 0.0417     

H0: Q75=Q95 F(  2,  5401) = 10.92***     

  Prob > F = 0.0000     

H0: Q05=Q95  F(  2,  5401) = 22.42***     

  Prob > F = 0.0000     

H0: Q25=Q75 F(  2,  5401) = 23.40***     

  Prob > F =  0.0000     

Note: The table presents F-test for testing whether coefficients between different quantile are equal. Quantiles have been 

estimated by simultaneous regression analysis. Standard errors were obtained by bootstrapping with 100 replications. 

Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

 

 

Figure 3.3 graphically shows how the beta values vary across quantiles. The figure depicts 

point estimates of the slope of explanatory variable along with a 95% pointwise confidence 

band. The vertical axis measures the magnitude of the coefficient, and the horizontal axis 

measures the quantiles. The horizontal axis lists quantiles running from 0.05 through 0.95. 

If the assumptions for the standard linear regression model hold, the quantile slope estimates 

should fluctuate randomly around a constant level, with only the intercept parameters 

systematically increasing with 𝜏. However, none of the slope estimates of the variables could 
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be described as random fluctuations here. In fact, the quantile slope estimates of the variables 

such as diffusion beta jump beta follow a systematic pattern with low values in the left tail and 

high values in the right tail. These two variables are significant in the tail parts of the 

distribution, but have little impact in the middle. It is apparent that the slope of regression 

changes across the quantiles and is clearly not constant, as presumed in OLS. The results 

indicate that on average the jump betas for a quantile are higher than the corresponding 

diffusion betas. However, companies with low quantile standard betas are less sensitive to 

market jumps as compared to companies with high quantile standard betas.  

Figure 3:3: Quantile plot of estimated slopes and 95% confidence interval 
 

 
Note: The solid line gives the coefficients of diffusion beta estimates from the quintile regression, with the shaded grey area 

depicting a 95% confidence interval. The dashed line gives the OLS estimate of mean effect, with two dotted lines again 

representing a 95% confidence interval for this coefficient.  

 
 

Figure 3.4 shows the scatter plots of the monthly standard betas versus diffusion betas and 

monthly standard beta versus jump betas for quantile regressions for quantiles= 0.05, 0.25, 0.50, 

0.75 and 0.95 respectively. The scatter plot in panel A of Figure 3.4 suggests heteroskedasticity 

in the dataset, given that the dispersion of results seems to somewhat smaller in the middle of 

the distribution. The estimated fit lines for the 5th, 50th, 95th quantiles shown in the panel A, 
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indicate that for firms which are relatively risky in terms of standard beta- in other words, firms 

to the right of the distribution – the diffusion beta to the 5th and 95th quantiles are not very 

different. But unlike the case of panel B, the gap between the 5th and 95th quantiles is higher on 

the right side of the graph; in other words, amongst those firms the jump beta to the 5th and 95th 

quantiles are quite different. It indicates that when the distribution reaches extremes, the 

diffusion betas and jump betas behave differently from those in or around median observation. 

The general conclusion that can be drawn is that there exists a wide disparity in behaviour 

between high risk firms and low risk firms that may be receiving diffusion and jump shocks, 

and that such behaviour differs for high risk firms as opposed to low risk firms. The quantile 

regression technique provides considerable insight that cannot be obtained by using standard 

regression techniques. The differences in information content of the betas also manifest in 

different relations with underlying diffusion and discontinuous price variation. 

Figure 3:4: Scatterplot of Betas across different quantiles 

Panel A: Standard beta and diffusion beta 
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Panel B: Standard beta and jump beta 

 

3.5.4 Size-sorted portfolios 

It is often implicitly assumed that small and large banks behave differently. To control further 

for possible size effects, we test the relationship between standard beta, diffusion beta and jump 

beta using 5 subsamples constructed by sorting the data with respect to size. Tables 3.5 and 3.6 

report results for portfolios sorted on stock size, where the portfolios are rebalanced each year. 

Banks are grouped into five benchmark portfolios ranked by size, based on market 

capitalization at the end of each year t. Portfolio 1 includes the smallest banks in the group and 

portfolio 5 includes largest banks in the sample. Table 3.4 shows a clear effect of size on the 

estimated coefficient for the jump-diffusion model. The diffusion beta coefficient is lower for 

the largest quintiles and the decline is statistically significant. For the jump beta, the decrease 

for large-cap companies is much less strong, although also statistically significant. We apply a 

quantile regression methodology in Table 3.6 to estimate the relationship between different 

betas and we obtain the same results as those from Table 3.5.  

Comparing the relative magnitude of the different coefficients, we see that for small companies 

jump components are the dominant ingredients. For large companies, however, it is 

predominantly the diffusion component.  The results lead us to conclude that the jump risk is 
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much more relevant for small companies than diffusion risk. If well-established companies are 

considered, a much more symmetric notion of stock market risk appears to apply, mainly 

relating to diffusion risk rather than to jump risk. 

Table 3.5: The relationship between standard beta, diffusion beta and jump beta across for 

size-sorted stock portfolios 

 

Dependent Variable= Standard Beta 

  Small 2 3 4 Big 

Diffusion Beta 0.600*** 0.685*** 0.740*** 0.469*** 0.573*** 

  (0.043) (0.066) (0.047) (0.063) (0.026) 

Jump Beta 0.192*** 0.199*** 0.215*** 0.271*** 0.203*** 

  (0.015) (0.018) (0.021) (0.020) (0.016) 

Constant 0.103*** 0.112*** 0.107*** 0.161*** 0.242*** 

  (0.013) (0.012) (0.013) (0.026) (0.019) 

R-squared 0.67 0.71 0.79 0.70 0.73 

Note: Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance 

at 10%, 5%, and 1% levels, respectively. 

 

Table 3.6: The relationship between standard beta, diffusion beta and jump beta across 

different quantiles for size-sorted stock portfolios 

Dependent Variable= Standard Beta 

  5th quant 25th quant 50th quant 75th quant 95th quant 

  Small 

Diffusion Beta 0.329*** 0.510*** 0.632*** 0.638*** 0.665*** 

  (0.049) (0.042) (0.049) (0.032) (0.052) 

Jump Beta 0.170*** 0.195*** 0.224*** 0.225*** 0.185*** 

  (0.012) (0.010) (0.013) (0.019) (0.036) 

Constant -0.019** 0.029*** 0.064*** 0.133*** 0.308*** 

  (0.009) (0.006) (0.009) (0.015) (0.036) 

Pesudo R-squared 0.39 0.40 0.42 0.44 0.45 

  2 

Diffusion Beta 0.498*** 0.624*** 0.638*** 0.717*** 0.656*** 

  (0.048) (0.053) (0.042) (0.035) (0.044) 

Jump Beta 0.142*** 0.205*** 0.248*** 0.259*** 0.192*** 

  (0.015) (0.012) (0.010) (0.019) (0.032) 

Constant 0.006 0.030*** 0.063*** 0.122*** 0.354*** 

  (0.005) (0.005) (0.006) (0.014) (0.029) 

Pesudo R-squared 0.40 0.47 0.50 0.49 0.47 

  3 

Diffusion Beta 0.558*** 0.690*** 0.762*** 0.736*** 0.760*** 

  (0.064) (0.045) (0.031) (0.030) (0.047) 

Jump Beta 0.157*** 0.223*** 0.244*** 0.262*** 0.209*** 
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  (0.017) (0.017) (0.012) (0.020) (0.026) 

Constant -0.006 0.022** 0.071*** 0.141*** 0.357*** 

  (0.008) (0.011) (0.008) (0.015) (0.021) 

Pesudo R-squared 0.45 0.51 0.56 0.57 0.56 

  4 

Diffusion Beta 0.265*** 0.463*** 0.540*** 0.524*** 0.512*** 

  (0.060) (0.040) (0.027) (0.026) (0.053) 

Jump Beta 0.213*** 0.276*** 0.316*** 0.339*** 0.292*** 

  (0.025) (0.016) (0.016) (0.026) (0.034) 

Constant 0.040*** 0.058*** 0.081*** 0.163*** 0.397*** 

  (0.014) (0.011) (0.013) (0.024) (0.041) 

Pseudo R-squared 0.38 0.47 0.48 0.49 0.49 

  Big 

Diffusion Beta 0.630*** 0.591*** 0.590*** 0.570*** 0.540*** 

  (0.043) (0.033) (0.022) (0.031) (0.048) 

Jump Beta 0.170*** 0.257*** 0.260*** 0.225*** 0.170*** 

  (0.027) (0.028) (0.021) (0.024) (0.025) 

Constant -3.33e-16 0.081** 0.158*** 0.296*** 0.563*** 

  (0.002) (0.033) (0.021) (0.028) (0.038) 

Pseudo R-squared 0.54 0.52 0.50 0.48 0.45 

Note: Regression results between standard beta, diffusion beta and jump beta across different quantiles. Standard errors 

are displayed in parentheses below the coefficients. Standard errors are obtained by bootstrapping with 100 replications. 

Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 

3.5.5 Size effect on betas 

The effect of size on bank systematic risk is debated. Demsetz and Strahan (1997) find that 

large banks are internally diversified and this provides one means of reducing bank systematic 

risk. However, Saunders et al. (1990) and Anderson and Fraser (2000) find that large banks 

with greater sensitivity to the general market movements than small banks leading to a positive 

relation between bank systematic risk and size. Therefore, it is important to recognize that there 

is an association between size and different betas. We test if the time varying betas are related 

to the size portfolios. Table 3.7 presents the mean and standard deviations of the standard, 

diffusion and jump betas for the small and large portfolios. We report the t-statistics for the test 

of the hypothesis that the difference between small and large is zero. We find that in all cases 

there is negative and statistically different between the betas of small and large banks indicating 

that large banks react more severely than small banks. The results support that larger Japanese 

banks are more sensitive to market movements than smaller institutions, regardless of whether 

they occur through a jump or not
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Table 3.7: Characteristics of time varying betas 
 

    Large equity portfolio   Small equity portfolio 

    Standard Beta Diffusion Beta Jump Beta   Standard Beta Diffusion Beta Jump Beta 

Full-sample Period                 

Mean   0.814 0.576 1.165   0.290 0.099 0.707 

Std.Dev   0.282 0.319 0.630   0.203 0.173 0.595 

t-test of difference    -0.524*** -0.478*** -0.457***         

Pre-crisis Period                 

Mean   0.720 0.528 1.080   0.159 0.036 0.443 

Std.Dev   0.252 0.300 0.508   0.109 0.101 0.513 

t-test of difference   -0.561*** -0.492*** -0.637***         

Crisis Period                 

Mean   0.988 0.752 1.251   0.438 0.226 0.868 

Std.Dev   0.266 0.254 0.955   0.230 0.211 0.712 

t-test of difference   -0.550*** -0.526*** -0.382***         

Post-crisis Period                 

Mean   0.888 0.527 1.306   0.316 0.073 0.830 

Std.Dev   0.267 0.363 0.449   0.181 0.152 0.516 

t-test of difference   -0.572*** -0.454*** -0.476***         

Note: The time varying betas estimated using the Jump-Diffusion CAPM model. Statistics include mean and standard deviations (in parentheses) are summarized by the full sample periods 

and three sub-periods. We report time varying betas for two size-sorted equity portfolios (large size equity beta portfolio, and small size equity beta portfolio). We include the pooled variance 

t-test of the difference between the two sample means for the Standard Beta, Diffusion Beta and Jump Beta and also the size-sorted equity portfolio. Asterisks *, **, and *** indicate significance 

at 10%, 5%, and 1% levels, respectively. 
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A notable point is that although betas for large firms are larger than the small firms, for large 

equity portfolios, the jump-diffusion beta ratio is lower than the jump-diffusion beta ratio of 

the small equity portfolio. The means for small equities, the influence of jump beta is 

proportionately much larger compared with large equity portfolios. This is further corroborated 

by the larger magnitude of the constants for large portfolios than small portfolios (see Table 

3.5 and 3.6). Small portfolios equities are more sensitive to large surprises than the large 

portfolio equities. The explanation for this phenomenon is that small bank equities are riskier 

than large bank equities because less information is available about the former than about the 

latter. Therefore, small bank portfolios react more severely to surprises than do the large bank 

portfolios. Reinganum and Smith (1983) have pointed out that for this differential information 

explanation to hold, the additional risk caused by the relative lack of information must not be 

idiosyncratic. That is, the lack of information must be a source risk that cannot be diversified 

away. 

3.6 Difference between the jump-diffusion model and the CAPM 

How distinct is the jump-diffusion model from the conventional CAPM? Existing tests on 

model specification find in favour of jump-diffusion model. However, here we formally test 

whether jump-diffusion model is related to the CAPM. Since the jump diffusion model can be 

written as  

𝑟𝑖,𝑡 = 𝑟𝑚,𝑡[(1 − ∅)𝛽𝑖,𝑡
𝑐 + ∅𝛽𝑖,𝑡

𝑗
]                                                                                                        (3.9) 

Equation (3.9) can be used to construct a test based on whether the beta in the conventional 

CAPM is the weighted average of the jump beta and diffusion beta in the jump diffusion model. 

The hypothesis therefore is 

𝐻0: 𝛽𝑖,𝑡
𝑆 = [(1 − ∅)𝛽𝑖,𝑡

𝑐 + ∅𝛽𝑖,𝑡
𝑗

]                                                                                                     (3.10) 

The hypothesis can be tested with the following regression model 

𝛽𝑖,𝑡
𝑆 = 𝑐0 +  𝑐1𝛽𝑖,𝑡

𝑐  + 𝑐2𝛽𝑖,𝑡
𝑗

+ ∈𝑖,𝑡                                                                                                 (3.11) 

The testable hypothesis is  

𝑐1 +  𝑐2 = 1                                                                                                                                       (3.12) 
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Table 3.8: Testing distinction between the jump-diffusion model and the CAPM 
 

H0: Test whether the beta in conventional CAPM is the average of diffusion beta and jump beta in the jump-diffusion model 

H0: C1+C2=1                   

Panel A: Individual Stocks                   

  OLS 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 18.63*** 172.21*** 47.85*** 1.71 8.5** 18.07***       

P-value 0.000 0.000 0.000 0.192 0.004 0.000       

                    

Panel B: Portfolios                   

  OLS 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  17.77*** 91.04*** 29.56*** 8.82*** 21.77*** 8.45***       

  0.001 0.000 0.000 0.003 0.000 0.004       

2 3.69 67.95*** 11.08*** 7.82*** 0.78 18.94***       

  0.065 0.000 0.001 0.005 0.379 0.000       

3 1.55 23.2*** 6.63*** 0.05 0.00 0.82       

  0.225 0.000 0.010 0.827 0.960 0.364       

4 14.8*** 63.99*** 56.38*** 38.84*** 27.01*** 8.59***       

  0.001 0.000 0.000 0.000 0.000 0.004       

High 114.88*** 74.26*** 20.38*** 49.41*** 64.65*** 37.35***       

  0.000 0.000 0.000 0.000 0.000 0.000       

Note: The table presents F-test for testing whether the beta in the conventional CAPM is the weighted average of the jump beta and diffusion beta in the jump-Diffusion model. Asterisks *, **, 

and *** indicate significance at 10%, 5%, and 1% levels, respectively. 
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In Table 3.8, we report the results of the F-test for whether the systematic risk is a weighted 

average of diffusion and jump betas. In Panels A and B of Table 3.8, the F-tests do not reject 

the hypothesis in the conditional median distribution that the conventional CAPM is a weighted 

average of diffusion and jump betas. Our empirical findings agree with the model in that on 

average the systematic risk on an asset is the weighted average of both jump and diffusion betas. 

3.7 Conclusion 

In this chapter, we applied a novel method based on categorising a security’s systematic risk 

into two components, the diffusion beta and the jump beta to evaluate empirically whether 

there is relationship between standard beta, diffusion beta and jump beta across different banks 

and how these different betas behave across different banks. We employ a quantile regression 

model to investigate a more complex relationships with high frequency data.  

Through a decomposition of the simple CAPM beta into two components (diffusion beta and 

jump beta) we show that we can increase our understanding of the types of risk that investors 

need to be compensated. Using the high-frequency data of the Japanese banks for the years of 

2001-2012, we find that the relation between standard, diffusion and jump betas changes in 

magnitude across the distribution quantiles. More importantly, we find that standard beta is 

affected more by the diffusion beta than the jump beta, although the actual magnitude of the 

weights differ significantly across the quintiles. The relationship holds for both individual 

stocks and various test portfolios.  

Empirical studies have shown that betas vary systematically for large and small firm equities. 

We provide some additional insights into the precise way in how the bank betas are related to 

size. A close look at our results indicates that on average large banks have large betas whereas 

small banks have small betas i.e. larger Japanese banks are more sensitive to both market 

movements than smaller institutions, regardless of whether they occur through a jump or not. 

However, the paper demonstrated that portfolios based on firm size exhibit the jump-diffusion 

beta ratio of small portfolio equities, the jump beta disproportionately is larger than its 

associated diffusion beta, indicating a possible size effect. The result suggests that information 

asymmetry could be more severe for small banks than large bank; accordingly, the systematic 

exposure of bank could be quite different for large banks than small banks. 
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In addition to analysing the behaviour of betas at different quantiles, this study makes a 

comparison between the jump-diffusion model and the conventional CAPM. Our test results 

shows that the systematic risk is equal to the weighted average of diffusion risk and jump risk, 

confirming the validly of our analysis. 
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Chapter 4  

Links between Trading Volume, Beta 

Changes and Price changes-Evidence from 

the Japanese Banking sector 

 

 

 

4.1 Introduction 

Beta, as the sole measure of systematic risk according to the Capital Asset Pricing Model 

(CAPM), is one of the cornerstones of modern finance. Financial researchers as well as market 

participants rely on the beta coefficient to estimate cost of capital for capital budgeting and also 

to evaluate the performance of managers. The beta of a security represents the asset’s 

sensitivity to movements in the market and is defined as the co-variance of the stock returns 

with the market returns. Beta, in the past has been generally assumed to be constant over time 

for quick and easy estimation.  

However, it is currently considered an empirical fact that beta of a stock or portfolio is time 

varying and hence not constant (Bollerslev et al. 1988; Fabozzi and Francis 1978). A sizeable 

literature demonstrate that because market fundamentals are time varying Shiller et al. (1984), 

Lettau and Ludvigson (2001)), stock and portfolio betas change over time (see e.g. Bollerslev 

et al. (1988), Lettau and Ludvigson (2001)). Hence, time-varying beta is one definite source of 

beta uncertainty. The other source of beta uncertainty stems from estimation errors due to in 

the error in the estimates of security betas resulting from ‘the inappropriate use of chronological 

time as an index in the return computation’ (see (Carpenter and Upton 1981)). Using trading 

volume as an instrumental variable to index the speed of evolution of the return generation 

process, Carpenter and Upton (1981) find that trading volume has a significant influence on 
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the estimated betas. The intuition is that high volumes indicate that the operational trading time 

is passing more rapidly than the chronological trading time and low volumes indicate that 

operational time is passing at a slower pace than the chronological time. This means that, for a 

fixed chronological period, high volumes imply the passage of comparatively more operational 

time (a longer operational time “period”). The same fixed chronological period with low 

volumes imply the passage of comparatively less operational time (a shorter operational time 

“period”). Hence, to the extent the market return proxy is incorrectly specified (i.e. as 

chronological time and not as operational time), the ensuring beta estimates will be less 

accurate and hence more uncertain. The result of this reduced accuracy will be a wider standard 

deviation for the distribution in beta estimates over time conditional on trading volume. 

The estimation error is a direct consequence of the speed of information flow i.e. the speed in 

‘the processing of information about the effect of systematic news on firm value’ (see Gilbert 

et al. (2014)). High volumes imply fast dissemination of information and low volumes imply a 

slow dissemination of information. Moreover,  Blume et al. (1994) argue that volume provide 

information on the precision and dispersion of information signals to market that cannot be 

observed from price alone.  

This chapter investigates the linkages between beta changes and trading volume for Japanese 

banks stocks on the Tokyo stock exchange (TSE). An investigation of the TSE is of interest for 

two main reasons. First, the evidence on links between beta changes-volume (and price 

changes-volume) relationship is mainly from the US market; see, for example, Ciner (2015). 

However, as to whether the findings for the US market can be generalized to other markets, 

with a different microstructure, is an unresolved question. Second, the Japanese capital market 

is unique because the institutional setup of the Tokyo Stock Exchange (TSE) is significantly 

different from the commonly analyzed US equity exchange, including lunch breaks, with a 

batched trading process, Itayose, used to clear orders at the start of each trading session, 

followed by a continuous auction. Zaraba for the rest of the session. The actual trading on the 

exchange is done by specialized security houses, i.e. Saitori members who are responsible for 

matching the orders without taking positions themselves. For more details, see, Amihud and 

Mendelson (1991), Lehmann and Modest (1994), Hamao and Hasbrouck (1995), and Andersen 

et al. (2000).  
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The empirical analysis begins with an examination of the relationship between monthly trading 

volume and changes in betas. Our main empirical results are based on monthly standard, 

diffusion and jump beta estimates for each of the stocks in the sample.31 We study the linkages 

between trading volume and beta changes (and price changes) using quantile regressions in 

addition to the conventional ordinary least squares (OLS). While the classic linear regression 

model only describes the conditional mean, the quantile regression describes the complete 

picture of the conditional distribution of the dependent variable. The quantile regression has 

thus the potential to uncover asymmetric relations, if any, between the variables exhibited at 

the extremities of the distribution. 

Using high frequency Japanese banks stock data from 2001–2012, we find that there is a 

statistically significant relation between trading volume and changes in betas.32 Despite the 

OLS conditional regression suggesting a homogeneous relation between volume and changes 

in standard, diffusion and jump betas, there are strong evidences of an asymmetric beta-volume 

relation from the quantiles regression. We find a positive relation between trading volume and 

changes in diffusion betas at lower quantiles while a negative beta-volume relation is found at 

higher quantiles. The same findings also hold for the relation between trading volume and 

changes in jump beta. Similarly to Carpenter and Upton (1981), we also find that trading 

volume does have an effect on the estimated betas. We also document the relationship between 

volume and changes in standard betas from lower quantiles to upper quantiles. The delta beta-

volume relationship is asymmetrical with the lower quantiles being less positively sloped and 

the upper quantiles being very negatively sloped. The asymmetrical beta-volume relationship 

across the standard betas implies that the relation is fundamentally different for changes in 

standard beta, as when compared to diffusion beta or the jump beta.  

Since the systematic risk, beta, is a function of price-changes (according to the CAPM), we 

also examine whether the observed non-linear linkages between beta and volume are 

analogously mirrored by the price and volume relationship. In this context, Llorente et al. (2002) 

have proposed a likely model to explain the relation between volume and price changes. The 

underlying intuition of their model is that market participants trade in the stock market either 

                                                           
31 Our empirical results are based on diffusion, jump and standard betas estimated from high-frequency data for 

each of the individual stock in the sample.  Estimates for diffusion, Jump and standard betas are computed on a 

month-by-month basis. High frequency data permits the use of 1-month non-overlapping windows to analyse the 

dynamics of our systematic risk estimates. 
32 It is widely agreed that in financial markets, trading activity induces price changes and trades directly contribute 

to price discovery. We are interested on how volume proxies for beta uncertainty (beta-changes) and thus we 

employed volume as proxy for information flow. Further, volume evolves month to month, whereas, size does not 

evolve month to month. Since size is relatively time invariant, it will not provide a useful proxy for volume.   
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to hedge and share risk (i.e. uninformed traders) or to speculate on private information (i.e. 

informed traders). If hedging (or liquidity) is the primary motive to trade, negative 

autocorrelation will be observed. That is because investors sell a stock for hedging reasons, 

and the stock price decreases, yielding a negative return for that period since the expectation 

for the future payoff stays the same. The drop in the price leads to a high expected return for 

the next period. However, if speculation is the primary motive to trade, positive autocorrelation 

will be observed. That is because investors sell stock due to the arrival of negative information, 

the stock price decreases, yielding a negative return for that period. Since the price only 

partially reflects the negative information, the return in the current period will be followed by 

a low return in the next period as the negative information become public.  

From the above considerations, Gebka and Wohar (2013) argue that the following picture of 

the price-volume nexus emerges. If speculation on positive private information is the primary 

motive to trade, one should observe a positive price-volume relation and the price-changes will 

likely be from higher quantiles today with increased trading volume. This is exactly the pattern 

that this chapter reveals. A similar implication holds if selling pressure for hedging (due to 

liquidity reasons) dominates the market, i.e. trading from hedging pressure will generate high 

volume and will drive the price down in order to attract other investors to buy. However, the 

stock price will bounce back to its fundamental value in the next period for the market to 

accommodate the buying pressure, generating returns likely from the higher quantiles. 

Therefore, a positive price-volume relation will be observed from higher quantiles.  If, on the 

other hand, intensive trading from hedging pressure to buy, the next period return will likely 

be from lower quantiles, since there will be a decline in price back to the fundamental value, 

generating a negative link between price changes and trading volume from the lower quantiles. 

Lastly, trading on negative private information will induce high volume and negative returns 

in the current period followed by negative returns in subsequent period, a negative causality 

from volume to return will be observed from lower quantiles since it will take more than one 

period for the negative information to be incorporated into pricing. 

In light of the above model, this paper then investigates the nature of the price-volume 

relationship using the quantile regression approach employed in Chapter 3. We establish a 

significant price-volume relation, which emphasize their central role of volume in price-

changes. We show a positive (negative) price-volume relation at high (low) quantiles. This 

finding is consistent with Ciner (2015), Gebka and Wohar (2013) and Chuang et al. (2009), 

who find that trading volume exerts a positive (negative) impacts on price-changes or returns 
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from the top (bottom) quantiles of the observed return distribution. Our empirical results are 

entirely consistent with the equilibrium model by  Llorente et al. (2002), who show that the 

impact of the information revealed by volume on price behavior can be complex, depending 

on the nature of the information. 

The chapter is organized as follows. Section 4.2 discusses the methodology. Section 4.3 

presents the data. Section 4.4 contains the empirical results. Section 4.5 concludes.  

4.2 Methodology 

We use quantile regression models to investigate the beta-volume relationship as well as price-

volume relationship for the Japanese banks. First we investigate whether trading volume has 

explanatory power for changes in betas if we distinguish standard betas into diffusion and jump 

betas. The framework for distinguishing jump and diffusion betas in individual asset prices 

consists of two parts. First, a univariate jump detection test is applied to determine days where 

jumps occur. This selects the jump days to be considered in the second stage which uses ratio 

statistics to determine the estimates of the two betas for each stock. We follow the process of 

Todorov and Bollerslev (2010) and apply the Barndorff-Nielsen and Shephard (2006) jumps 

test in the first stage.  

4.2.1 Standard, diffusion and jump betas 

We begin the analysis by estimating realized betas using the method illustrated in Andersen et 

al. (2006). The advent of readily available high frequency data in recent years, have now made 

it possible to compute realized betas over varying frequencies that can be used as proxies for 

standard betas.  

Realized beta is defined as the ratio of realized covariance of stock and market to the realized 

market variance. Andersen et al. (2006) argue that realized beta is a more accurate measurement 

of the standard beta because it employs more information than the traditional regression on 

monthly returns. 

The estimate of realized beta for individual stock, 𝛽̂𝑖,𝑡
𝑠  is defined as: 

𝛽̂𝑖,𝑡
𝑠 =

𝑅𝐶𝑂𝑉𝑖,𝑡,𝑠
𝑠

𝑅𝑉𝑚,𝑡,𝑠
𝑠 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠  𝑛
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2

 𝑛
𝑙=1

                                                                                               (4.1) 

where 𝑟𝑖,𝑡.𝑘 is the return on stock i during the kth intraday period and 𝑟𝑚,𝑡,𝑠 is the aggregate 

market return at time t, and S is the number of intraday periods. This estimator was studied by 
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Todorov and Bollerslev (2010) in the presence of jumps. The CAPM model basically depends 

on returns in the individual stock and the market, which in turn, depend on the underlying 

prices of individual stocks.33  

For our analysis, we consider the presence of  jumps in the price process  and rely on  Barndorff-

Nielsen and Shephard (2006)’s framework to detect the jump in the price process. In the 

presence of jumps, Todorov and Bollerslev (2010) provide a theoretical method for 

decomposing  the time-varying beta for stocks into beta for diffusion systematic risk and beta 

for jump systematic risk. Following Todorov and Bollerslev (2010), we decompose the CAPM 

beta into a part attributable to a diffusion component-diffusion beta and a part attributable to 

jumps-jump beta. In the most general case, each of the factor components has a separate 

loadings (diffusion and jump), and when these two loadings are equal, the model simplifies to 

a standard one-factor model. The first step in our analysis is to test for the presence of a jump 

in the market price on each day, and we do so using the “ratio” jump test of Barndorff-Nielsen 

and Shephard (2006), sampling frequency (five minutes), and critical value (3.09). On days 

with no jumps in the market, the usual realized beta is an estimate of the diffsuion beta. On 

days with jumps in the market, one can use the estimator in Todorov and Bollerslev (2010) to 

estimate the jump and diffusion betas separately. 

4.2.2 Quantile regression methodology 

In this section we present the quantile regression model to examine the relationship between 

volume and beta changes (and price change). Following Koenker and Bassett (1978), we use 

the QR technique to examine whether the beta-volume (price-volume) relation studied changes 

across the quantiles of the conditional beta (price) distribution. The quantile regression model 

allow us to estimate the relationship between a dependent and explanatory variables at any 

specific quantiles, while ordinary least squares (OLS) regression focuses on the estimation of 

the conditional mean of the dependent variable. The OLS method would come to the conclusion 

that in spite of potentially different relationships at different quantiles, the various economic 

factors affect the relation in exactly the same way. If there is variability in the effects across 

the distribution it will not captured by the OLS method. The literature shows that the linkages 

at the extreme, very high or low quantiles, can differ from the mean relationships. In other 

words, trading volume may impact the betas at quantiles other than the means. It is also well 

                                                           
33It is now widely agreed in the literature that financial return volatilities and correlations are time-varying and 

returns follow the sum of a diffusion process and a jump process. See, for example, Press (1967), Merton (1976), 

Ball and Torous (1983) and among others. 
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known that outliers may have a much larger effect on the mean of distribution than to the 

median. Thus, quantile regression methodology may provide a better picture than OLS 

regressions even for the medium of the distribution.  

The quantile regression takes the following form: 

𝑦𝑖 =  𝑥′
𝑖. 𝑏𝜏 + 𝜀𝑖  

𝜏                                                                                                                                 (4.2) 

𝑄𝑢𝑎𝑛𝑡𝜏(𝑦𝑖|𝑥𝑖) ≡ 𝑖𝑛𝑓{𝑦: 𝐹𝑖(𝑦|𝑥)𝜏} = 𝑥′
𝑖. 𝑏𝜏 

𝑄𝑢𝑎𝑛𝑡𝜏(𝜀𝑖  
𝜏 |𝑥𝑖) = 0 

where 𝑄𝑢𝑎𝑛𝑡𝜏(𝑦𝑖|𝑥𝑖) denotes the 𝜏 th conditional quantile 𝑦𝑖  on the regression vector of the 

𝑥𝑖. The parameter vector 𝑏𝜏 is associated with the 𝜏-quantile while 𝜀𝑖  
𝜏 is the error term assumed 

to be continuously differentiable c.d.f. (cumulative density function) of 𝐹𝜀  
𝜏 (. |𝑥) and a density 

function 𝐹𝜀  
𝜏 (. |𝑥). The 𝐹𝑖(. |𝑥) denotes the conditional distribution of 𝑦 conditional 𝑥. Varying 

the value of  𝜏 from 0 to 1 reveals the entire distribution of 𝑦 conditional 𝑥. Note that the local 

effect of 𝑥𝑖 on the 𝜏-quantile is assumed to be linear. The slope coefficient vector 𝑏𝜏 differs 

across quantiles and the estimator for 𝑏𝜏is obtained from 

𝑚𝑖𝑛 ∑ 𝜏 × |𝜀𝑖  
𝜏 | + ∑ (1 − 𝜏) × |𝜀𝑖  

𝜏 |

𝑖:𝜀𝑖  
𝜏 <0𝑖:𝜀𝑖  

𝜏 >0

=  ∑ 𝜏 × |𝑦𝑖 − 𝑥′
𝑖𝑏𝜏| + ∑ (1 − 𝜏) ×  |𝑦𝑖 − 𝑥′

𝑖𝑏𝜏|

𝑖:𝑦𝑖−𝑥′
𝑖𝛽𝜏<0𝑖:𝑦𝑖−𝑥′

𝑖𝛽𝜏≥0

         (4.3) 

The quantile function is estimated by minimizing a weighted sum of absolute residuals, where 

the weights are functions of the quantiles of interest. The value of b for any 𝜏th regression 

quantile can be estimated by linear programming methods. For more details, see, Koenker 

(2005). 

4.3 Sample and data 

Our sample consists of 5-minute transaction prices and monthly trading volumes from January 

2001-Deccember 2012.34 The 5-minute transaction price data are obtained from Thompson 

Reuters Tick history (TRTH) database extracted using via SIRCA and trading volume data are 

obtained from Datastream database. We use the Nikkei 225 index as a proxy for the market 

                                                           
34 The sampling frequency of 5 minutes is relatively standard in the high frequency literature, posing a reasonable 

compromise between the need to sample at very high frequencies in order to resemble the continuous price process 

(Bollerslev et al. 2009), and possible contamination from micro-structure noise. 
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portfolio in calculation of standard betas, diffusion betas and jump betas. We rely on a fixed 

intraday sampling frequency of 5-minute returns in our estimation of the standard, diffusion 

and jump betas. The final sample consists of high frequency stock price data for 50 of the 63 

commercial banks traded on the Tokyo Stock Exchange (TSE).35 Data were not available for 

the whole sample period for the remaining 13 banks. Following Gallant et al. (1992), Hiemstra 

and Jones (1994), Chuang et al. (2009) and more recently Ciner (2015) we use the logarithmic 

of monthly number of shares traded, as our measure for trading volume. 

4.4 Empirical results 

4.4.1 Trading volume and beta changes 

We investigate the relation between changes in betas and trading volume for the Japanese 

banking stocks. We consider the following model, where  ∆𝛽𝑖,𝑡 (∆beta) stands for monthly 

changes in betas calculated as (𝛽𝑖,𝑡 −  𝛽𝑖,𝑡−1)/𝛽𝑖,𝑡−1 , by OLS: 

∆𝛽𝑖,𝑡 = 𝑎0 + 𝑏𝑖𝑉𝑜𝑙𝑖,𝑡 + 𝜀𝑖,𝑡                                                                                                               (4.4) 

The variable of primary interest is the coefficient of trading volume on the three different 

∆betas, namely changes in standard betas, diffusion betas and jump betas. We present the 

regression results in two tables. Table 4.1 presents results of entire sample and Table 4.3 (in 

the Appendix) reports the results for individual banks over the entire sample period. 

In Table 4.1, the three delta betas are the dependent variables and volume is the independent 

variable. The OLS results show that for jump betas and standard betas, the coefficient of trading 

volume is not significantly different from zero. However, this is not case for the diffusion betas. 

Results from Table 4.1 show the positive and statistically significant effect (at 5% level) of the 

trading volume on diffusion betas. Moreover, the results are qualitatively similar when we run 

the regression Equation (4.4) for each individual stock. 

                                                           
35 Unlike the NYSE, the trading hours of the Tokyo Stock Exchange span two sessions on any trading days, from 

9:30 AM to 11:30 AM and from 12:30 PM to 3:00 PM with a short lunch break in between. Paralleling many 

previous studies, we use five-minute intervals as the sampling frequency to strike a reasonable balance between 

accurate measure and microstructure noise. Missing data at 5-minute intervals are filled with the previous price 

creating a zero return. Hansen and Lunde (2006) show that this previous tick method is a sensible way to sample 

prices in calendar time. Since there are no transaction records in the first 5-minute interval of many trading days, 

and also to avoid opening effects, our dataset spans 09:05–11:30 and 12:35–15:00 on each working day (excluding 

weekends, public holidays and firm-specific trading suspensions) from January 2, 2001 to December 27, 2012. 

Overnight and over-lunch returns are excluded from the data set. We are only concerned with the active trading 

period, and overnight information is beyond the scope of this study. 
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Table 4.3 shows that the majority of the companies have a positive relation on average between 

changes in diffusion betas and trading volume. A mixed finding holds when the jump beta is 

used as the dependent variable. However, estimation results for standard betas, provided in 

Panel C of Table 4.3, show that a majority of companies display negative coefficient estimates. 

Furthermore, the coefficients are rather small in each case, which makes it difficult to interpret 

the economic significance of the relation between beta variation and trading volume.  

Table 4.1: Beta changes and trading volume: contemporaneous relations 
 

Dependent Variable= Delta Diffusion Beta 

  OLS Q05 Q25 Q50 Q75 Q95 

Volume 0.116*** 0.454*** 0.201*** 0.078*** -0.011 -0.274*** 

  (0.017) (0.058) (0.011) (0.007) (0.012) (0.048) 

Constant -1.206*** -6.491*** -2.452*** -0.870*** 0.415*** 4.584*** 

  (0.152) (0.556) (0.117) (0.066) (0.115) (0.483) 

Dependent Variable= Delta Jump Beta 

Volume 0.022 0.340*** 0.074*** 0.029*** -0.042*** -0.278*** 

  (0.015) (0.024) (0.006) (0.007) (0.013) (0.024) 

Constant -0.184 -4.454*** -1.003*** -0.308*** 0.703*** 4.008*** 

  (0.146) (0.273) (0.056) (0.065) (0.118) (0.250) 

Dependent Variable= Delta Standard Beta 

Volume -0.018 0.098*** 0.041*** 0.005 -0.047*** -0.274*** 

  (0.013) (0.010) (0.004) (0.003) (0.006) (0.025) 

Constant 0.268** -1.501*** -0.609*** -0.063** 0.703*** 3.829*** 

  (0.125) (0.103) (0.040) (0.032) (0.062) (0.264) 

Note: OLS regression results from Equation (4.4) and depicts the contemporaneous relation between trading volume and 

beta-changes. Quantile regression estimates are from Equation (4.5) and test the contemporaneous relation between 

variables at specific quantiles. Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and 

*** indicate significance at 10%, 5%, and 1% levels, respectively. 

 

We also investigate whether there is a lagged relation between trading volume and betas. We 

run the same OLS regression in Equation (4.4) including lagged volume. Information spillovers 

from lagged trading volume to betas can exist if the adjustments to new information in the 

market is gradual rather than contemporaneous, which would be consistent with the sequential 

information arrival. The regression results are reported in Tables 4.2 and 4.4 (in the Appendix). 

As with the contemporaneous results, in Table 4.4 we find a positive relation between the 

changes in diffusion betas and volume for most of the companies in our sample.  
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Table 4.2: Beta changes  and lagged-trading volume 
 

Dependent Variable= Delta Diffusion Beta 

  OLS Q05 Q25 Q50 Q75 Q95 

Lag volume 0.117*** 0.472*** 0.198*** 0.077*** -0.011 -0.269*** 

  (0.017) (0.050) (0.012) (0.007) (0.011) (0.050) 

Constant -1.214*** -6.652*** -2.425*** -0.855*** 0.410*** 4.487*** 

  (0.149) (0.460) (0.118) (0.070) (0.109) (0.468) 

Dependent Variable= Delta Jump Beta 

Lag volume 0.015 0.324*** 0.075*** 0.0325*** -0.038*** -0.293*** 

  (0.015) (0.020) (0.006) (0.006) (0.010) (0.024) 

Constant -0.132 -4.291*** -1.014*** -0.334*** 0.669*** 4.165*** 

  (0.144) (0.229) (0.052) (0.057) (0.098) (0.249) 

Dependent Variable= Delta Standard Beta 

Lag volume -0.016 0.097*** 0.042*** 0.005 -0.046*** -0.281*** 

  (0.013) (0.008) (0.004) (0.004) (0.007) (0.026) 

Constant 0.248* -1.500*** -0.626*** -0.062* 0.702*** 3.894*** 

  (0.124) (0.074) (0.040) (0.036) (0.065) (0.264) 

Note: OLS regression results from Equation (4.4) and the relation between beta-changes lagged trading volume. Quantile 

regression estimates are from Equation (4.5) and test the lagged relation between the variables at specific quantiles. 

Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 

5%, and 1% levels, respectively. 

 

In Table 4.2 we also observe that the effect of lagged trading volume on changes in diffusion 

beta is statistically significant in comparison with Table 4.1 and the signs are consistent with 

expectations. Conversely, trading volume does not have a statistically significant impact on 

changes in standard betas and jump betas. 

The OLS regressions conducted above examine the average relationship between the variables. 

However, recent research points out that the relationship between the variables may differ 

significantly across the quantiles of the response variable, with stronger asymmetry potentially 

revealed in the low/upper quantiles. Put differently, trading volume may have different impacts 

on the betas at the quantiles other than the mean. To help further gauge this effect, QR analysis 

used in this paper to investigate the relation between beta changes and trading volume at 

selected quantiles of the distribution of the former, not just the mean as the OLS provides.  
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We proceed to examine the contemporaneous relations between monthly beta changes and 

trading using the following quantile regression model: 

𝑄(𝜏)∆𝛽 (∆𝛽𝑖,𝑡) = 𝑎0(𝜏) + 𝑏𝑖(𝜏)𝑉𝑜𝑙𝑖,𝑡 + 𝜀𝑖,𝑡                                                                                 (4.5) 

The slopes of the regressors are estimated at five different quantiles 𝜏 −the 5th, 25th, 50th, 75th, 

95th- using the same set of explanatory variables for each quantile. The results are also reported 

in Tables 4.1 to 4.4. The results exhibit a statistically significant relation between changes in 

diffusion beta and trading volume in at least one of the quantiles. In the higher quantiles of 0.95 

and 0.75, the relationship is negative, while the relationship is found to be positive in lower 

quantiles of 0.05 and 0.25. We also estimate Equation (4.5) for each bank in our sample. We 

find that the majority of the coefficient estimates for 𝑏 𝑖 are largely negative and statistically 

significant in higher quantiles of 0.95 and 0.75, whereas more positive coefficient estimates 

are obtained in lower quantiles of 0.05 and 0.25. The same finding holds when the changes in 

jump beta are used as the dependent variable.  

When we consider the effect of trading volume on the changes in standard beta and for the 

standard beta, the picture is same. The results indicate that the changes in standard beta and 

trading volume are statistically and negatively related in upper quantiles, while they are 

statistically and positively related in lower quantiles. We also find the similar pattern for 

majority of banks in our sample. This finding is consistent with Ciner (2015), who find that 

large increases in systematic risk (standard beta) tend to be positively associated with trading 

volume.  

As discussed in Section 4.2.2, whereas the OLS estimates only capture the beta-volume 

relationship in the mean, the results from quantile regression provide a complete picture of 

beta-volume relation across the whole distribution (or at selected quantiles) and not just at the 

point of central tendency (i.e. the mean). The quantile regression plots for each independent 

variable with their respected significance ranges are presented in Figure 4.1 which plots  𝜏 

against the QR estimates of  𝑏𝑖(𝜏) (solid line) and their 95% confidence intervals (in shaded 

area), together with the OLS estimate as the dashed horizontal line and its 95% confidence 

interval in the dotted lines for the model with contemporaneous relations between beta-volume. 

The plots clearly show why the conditional mean does not fully characterize (the asymmetric) 

beta-volume relation. 
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It can be seen that for jump betas, the OLS estimates of  𝑏𝑖 is  not significantly different from 

zero, suggesting that, on average, trading volume is not a determinant of variation in jump betas. 

For the diffusion betas, the OLS estimates of 𝑏𝑖  is significantly positive at the 1% level. On 

the other hand, the QR estimates of  𝑏𝑖(𝜏) for the three betas vary with quantiles and exhibit a 

distinct and curved pattern. The QR estimates are positive at lower quantiles and negative at 

upper quantiles. The QR estimates are also significant at both lower quantiles and upper 

quantiles. Thus, trading volume has an impact on changes in all the betas and such effects are 

stronger at more extreme quantiles.  

The estimation results for standard beta are quite different as shown in panel C of Figure 4.1. 

The OLS estimates of  𝑏𝑖 is negative but insignificantly different from zero but that of non-

central 𝑏𝑖(𝜏) is significant. The QR estimates of  𝑏𝑖(𝜏) are also heterogeneous across 𝜏. The 

QR estimates of  𝑏𝑖(𝜏) are significantly positive at lower quantiles and significantly negative 

at upper quantiles. Figure 4.2 plots the QR and OLS estimates for model with lagged relation 

in all betas. The results are similar to the previous results from Figure 4.1.  

We can further illustrate the difference between least squares regression and quantile 

regressions using a ∆beta-volume scatter plots. Figure 4.3 (and Figure 4.4) shows the scatter 

plots between the changes in betas and trading (and lagged) volume for the Japanese banks. 

These plots form a cone or comet shape, suggesting that as trading volume increases, changes 

in betas display a greater range of concentration (i.e. less variation). In Figures 4.3 and 4.4, we 

present the quantile regression lines labelled 𝜏 = 5th, 25th, 50th, 75th, and 95th, respectively. The 

quantile regression lines labelled 0.05 and 0.25 fall below the mean/median lines, presenting a 

positive slope, while the regression lines labelled 0.95 and 0.75 quantiles lie above the 

mean/median lines, showing a negative slope. The beta-volume relationship transforms from 

positive to negative as the quantile increases.  

Overall the quantile regression results show the significant impact of the trading volume on 

changes in betas, at least in the off-central quantiles, contrary to the insignificant OLS-based 

results, stressing the fact that the relationship may be far more complex than what can be 

described using least-squares regression. Indeed, the beta-volume relationship for Japanese 

banking stock is asymmetric and the relationships at the tail quantiles are quite different from 

that at the mean. The results show that trading volume is indeed a determinant of variation in 

∆betas.
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Figure 4:1: QR and OLS estimates of the effects of trading volume on beta changes: 

contemporaneous relation 

Panel A: Changes in diffusion beta and trading volume  

 
Note: The solid line gives the coefficients of trading volume estimates from the quintile regression, with the shaded grey area 

depicting a 95% confidence interval. The dashed line gives the OLS estimate of mean effect, with two dotted lines again 

representing a 95% confidence interval for this coefficient 

Panel B: Changes in jump beta and trading volume 
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Panel C: Changes in standard beta and trading volume 

 

 

Figure 4:2: QR and OLS estimates of the effects of trading volume on beta changes: lagged 

relation 

Panel A: Changes in diffusion beta and lagged trading volume 
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Panel B: Changes in jump beta and lagged trading volume  

 
 

Panel C: Changes in standard beta and lagged trading volume 
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Figure 4:3: Scatter plot of changes in betas with trading volume for individual companies 

panel a: changes in diffusion beta and trading volume 

 
 

Panel B: Changes in jump beta and trading volume  
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Panel C: Changes in standard beta and trading volume 

 
 

Figure 4:4: Scatter plot of changes in betas with lagged trading volume for individual 

companies 

Panel A: Changes in diffusion beta and lagged trading volume 
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Panel B: Changes in jump beta and lagged trading volume  

 
 

Panel C: Changes in standard beta and trading volume 
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Using quantile regression, we find that trading volume has a positive (negative) relationship 

with beta changes at lower (higher) quantiles. Further, we observe that stocks with high trading 

volume are associated with small beta changes. Conversely, stocks with low trading volume 

are associated with large beta changes; see Figures 4.3 and 4.4. Thus, stocks with higher trading 

volume have smaller ∆betas, i.e. low beta uncertainty and stocks with lower trading volume 

has larger ∆betas, i.e. high beta uncertainty. Our results support the view that changes-in- beta 

i.e. beta uncertainty, stem from beta estimation error due to time-varying volume or ‘the 

inappropriate use of chronological time as an index in the returns computation’. See Carpenter 

and Upton (1981). 

4.5 Volume and return 

It could be argued that dynamic linkages between trading volume and changes in betas that 

documented above should be observed between price-changes and trading volume as well if 

CAPM is to have empirical consistency. Based on this intuition we proceed to investigate 

whether volume contains information on price changes. In the first part of the empirical 

analysis, we consider the following model for examining the contemporaneous relation 

between price-changes (or returns) and trading volume and estimate the model using the OLS 

and quantile regression methods: 

𝑅𝑖,𝑡 = 𝑎0(𝜏) + 𝑏𝑖(𝜏)𝑉𝑜𝑙𝑖,𝑡 + 𝜀𝑖,𝑡                                                                                                     (4.6) 

Where 𝑉𝑜𝑙𝑖,𝑡 is (log) trading volume and 𝑅𝑖,𝑡 is (log) price changes. Although we may specify 

different models for the conditional mean and quantile functions, we estimate the same model 

(6) in our study so that the OLS and QR estimates can be compared directly.  

Table 4.5 (below) and Table 4.6 (Appendix) present the results for the contemporaneous price-

volume relationship. The results from OLS regressions in panel A of Table 5 indicate that price-

changes do not have a statistically significant relationship with trading volume. We also 

estimate the contemporaneous price-volume relation using Equation (4.6) for each of stock in 

our sample. See Panel A of Table 4.6 (Appendix). We find that “a” majority of coefficients for 

𝑏𝑖 are negative but statistically insignificant. This finding is consistent with earlier work, in 

which researchers generally find that price-changes do not co-vary with trading volume, see 

Karpoff (1987) for a survey, and Lee and Rui (2002), Ciner (2002) and Ciner (2015) for some 

recent empirical evidence. This is generally regarded counter to the notion of financial market 

practitioners mantra that ‘it takes volume to make prices move’ (in Karpoff (1987)) and also, 
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to the implications of models by Blume et al. (1994) and Llorente et al. (2002), who argue that 

volume carries information that is not contained in price statistics.  

Table 4.5: Price chamges and trading volume 

 

Panel A: Trading volume and return: contemporaneous relations 

Dependent variable= Return 

  OLS Q05 Q25 Q50 Q75 Q95 

Volume -0.001 -0.007*** -0.005*** -0.002** 0.001 0.006*** 

  (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) 

Constant 0.004 -0.057*** 0.002 0.012** 0.033*** 0.061*** 

  (0.008) (0.014) (0.006) (0.006) (0.008) (0.011) 

 

Panel B: Trading volume and return: lagged relations 

Dependent variable= Return 

  OLS Q05 Q25 Q50 Q75 Q95 

Lag volume -0.001** -0.006*** -0.005*** -0.001* 0.001 0.005*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Constant 0.010** -0.065*** -0.001 0.009* 0.033*** 0.073*** 

  (0.004) (0.013) (0.008) (0.005) (0.009) (0.016) 

Note: OLS and QR regression results are from Equation (4.6) and examine the relation between trading volume and stock 

returns. Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance 

at 10%, 5%, and 1% levels, respectively. 
 

It is noteworthy that two recent articles also investigate the relation between returns and volume 

using the quantile regression method. Chuang et al. (2009) uses the quantile regressions to 

show that for the NYSE, S&P500 and FTSE100 indices past trading volume has  a positive 

(negative) impact on price-changes from the top (bottom) of the return distribution and using 

the same methodology, Gebka and Wohar (2013), find a very similar picture for six emerging 

Asian markets. Since these studies focus on market indexes and aggregate trading volume, our 

analysis of individual stock price-changes can shed light on whether the findings can be 

generalized.  

In Panels A of Tables 4.5 (above) and 4.6 (Appendix), it can be seen that, the trading volume 

coefficients in Equation (4.6), i.e. 𝑏𝑖 are statically significant for both aggregate level as well 

as for each stock in our sample. In general, trading volume has a negative impact on returns in 

the very lower quantiles (0.05 and 0.25), while trading volume has a positive impact on returns 

in the higher quantiles (0.95). In general, these results are in line with Chuang et al. (2009), 
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Gebka and Wohar (2013) and Ciner (2015), suggesting that the conclusion on price-volume 

dynamics could be universal.   

In Panel B of both Tables 4.5 (above) and 4.6 (Appendix), we then report the quantile 

regression results for lagged trading volume. The results show a significant impact of the 

trading volume on subsequent price-changes. The results from quantile regression show that 

returns in the lower quantiles always have a negative relation with the lagged volume; on the 

other hand, returns in the upper quintiles have a positive relation with the lagged volume. These 

findings, consistent with analysis in Blume et al. (1994), suggests that volume contains 

information useful for forecasting price variability. The results is also consistent with the 

prediction of the sequential information model (Copeland 1976; Jennings et al. 1981), where 

new information disseminates sequentially into the market. 

The patterns of 𝑏𝑖 in both the panels in Figure 4.5 confirm the non-linear relationship between 

price-changes and trading volume. Figure 4.5 clearly shows that the regression coefficient (of 

the volume variable) is an upward sloping function at the quantiles of the stock returns 

considered. The relation between stock return and volume moves from negative to positive as 

the quantile increases. At the lower quantiles stock returns are negatively related to volume and 

at the higher quantiles stock returns are positively related to volume. It is also interesting to 

note that at the median price changes are correlated with volume but corresponding mean price 

changes are insignificant. 
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Figure 4:5: QR and OLS estimates of the effects of trading volume on proce changes 

Panel A: Price change and trading volume 

 
Note: The solid line gives the coefficients of trading volume estimates from the quantile regression, with the shaded grey area 

depicting a 95% confidence interval. The dashed line gives the OLS estimate of mean effect, with two dotted lines again 

representing a 95% confidence interval for this coefficient.

 

Panel B: Price changes and lagged trading volume  
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Figure 4.6 presents the regression lines fitted by QR for quantiles of 0.05, 0.25, 0.50, 0.75 and 

0.95. In particular, the regression line shows the value of the changes in betas on the y-axis 

with the trading volume on the x-axis. Interestingly, as shown in Figure 4.6, the price-volume 

relationship generated by the QR model exhibits a diverging ‘cone’ or comet shape: 

positive/negative price-volume relationship for the higher/lower trading volume quantiles.  

Figure 4:6: Scatter plot of changes in price and trading volume for individual companies 

Panel A: Price changes and trading volume  
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Panel B: Price changes and lagged trading volume 

 
 

 

To summarize, we find from this subsections that there is a non-linear relations between price-

changes and volume. As mentioned above, in recent article, Chuang et al. (2009) and Gebka 

and Wohar (2013) also investigate the dynamic linkages between price-changes and the trading 

volume in financial markets by relying on stock index data. The results from our paper are 

almost similar to their findings and thus a price-volume relation in quantiles looks likely to be 

a universal phenomenon in financial markets. Our empirical results are entirely consistent with 

the equilibrium model by Llorente et al. (2002), who show that private information and non-

informational trading motivates the  price-volume relationship. 

4.6 Conclusion 

In this Chapter, we examine the linkages between trading volume and changes in betas (and 

changes in prices) for the Japanese banks. We employ empirical techniques which allow 

volume and changes in betas (and changes in price) to be modelled at a high frequency, a 

practice not so commonly encountered in the extant literature. Through a decomposition of the 

standard CAPM beta into two components (diffusion beta and jump beta) we show that trading 

volume has a statistically significant impact on changes in betas. We find that the trading 
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volume is positively (negatively) related to ∆diffusion beta and ∆jump beta at lower quantiles 

(higher quantiles). The same findings also hold for the relation between trading volume and 

changes in standard beta. Thus, the ∆beta-volume relationship for Japanese banking stocks is 

asymmetric across quantiles - the relationships at tail quantiles is quite different from those at 

high quantiles and at the mean. The findings further show that there is statistically significant 

relationship between lagged volume and changes in betas. The results are in line with the model 

of Carpenter and Upton (1981) which states that beta uncertainty can arise from estimation 

error resulting from ‘the inappropriate use of chronological time as an index in the return 

computation’. They used volume as the instrumental variable to proxy the evolution of the 

price generation process or to index the operational time. 

The study also investigates the quantile relationships between price changes and volume. We 

find that there a non-linear relation between price changes and volume. Trading volume has 

significantly negative effects on price-changes at low quantile levels, while there are 

significantly positive effects at high quantile levels. We also confirm the same findings that 

trading volume affects subsequent price-changes across the quantiles. The results of the non-

linear price-volume relationships in quantiles are in line with the model of Llorente et al. (2002), 

which highlights the importance of informed trading and non-informed trading in 

understanding the dynamic price-volume relation.  

Overall, the results of the latter study support the argument raised by Gallant et al. (1992), that 

more can be learned about price-changes by studying the effects of trading volume on price-

changes than by just focusing on price-changes alone. In a similar tone, we can also say that 

more can be learned about time-varying beta by studying the effect of trading volume on beta-

changes than just focusing on time-varying beta. 

.  
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Chapter 5  

Conclusion 

 

 

 

Empirical asset pricing literature have been widely documented that stock returns exhibit both 

stochastic volatility and jumps. Significant jumps have been found in stock prices and equity 

market indexes, suggesting that jump risk is part of systematic risks. Since jump risk is priced, 

adding jump risk into the traditional finance models has significant empirical and theoretical 

meanings. This thesis aims to provide an empirical framework to tie jumps into a fundamental 

economic model of valuation—the jump-diffusion two-beta asset pricing model. Importantly, 

this thesis addresses the following questions: To what extent volatility and jump risks factor 

are priced in the financial market? In particular, what is the market price of the jump risk? Is 

the jump risk priced differently from the diffusive risk? Answers to these questions have a 

direct impact on investors’ decision-making, and could also shed some light on how investors 

react to various types of uncertainty. In this these, we address these issues by focusing on 

testing and exploring the usage of the jump-diffusion two-beta asset pricing model. 

This dissertation, investigates the systematic risk exposures of financial firms by modifying 

the traditional capital asset pricing model (CAPM) framework. Empirical evidence suggests 

that the traditional CAPM beta has weak explanatory power for the cross sectional pricing 

behaviour of expected stock returns. One of the reasons that may account for the weak findings 

is that the CAPM assumes stock returns are generated by a continuous process whilst, in fact, 

the empirical observation of the stock returns generally also exhibit large discontinuous returns, 

although at a much lower frequency. Under such circumstances, the CAPM beta may only be 

a gross measure of systematic risk in what is in effect a mixture of distinct diffusion and jump 

systematic risks.  
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In this light, Todorov and Bolleslev's (2010) suggest a two-beta jump-diffusion asset pricing 

model as an alternative to the traditional single factor CAPM. A stock’s diffusion beta captures 

the stock’s sensitivity to diffusive movement and its jump beta captures its sensitivity to jump 

market movement. In Chapter 2, we seek to understand how an individual firm’s equity prices 

respond to continuous and discrete market moves and how these corresponding distinct 

systematic risks or betas, are priced. In particular, we investigate the systematic diffusive and 

jump risks exposures of Japanese banks for the 2000-2012 period. We decompose the time 

varying betas for stocks into beta for diffusive systematic risk and beta for jump systematic 

risk. Empirically, we find that the magnitudes of the estimated jump betas generally exceed 

corresponding magnitudes of the diffusion betas. We then empirically investigate whether the 

diffusive and jump risks are separately priced under both conditional and unconditional market 

states. Our empirical findings suggest that jump risks are priced separately from the 

corresponding diffusive risks. Assuming that investors tend to behave differently under up and 

down market conditions, we also test whether the risk premiums for diffusion and jump risk 

are asymmetric under different market conditions.  In a separate investigation of upside and 

downside markets, exposure to both diffusive risk and jump risk are significantly priced. In an 

upside markets, exposure to diffusive risk and jump risk is rewarded with larger returns 

whereas these exposures are penalized with greater losses in downside market. 

In Chapter 3, using high frequency financial data and associated risk decompositions, we 

employ quantile regression techniques to explore some stylised fact and relationship(s) 

between standard betas, diffusion betas and jump betas of individual stocks and portfolios in 

the Japanese market. We investigate whether the beta in the traditional CAPM is a weighted 

average of the jump beta and diffusion beta in the jump-diffusion model and how the different 

betas behave relative to each other. Our empirical findings indicate that the monthly averaged 

jump betas are more dispersed than the monthly averaged diffusion and standard betas. We 

also find that standard beta is influenced more by the diffusion beta than the jump beta, 

although the actual magnitude of the weights differ significantly across the quantiles. Hence, 

we demonstrate that the relationship(s) between the three betas are non-linear. The non-linear 

relationship holds for both individual stocks and even of portfolios. Empirical studies have 

shown that betas vary systematically for large and small firms. Even though betas for large 

firms are larger than those of small firms, for large equity portfolios, the jump-diffusion beta 

ratios are lower than the jump-diffusion beta ratios of the small equity portfolios. Finally, we 

find that the standard CAPM beta acts as a ‘summary proxy’ for the systematic risk of a mixed-
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process, i.e. a weighted average of the diffusion component and the jump component; at least 

at the median quantile. 

In chapter 4 of this dissertation, we examine whether changes time-varying betas can be 

explained by trading volume. The observed time varying betas, prompt an investigation of how 

firms' beta respond to trading activity. It is widely agreed that in financial markets, trading 

activity induces price changes and trades directly contribute to price discovery. We find that 

there is a statistically significant relation between trading volume and changes in betas. Despite 

the assumption of homogeneous relationships between volume and changes in standard, 

diffusion and jump betas in the conditional OLS regression analysis, there is strong evidence 

of a heterogeneous beta-volume relation from the quantile regression. We find a positive 

relationship between trading volume and changes in diffusion betas at lower quantiles, while a 

negative beta-volume relationship occurs at higher quantiles. The same findings also hold for 

the relationship between trading volume and changes in jump beta. We also document the 

relationship between volume and changes in standard betas from lower quantiles to upper 

quantiles. The beta-volume relationship implies that the relationship is fundamentally 

heterogeneous for changes in standard beta, diffusion beta and jump beta. Since the CAPM 

predicts that changes in beta should be closely associated with price changes (returns) we 

further investigate the nature of the volume-return relationship. We show a positive volume-

return relation in high quantiles, while a negative volume-beta relationship prevails in low 

quantiles. 

Several important contributions emerge from this dissertation. First, the dissertation contributes 

to the world of asset pricing, when the stylized facts of both diffusion and jump portions of 

returns have been taken into account, two betas makes more sense than one beta. Using a 

continuous time finance model where stock prices follow a jump-diffusion process, we 

investigate a simple but intuitive two-beta model that relates a stock returns to two types of 

systematic risk exposure as measured by two types of betas: the diffusion beta and the jump 

beta. A stock’s diffusion beta captures the stock’s sensitivity to diffusive market movement 

and its jump beta captures its sensitivity to jump market movement. The estimated jump betas 

are consistently larger than the diffusion betas in our empirical results, suggesting that, for the 

Japanese banks stocks analysed here, larger (jump) market moves tend to be associated with 

proportionally larger systematic risk than smaller more common (diffusion) market moves. 

Second, this dissertation contributes to the existing literature regarding the role of beta in 
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explaining security returns by applying the return decomposition framework of Todorov and 

Bollerslev (2010) to disentangle and estimate the time varying systematic risk exposure to 

diffusion and jump market movements, and the Pettengill et al. (1995) methodology, to 

examine the conditional relationship between beta and returns. Our results show that market 

risks with differing degree of jumpiness, as determined by our high-frequency-based-estimator 

of the diffusion and jump beta, are separately priced and that these cross-sectional differences 

in the returns cannot be explained by common firm characteristics. This implies that investors 

in the Japanese market respond differently to diffusion risk and jump risk in the periods of up 

and down markets. Third, empirical findings from this study show that the systematic risk of 

an asset is the weighted average of both jump diffusion betas. Fourth, jump beta and diffusion 

beta are time-varying. While the diffusion beta measures the security's relative risk to the 

market during normal times, the jump beta measures its relative risk to the market during 

extraordinary times. This fact should be of interest to portfolio managers and sophisticated 

investors. Finally, empirical findings from this dissertation lends more support to the role of 

trading volume in financial markets and also suggests that more can be learned about time-

varying beta by studying the effect of trading volume on beta-changes than by just focusing on 

time-varying beta. 

To conclude, this dissertation provides a deeper understanding of how investors behave when 

faced with diffusive risks as opposed to jump risks including the differing risk premiums 

demanded for holding stocks with differing sensitivities to continuous and discontinuous 

market movements. In particular, our results suggest that portfolios designed to hedge large 

discontinuous market movements might have to be constructed differently from portfolios 

intended to hedge the more common continuous day-to-day market movements. Thus, 

disentangling and pricing the two types of systematic risks separately is clearly important for 

the investment and risk management decisions of portfolio investors and companies. 
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Appendix 

Appendix A: Chapter 2 

Table A1- No of Jump days for the Japanese stock index 
Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

  20010312 20020111 20030110 20040105 20050105 20060105 20070201 20080123 20090119 20100217 20110104 20120105 

  20010507 20020225 20030206 20040109 20050114 20060210 20070402 20080310 20090312 20100219 20110107 20120206 

  20010521 20020226 20030207 20040113 20050128 20060323 20070419 20080318 20090323 20100224 20110117 20120208 

  20010627 20020304 20030217 20040225 20050214 20060324 20070501 20080407 20090408 20100311 20110210 20120424 

  20010709 20020320 20030219 20040303 20050217 20060421 20070523 20080423 20090428 20100324 20110215 20120502 

  20010723 20020422 20030305 20040312 20050222 20060502 20070615 20080509 20090525 20100416 20110216 20120510 

  20010830 20020423 20030317 20040316 20050304 20060524 20070627 20080520 20090601 20100428 20110318 20120523 

  20010917 20020510 20030324 20040318 20050310 20060622 20071003 20080602 20090610 20100507 20110412 20120614 

  20010927 20020513 20030327 20040329 20050318 20060728 20071029 20080610 20090624 20100527 20110413 20120626 

  20011115 20020523 20030403 20040419 20050404 20060811 20071112 20080611 20090626 20100629 20110502 20120629 

  20011119 20020529 20030515 20040622 20050408 20060816   20080701 20090708 20100720 20110614 20120706 

  20011130 20020612 20030523 20040625 20050419 20060821   20080707 20090716 20100728 20110705 20120720 

  20011210 20020708 20030605 20040705 20050420 20060822   20080708 20090723 20100803 20110707 20120828 

  20011220 20020808 20031104 20040713 20050422 20060829   20080715 20090724 20100804 20110715 20120920 

    20020815   20040714 20050428 20060908   20080717 20090812 20100810 20110720 20121004 

    20020819   20040716 20050523 20060913   20080724 20090818 20100827 20110729 20121026 

    20020820   20040720 20050527 20060914   20080729 20090908 20100830 20111012 20121029 

    20020924   20040806 20050607 20060929     20091001 20100901 20111027 20121108 

    20021007   20040813 20050711 20061129     20091110 20100902 20111116 20121115 

    20021028   20040908 20050713 20061211     20091117 20100908 20111129 20121205 

    20021029   20040915 20050715       20091118 20100916 20111201 20121217 

    20021209   20040929 20050801       20091126 20100917 20111219   

    20021212   20041004 20050802       20091203 20100929 20111230   

    20021216   20041008 20050805       20091207 20100930     

    20021217   20041013 20050822       20091211 20101001     

    20021230   20041014 20050901         20101005     

        20041021 20050902         20101014     

        20041104 20050908         20101118     

        20041111 20050926         20101214     
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        20041115 20051031         20101217     

        20041119 20051102               

        20041129 20051118               

        20041130 20051227               

        20041201                 

        20041206                 

        20041209                 

        20041216                 

        20041228                 

        20041229                 
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Appendix B: Chapter 4 

Table 4.3: Changes in betas and trading volume for individual banks 

Panel A: Changes in diffusion beta and trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Volume   Volume   Volume   Volume   Volume   Volume   

Aichi Bank 0.944*** (0.245) 1.601* (0.837) 1.094*** (0.277) 0.762*** (0.188) 0.647*** (0.232) 0.156 (0.954) 

Akita Bank 0.251 (0.242) 1.601** (0.744) 0.894*** (0.227) 0.329 (0.250) -0.135 (0.306) -1.489 (0.914) 

Aomori Bank 0.071 (0.391) -0.00283 (0.882) 0.154 (0.440) 0.255 (0.243) 0.034 (0.793) -1.756** (0.869) 

Aozora Bank 0.267 (0.320) 1.023 (0.923) 0.561* (0.307) 0.041 (0.286) -0.001 (0.266) -0.560 (0.910) 

Awa Bank 0.949*** (0.278) 2.647*** (0.651) 0.806*** (0.205) 0.356** (0.165) 0.122 (0.244) 1.662 (1.495) 

Bank Of Iwate 0.618*** (0.228) 2.078*** (0.565) 0.960*** (0.229) 0.554*** (0.138) 0.411 (0.296) -1.612* (0.856) 

Bank Of Kyoto 0.450*** (0.141) 1.555*** (0.349) 0.636*** (0.186) 0.196 (0.136) 0.008 (0.147) -0.173 (0.331) 

Bank Of Nagoya 0.234 (0.153) 0.740 (0.660) 0.554*** (0.208) 0.158 (0.098) 0.072 (0.282) -0.328 (0.982) 

Bank Of Okinawa 0.649*** (0.204) 2.041*** (0.430) 0.882*** (0.208) 0.329 (0.198) 0.293 (0.305) 0.178 (0.567) 

Bank Of The Ryukyus 0.404*** (0.107) 1.118*** (0.209) 0.402*** (0.105) 0.216** (0.098) 0.154 (0.097) -0.344 (0.524) 

Bank Of Yokohama -0.148 (0.121) -0.134 (0.323) 0.051 (0.078) -0.032 (0.089) -0.052 (0.151) -0.676 (0.716) 

Chiba Bank 0.333* (0.172) 1.369*** (0.397) 0.320 (0.248) 0.107 (0.099) 0.117 (0.222) -0.516 (0.489) 

Chugoku Bank 0.676*** (0.182) 2.044*** (0.444) 0.621*** (0.194) 0.245** (0.116) 0.126 (0.125) -0.345 (0.730) 

Daishi Bank 0.085 (0.279) 0.875 (0.987) 0.534** (0.263) 0.346*** (0.132) -0.290 (0.474) -1.764* (1.011) 

Fukui Bank 0.722** (0.294) -0.406 (1.340) 0.920*** (0.277) 0.429 (0.427) 0.601 (0.390) 1.816 (1.630) 

Fukuoka Financial Gp. 0.089 (0.235) 0.319 (0.663) 0.062 (0.179) 0.036 (0.204) -0.116 (0.406) 0.020 (0.584) 

Gunma Bank 0.039 (0.136) 1.310*** (0.371) 0.241*** (0.076) -0.032 (0.108) -0.434*** (0.164) -0.418 (0.423) 

Hachijuni Bank 0.577*** (0.173) 1.906*** (0.544) 0.586*** (0.203) 0.307*** (0.099) 0.200* (0.120) -0.282 (0.792) 

Higashi Nippon Bank 0.178 (0.216) 0.300 (0.982) 0.494*** (0.174) 0.068 (0.185) 0.061 (0.198) -1.116 (0.857) 

Higo Bank 0.108 (0.214) 0.210 (0.856) 0.147 (0.171) -0.066 (0.101) -0.264 (0.337) 0.985 (1.007) 

Hiroshima Bank 0.188 (0.162) 1.261*** (0.293) 0.539*** (0.147) 0.220* (0.123) -0.024 (0.133) -0.903* (0.467) 

Hokkoku Bank 0.169 (0.231) 0.514 (1.243) 0.682*** (0.179) 0.261** (0.116) 0.109 (0.212) -1.929 (1.227) 
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Hokuetsu Bank 0.043 (0.234) 0.177 (0.464) 0.380 (0.320) 0.078 (0.167) -0.060 (0.156) -1.766 (1.214) 

Hokuhoku Financial Gp. 0.210 (0.262) 0.314 (0.938) 0.581* (0.332) 0.085 (0.170) -0.109 (0.289) -0.964 (1.189) 

Hyakugo Bank 0.371* (0.212) 2.047 (1.571) 0.908*** (0.209) 0.237* (0.136) -0.178 (0.263) -1.356* (0.814) 

Hyakujushi Bank 0.436** (0.207) 1.581** (0.692) 0.666** (0.300) 0.294* (0.163) -0.034 (0.232) -1.814 (1.102) 

Iyo Bank 0.406* (0.231) 1.268 (0.818) 0.808*** (0.187) 0.335*** (0.115) -0.189 (0.361) -1.672* (0.984) 

Joyo Bank -0.012 (0.160) 0.958* (0.496) 0.316*** (0.086) 0.079 (0.159) -0.313* (0.160) -1.082** (0.442) 

Juroku Bank 0.316 (0.259) 1.844 (1.127) 1.020*** (0.202) 0.240* (0.143) 0.116 (0.256) -1.244 (1.014) 

Kagoshima Bank 0.623** (0.245) 1.882*** (0.713) 1.021*** (0.189) 0.448* (0.233) -0.103 (0.220) -1.225* (0.706) 

Keiyo Bank 0.598*** (0.223) 2.445*** (0.479) 0.674** (0.258) 0.465*** (0.126) -0.170 (0.259) -0.836 (1.036) 

Miyazaki Bank 0.0416 (0.173) -0.142 (1.314) 0.347 (0.376) 0.138 (0.166) 0.089 (0.177) -0.576 (1.292) 

Musashino Bank 0.368*** (0.137) 1.184*** (0.228) 0.660*** (0.113) 0.337** (0.136) 0.038 (0.109) -1.009* (0.579) 

Nanto Bank 0.701 (1.439) -1.916 (1.669) 0.758 (1.393) 0.995 (1.314) 1.084 (2.137) 2.963 (3.157) 

Nishi-Nippon City Bank 0.094 (0.132) 1.291* (0.720) 0.250** (0.111) 0.110 (0.084) -0.203 (0.155) -0.214 (0.466) 

Ogaki Kyoritsu Bank 0.616*** (0.225) 1.619 (1.096) 0.733*** (0.274) 0.631*** (0.185) 0.302 (0.285) 0.616 (0.795) 

Oita Bank 0.389** (0.169) 0.922 (1.172) 0.602*** (0.196) 0.377** (0.186) 0.152 (0.150) 0.338 (0.688) 

San-In Godo Bank 0.542** (0.232) 1.187** (0.488) 0.903*** (0.195) 0.660*** (0.183) 0.009 (0.456) -2.323* (1.202) 

Seventy-seven Bank 0.008 (0.155) 0.589** (0.251) 0.193* (0.103) 0.032 (0.128) -0.391* (0.211) -0.726 (0.526) 

Shinsei Bank -0.309 (0.257) 0.529 (1.520) -0.709** (0.278) -0.333** (0.141) -0.205 (0.204) -0.700 (0.731) 

Shizuoka Bank -0.113 (0.110) 0.061 (0.064) 0.044 (0.106) 0.034 (0.141) -0.293 (0.202) -0.514 (0.322) 

Sumito Mitsui  Financial Gp -0.024 (0.082) 0.041 (0.532) 0.048 (0.069) 0.017 (0.056) -0.028 (0.060) -0.262 (0.493) 

Suruga Bank 0.062 (0.219) 1.432*** (0.455) 0.267 (0.211) 0.091 (0.138) -0.112 (0.202) -0.629 (0.637) 

Tochigi Bank 0.503** (0.195) 0.780 (1.123) 1.000*** (0.194) 0.277 (0.237) 0.062 (0.205) -0.296 (1.177) 

Toho Bank 0.402 (0.314) 1.404 (0.894) 0.601** (0.283) 0.138 (0.209) -0.376 (0.315) -0.214 (1.454) 

Tokoyo Tomin Bank -0.338 (0.419) 2.273 (1.468) 0.439 (0.726) 0.086 (0.641) -0.064 (0.565) -0.853 (0.738) 

Yachiyo Bank 0.579 (0.531) 0.680 (0.726) 1.002** (0.495) 0.299 (0.372) 0.346 (0.823) 0.117 (1.593) 

Yamagata Bank 1.169*** (0.343) 1.112 (1.415) 0.829** (0.414) 0.809*** (0.187) 0.992** (0.433) 2.469** (1.076) 

Yamaguchi Finl.G. -0.103 (0.211) 0.286 (0.415) 0.208 (0.155) 0.030 (0.173) -0.406* (0.211) -0.863* (0.467) 

Note: OLS regression results from Equation (4.4) and examine the contemporaneous relation between trading volume and the changes in betas for each bank in our sample. Quantile regression estimates are from Equation 

(4.5) and test the contemporaneous relation between the variables at specific quantiles for each bank in our sample. Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate 
significance at 10%, 5%, and 1% levels, respectively. 
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Panel B: Changes in jump beta and trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Volume   Volume   Volume   Volume   Volume   Volume   

Aichi Bank 0.172 (0.278) 1.302*** (0.322) 0.369*** (0.102) 0.214 (0.143) -0.160 (0.286) -1.490*** (0.473) 

Akita Bank 0.551 (0.340) 0.746 (1.199) 0.287 (0.290) 0.028 (0.190) -0.272 (0.257) 1.934 (1.903) 

Aomori Bank -0.578 (0.367) -1.410* (0.819) 0.104 (0.256) -0.054 (0.109) -0.166 (0.181) -1.338 (0.996) 

Aozora Bank 0.072 (0.172) 1.088 (0.955) 0.069 (0.113) 0.066 (0.170) 0.142 (0.333) -0.117 (0.954) 

Awa Bank 0.482 (0.352) 1.065 (1.390) 0.344** (0.158) 0.144 (0.135) -0.356* (0.187) 0.211 (0.932) 

Bank Of Iwate -0.690* (0.377) -0.137 (1.275) 0.045 (0.129) -0.107 (0.188) -0.734*** (0.217) -2.076*** (0.634) 

Bank Of Kyoto 0.533 (0.689) 0.874 (3.655) 0.104 (0.169) -0.137 (0.134) -0.044 (0.270) -1.251** (0.503) 

Bank Of Nagoya -0.179 (0.198) -0.062 (0.579) 0.155 (0.102) 0.065 (0.128) 0.035 (0.268) -0.537 (0.866) 

Bank Of Okinawa 0.016 (0.211) 0.791 (0.602) 0.214 (0.310) 0.016 (0.128) -0.060 (0.149) -0.694 (1.111) 

Bank Of The Ryukyus 0.436** (0.170) 0.932*** (0.337) 0.530*** (0.169) 0.236* (0.130) 0.030 (0.268) -0.194 (0.448) 

Bank Of Yokohama -0.073 (0.140) 0.145** (0.070) 0.157 (0.122) 0.088 (0.106) -0.251 (0.265) -1.005** (0.446) 

Chiba Bank 0.377** (0.177) 1.745*** (0.538) 0.240 (0.315) 0.165** (0.067) 0.244 (0.149) 0.021 (0.241) 

Chugoku Bank 0.267* (0.144) 1.068*** (0.237) 0.282* (0.144) 0.118 (0.090) -0.057 (0.107) -0.651 (0.725) 

Daishi Bank 0.895 (0.817) 0.841 (5.046) 0.466** (0.223) 0.066 (0.123) 0.082 (0.235) -0.172 (0.668) 

Fukui Bank -0.110 (0.268) 0.575 (0.723) 0.373* (0.208) 0.096 (0.224) -0.607** (0.272) -1.535*** (0.506) 

Fukuoka Financial Gp. 0.022 (0.162) -0.024 (0.161) 0.033 (0.208) -0.033 (0.181) 0.278 (0.331) 0.763 (0.677) 

Gunma Bank 0.217 (0.217) 0.346 (0.963) 0.093 (0.102) 0.051 (0.080) 0.033 (0.167) -0.347** (0.138) 

Hachijuni Bank 0.159 (0.242) 0.433 (0.800) 0.219** (0.100) 0.056 (0.091) -0.141 (0.166) -0.686 (0.432) 

Higashi Nippon Bank 0.665* (0.387) 1.080 (1.795) 0.610** (0.282) 0.385** (0.161) 0.166 (0.236) -0.272 (2.423) 

Higo Bank 0.568** (0.272) 1.495* (0.807) 0.372 (0.243) 0.203** (0.080) 0.285 (0.201) -0.308 (0.690) 

Hiroshima Bank -0.029 (0.090) -0.001 (0.249) 0.015 (0.081) 0.007 (0.110) -0.128 (0.114) 0.325 (0.456) 

Hokkoku Bank 0.610 (0.644) 1.340 (2.418) 0.016 (0.255) -0.008 (0.234) 0.097 (0.350) -0.241 (0.444) 

Hokuetsu Bank -0.158 (0.158) -0.705 (0.648) -0.110 (0.203) -0.101 (0.116) -0.126 (0.187) 1.227 (0.840) 

Hokuhoku Financial Gp. -0.621 (0.599) -0.090 (3.663) -0.016 (0.120) -0.039 (0.185) 0.157 (0.244) -0.589 (1.116) 

Hyakugo Bank -0.132 (0.152) 0.165* (0.097) 0.222** (0.090) 0.100 (0.097) -0.292 (0.192) -1.123 (1.056) 

Hyakujushi Bank -0.066 (0.217) 0.880*** (0.258) 0.295** (0.144) 0.086 (0.100) -0.098 (0.186) -1.126 (0.860) 
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Iyo Bank 0.383 (0.271) 1.149 (1.286) 0.411** (0.202) 0.114 (0.129) -0.069 (0.165) -0.700 (0.429) 

Joyo Bank -0.297 (0.235) 0.187 (0.128) 0.096 (0.106) 0.110 (0.131) -0.233 (0.270) -1.210 (0.977) 

Juroku Bank 0.276 (0.182) 1.431*** (0.525) 0.313** (0.139) 0.146 (0.144) 0.008 (0.204) -0.452 (0.404) 

Kagoshima Bank 0.169 (0.267) 0.773* (0.439) 0.424* (0.230) 0.120 (0.166) -0.061 (0.207) -3.571* (2.136) 

Keiyo Bank -0.684 (1.074) 1.041 (0.642) 0.527*** (0.180) 0.134 (0.109) -0.102 (0.107) -0.200 (6.859) 

Miyazaki Bank -0.026 (0.311) 0.227 (2.880) 0.002 (0.182) 0.360 (0.257) -0.013 (0.223) 0.075 (0.933) 

Musashino Bank -0.410 (0.269) 0.168 (0.667) 0.137 (0.098) -0.005 (0.187) -0.557* (0.298) -0.886 (1.375) 

Nanto Bank 0.357 (0.438) 1.669 (1.733) 0.701 (0.487) 0.099 (0.160) -0.202 (0.375) -0.131 (1.587) 

Nishi-Nippon City Bank 0.065 (0.203) 1.185*** (0.387) 0.169** (0.080) 0.093 (0.104) -0.046 (0.102) -0.887 (0.782) 

Ogaki Kyoritsu Bank -0.039 (0.165) 0.311 (0.298) 0.101 (0.107) 0.116 (0.122) -0.097 (0.199) -1.153* (0.617) 

Oita Bank 0.128 (0.254) 0.826 (0.748) 0.175 (0.131) 0.012 (0.106) 0.048 (0.383) -0.486 (1.496) 

San-In Godo Bank -0.121 (0.223) 0.309 (0.445) 0.083 (0.085) 0.049 (0.114) -0.354 (0.315) -0.853 (0.633) 

Seventy-seven Bank 0.085 (0.202) 0.398 (0.808) 0.164** (0.079) 0.054 (0.106) -0.143 (0.163) -0.592** (0.249) 

Shinsei Bank -0.074 (0.102) -0.131 (0.164) -0.247** (0.116) -0.163** (0.080) -0.002 (0.222) 1.031* (0.569) 

Shizuoka Bank 0.265 (0.189) 0.962 (0.623) 0.120 (0.159) -0.037 (0.175) -0.024 (0.168) 0.174 (0.215) 

Sumito Mitsui  Financial Gp -0.086 (0.116) -0.086 (0.142) -0.030 (0.057) -0.045 (0.115) -0.051 (0.159) -0.467 (0.415) 

Suruga Bank 0.644 (1.297) -0.605 (6.160) -0.074 (0.164) -0.093 (0.120) -0.195 (0.222) -0.541** (0.258) 

Tochigi Bank 0.311 (0.305) 1.109** (0.504) 0.203* (0.118) 0.142 (0.114) 0.093 (0.207) -0.444 (2.063) 

Toho Bank -0.240 (0.245) 0.818 (1.137) 0.000 (0.192) -0.175 (0.228) -0.572* (0.308) -0.628 (0.468) 

Tokoyo Tomin Bank 0.184 (0.112) 1.991 (2.927) 0.066 (0.389) 0.245 (0.236) 0.032 (0.275) -0.593 (0.900) 

Yachiyo Bank -0.435 (0.588) -0.192 (2.815) -0.387 (0.762) -0.221 (0.669) 0.394 (0.923) -0.571 (0.984) 

Yamagata Bank 0.269 (0.290) 0.684 (0.491) 0.292 (0.223) -0.063 (0.170) -0.162 (0.411) 0.390 (2.790) 

Yamaguchi Finl.G. -0.101 (0.202) 0.381*** (0.117) 0.136 (0.207) -0.030 (0.164) -0.122 (0.203) 0.402 (0.772) 
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Panel C: Changes in standard beta and trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Volume   Volume   Volume   Volume   Volume   Volume   

Aichi Bank 0.029 (0.150) 0.929*** (0.293) 0.290** (0.136) 0.027 (0.092) -0.290 (0.211) -1.239* (0.650) 

Akita Bank -0.279 (0.203) 0.264 (0.204) 0.150* (0.083) -0.022 (0.107) -0.309 (0.213) -1.403** (0.595) 

Aomori Bank -0.185 (0.154) 0.047 (0.450) 0.026 (0.097) -0.050 (0.089) -0.148 (0.153) -0.769 (0.970) 

Aozora Bank -0.305* (0.178) -0.399 (0.390) -0.056 (0.213) -0.189 (0.232) -0.261 (0.192) -0.511 (0.944) 

Awa Bank -0.118 (0.173) 0.202 (0.300) 0.068 (0.060) -0.019 (0.066) -0.047 (0.134) -1.366*** (0.500) 

Bank Of Iwate -0.048 (0.209) 0.443 (0.310) 0.126 (0.083) -0.015 (0.063) -0.254 (0.205) -1.417** (0.705) 

Bank Of Kyoto -0.141 (0.137) 0.143** (0.061) 0.023 (0.058) -0.035 (0.046) -0.120 (0.131) -0.334 (0.486) 

Bank Of Nagoya -0.144 (0.112) 0.109* (0.066) 0.131* (0.076) -0.025 (0.050) -0.130 (0.083) -1.012* (0.586) 

Bank Of Okinawa -0.029 (0.175) 0.704*** (0.154) 0.227* (0.119) 0.051 (0.103) -0.006 (0.197) -1.321*** (0.267) 

Bank Of The Ryukyus -0.124 (0.117) 0.191 (0.185) 0.194*** (0.043) 0.011 (0.055) -0.182** (0.090) -0.738*** (0.277) 

Bank Of Yokohama -0.060 (0.066) 0.045 (0.057) 0.044 (0.074) -0.042 (0.082) -0.054 (0.074) -0.782* (0.444) 

Chiba Bank -0.158 (0.189) 0.073 (0.100) -0.083 (0.109) -0.002 (0.066) -0.026 (0.156) -0.119 (0.723) 

Chugoku Bank -0.224 (0.138) 0.120 (0.105) 0.096* (0.052) 0.009 (0.053) -0.203* (0.121) -0.636 (0.638) 

Daishi Bank -0.009 (0.075) 0.187*** (0.066) 0.026 (0.069) -0.008 (0.100) -0.059 (0.101) -0.508 (0.478) 

Fukui Bank -0.277 (0.221) 0.240** (0.116) 0.114* (0.063) -0.121 (0.144) -0.460*** (0.167) -1.310*** (0.458) 

Fukuoka Financial Gp. 0.037 (0.150) -0.006 (0.202) 0.095 (0.165) -0.050 (0.156) -0.187 (0.302) 0.277 (0.588) 

Gunma Bank -0.055 (0.051) 0.035 (0.102) -0.024 (0.047) -0.070 (0.062) -0.057 (0.082) -0.219 (0.137) 

Hachijuni Bank -0.057 (0.060) -0.082 (0.095) -0.046 (0.085) 0.0167 (0.047) -0.045 (0.063) -0.448 (0.272) 

Higashi Nippon Bank -0.043 (0.163) 0.812 (0.678) 0.197** (0.091) -0.027 (0.127) -0.292 (0.230) -0.357 (0.670) 

Higo Bank -0.139 (0.153) 0.152 (0.216) 0.092 (0.133) -0.004 (0.095) -0.201 (0.121) -0.984* (0.555) 

Hiroshima Bank -0.065 (0.102) 0.174*** (0.045) 0.074 (0.060) -0.007 (0.062) -0.029 (0.080) -0.230 (0.393) 

Hokkoku Bank -0.109 (0.118) 0.142* (0.085) 0.080 (0.068) -0.013 (0.073) -0.327** (0.141) -0.298 (0.429) 

Hokuetsu Bank -0.106 (0.102) -0.237 (0.514) -0.000 (0.066) -0.118 (0.114) 0.047 (0.112) -0.238 (0.460) 

Hokuhoku Financial Gp. -0.060 (0.107) 0.052 (0.096) 0.032 (0.099) -0.010 (0.153) -0.040 (0.188) -0.701 (0.705) 

Hyakugo Bank -0.286 (0.210) 0.158*** (0.051) 0.117 (0.081) 0.059 (0.077) -0.136 (0.139) -1.367** (0.546) 

Hyakujushi Bank -0.143 (0.138) 0.302* (0.158) 0.063 (0.094) -0.090 (0.066) -0.195 (0.122) -1.010* (0.564) 
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Iyo Bank -0.158** (0.075) 0.217*** (0.071) 0.059 (0.065) -0.049 (0.051) -0.242** (0.109) -0.699*** (0.147) 

Joyo Bank -0.049 (0.059) 0.095 (0.104) -0.034 (0.054) 0.019 (0.059) -0.014 (0.135) -0.177 (0.191) 

Juroku Bank 0.099 (0.103) 0.317 (0.296) 0.113* (0.067) 0.111* (0.061) -0.079 (0.145) -0.254 (0.266) 

Kagoshima Bank -0.051 (0.167) 0.243 (0.446) 0.153** (0.062) -0.055 (0.070) -0.128 (0.114) -0.902 (0.715) 

Keiyo Bank -0.130* (0.069) 0.190* (0.096) -0.003 (0.049) -0.101 (0.063) -0.237** (0.117) -0.593** (0.290) 

Miyazaki Bank -0.153 (0.163) 0.059 (0.403) 0.088 (0.127) -0.080 (0.053) -0.078 (0.175) -1.442*** (0.432) 

Musashino Bank -0.237* (0.125) 0.150*** (0.056) 0.054 (0.048) -0.046 (0.096) -0.135 (0.098) -0.731 (0.470) 

Nanto Bank 0.156 (0.261) 2.190 (1.594) 0.425 (0.365) 0.048 (0.109) -0.043 (0.229) -1.024 (1.477) 

Nishi-Nippon City Bank -0.007 (0.070) 0.229 (0.178) 0.050 (0.031) 0.067** (0.032) 0.015 (0.081) -0.692*** (0.232) 

Ogaki Kyoritsu Bank -0.073 (0.083) 0.311 (0.298) 0.101 (0.107) 0.116 (0.122) -0.097 (0.199) -1.153* (0.617) 

Oita Bank -0.100 (0.137) 0.155 (0.140) 0.105** (0.052) -0.064 (0.125) -0.388 (0.309) -0.397 (0.525) 

San-In Godo Bank -0.088 (0.087) 0.119* (0.071) 0.043 (0.079) -0.008 (0.081) -0.194* (0.115) -0.786** (0.365) 

Seventy-seven Bank -0.175 (0.145) 0.117* (0.066) 0.048 (0.058) -0.031 (0.046) -0.165 (0.133) -0.849 (0.560) 

Shinsei Bank -0.200* (0.113) -0.183 (0.253) -0.262*** (0.098) -0.166* (0.089) -0.157 (0.225) 0.940 (0.908) 

Shizuoka Bank -0.000 (0.080) -0.013 (0.119) -0.114 (0.083) -0.057 (0.066) 0.034 (0.141) 0.312 (0.353) 

Sumito Mitsui  Financial Gp -0.002 (0.091) 0.012 (0.106) -0.026 (0.048) -0.063 (0.039) -0.095 (0.089) -0.199 (0.215) 

Suruga Bank -0.128 (0.084) 0.111 (0.081) 0.070 (0.111) -0.060 (0.059) -0.103 (0.104) -0.629* (0.353) 

Tochigi Bank -0.146 (0.135) 0.635*** (0.193) 0.154*** (0.050) 0.032 (0.119) -0.140 (0.173) -2.010*** (0.653) 

Toho Bank -0.165 (0.118) 0.165** (0.064) 0.111 (0.120) -0.087 (0.084) -0.156 (0.203) -0.617 (0.700) 

Tokoyo Tomin Bank 0.103 (0.082) 0.241 (0.241) 0.021 (0.132) 0.074 (0.167) 0.172 (0.186) -0.094 (0.335) 

Yachiyo Bank -0.026 (0.343) 0.097 (0.608) -0.195 (0.285) 0.031 (0.330) 0.116 (0.647) -0.393 (0.684) 

Yamagata Bank 0.323 (0.296) 0.966** (0.445) 0.490** (0.221) 0.178 (0.160) -0.225 (0.374) -2.516*** (0.630) 

Yamaguchi Finl.G. 0.124 (0.141) -0.047 (0.182) -0.015 (0.154) 0.146 (0.223) 0.217 (0.198) 0.151 (0.337) 
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Table 4.4: Changes in betas and lagged-trading volume for individual banks 

 

Panel A: Changes in diffusion beta and lagged trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   

Aichi Bank 0.765*** (0.228) 1.059 (1.083) 0.933*** (0.230) 0.377* (0.216) 0.578** (0.247) -0.246 (1.155) 

Akita Bank 0.303 (0.321) 1.702** (0.822) 0.920*** (0.207) 0.395* (0.219) -0.209 (0.304) -2.050*** (0.728) 

Aomori Bank 0.417 (0.320) 0.374 (1.009) 0.659* (0.393) 0.339 (0.252) 0.052 (0.566) -1.712 (1.616) 

Aozora Bank 0.315 (0.363) 0.957 (1.652) 0.364 (0.482) 0.256 (0.310) 0.605** (0.284) -0.650 (1.118) 

Awa Bank 0.721*** (0.259) 1.996* (1.011) 0.714*** (0.218) 0.270* (0.157) -0.030 (0.267) 0.431 (1.646) 

Bank Of Iwate 0.608*** (0.216) 2.265*** (0.343) 0.923*** (0.195) 0.391** (0.164) 0.311 (0.316) -1.802** (0.890) 

Bank Of Kyoto 0.520*** (0.126) 1.152*** (0.393) 0.623*** (0.195) 0.288** (0.137) 0.047 (0.123) 0.383 (0.508) 

Bank Of Nagoya 0.289 (0.183) 0.652 (0.888) 0.824*** (0.155) 0.347** (0.151) 0.100 (0.223) -0.235 (0.920) 

Bank Of Okinawa 0.529*** (0.189) 2.200*** (0.764) 0.636*** (0.189) 0.247* (0.136) 0.247 (0.233) 0.316 (0.477) 

Bank Of The Ryukyus 0.284*** (0.109) 1.226*** (0.247) 0.380*** (0.082) 0.156 (0.096) 0.092 (0.102) -0.441 (0.356) 

Bank Of Yokohama -0.115 (0.149) -0.122 (0.460) 0.039 (0.077) -0.066 (0.076) -0.247 (0.176) -1.511* (0.788) 

Chiba Bank 0.269 (0.163) 1.106*** (0.417) 0.327 (0.263) 0.050 (0.096) -0.084 (0.222) -0.532 (0.338) 

Chugoku Bank 0.590*** (0.185) 2.220*** (0.713) 0.589*** (0.211) 0.269** (0.135) 0.061 (0.145) -0.317 (0.691) 

Daishi Bank 0.237 (0.272) 0.872 (0.849) 0.606*** (0.221) 0.427*** (0.157) 0.137 (0.482) -1.291 (0.826) 

Fukui Bank 0.538 (0.325) 1.447 (1.004) 0.899*** (0.272) 0.256 (0.296) 0.110 (0.369) 1.521 (1.674) 

Fukuoka Financial  -0.256 (0.236) 0.152 (0.415) -0.083 (0.173) -0.206 (0.182) -0.509 (0.390) -0.457 (0.590) 

Gunma Bank 0.087 (0.128) 1.355*** (0.393) 0.235*** (0.081) 0.016 (0.120) -0.335* (0.190) -0.524 (0.467) 

Hachijuni Bank 0.526*** (0.196) 2.009*** (0.486) 0.416* (0.218) 0.210** (0.099) 0.185 (0.169) -0.303 (0.890) 

Higashi Nippon Bank 0.198 (0.195) 0.205 (1.673) 0.619*** (0.209) 0.180 (0.157) 0.069 (0.192) -1.167 (0.704) 

Higo Bank 0.167 (0.307) -0.133 (0.887) 0.028 (0.268) -0.030 (0.166) 0.027 (0.375) 0.473 (0.775) 

Hiroshima Bank -0.001 (0.166) 0.892 (0.579) 0.450*** (0.157) 0.120 (0.104) -0.081 (0.126) -0.825** (0.335) 

Hokkoku Bank 0.390 (0.291) 1.610* (0.849) 0.685*** (0.156) 0.360*** (0.133) 0.200 (0.245) -0.357 (1.198) 

Hokuetsu Bank 0.258 (0.235) 0.189 (0.532) 0.490* (0.262) 0.118 (0.110) -0.047 (0.216) -1.985 (1.500) 

Hokuhoku Financial  0.708** (0.297) 1.890* (0.960) 0.771*** (0.269) 0.291 (0.195) 0.038 (0.352) 0.403 (1.063) 
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Hyakugo Bank 0.307 (0.260) 2.498** (1.212) 0.892*** (0.278) 0.240* (0.125) -0.209 (0.240) -1.294** (0.601) 

Hyakujushi Bank 0.406 (0.285) 1.721* (0.954) 0.729*** (0.214) 0.390** (0.155) -0.201 (0.293) -2.036* (1.041) 

Iyo Bank 0.358* (0.207) 1.132** (0.457) 0.728*** (0.179) 0.315** (0.121) -0.161 (0.343) -1.517* (0.822) 

Joyo Bank -0.059 (0.175) 1.024** (0.497) 0.221** (0.104) 0.052 (0.172) -0.258 (0.249) -1.138*** (0.430) 

Juroku Bank 0.344 (0.230) 1.797 (1.167) 0.945*** (0.285) 0.299* (0.169) 0.173 (0.231) -0.994 (1.244) 

Kagoshima Bank 0.467** (0.213) 1.861* (1.088) 0.984*** (0.235) 0.374* (0.213) -0.172 (0.159) -1.186 (0.766) 

Keiyo Bank 0.582*** (0.202) 2.543*** (0.669) 0.799*** (0.250) 0.373*** (0.134) -0.078 (0.282) -0.778 (1.021) 

Miyazaki Bank 0.304 (0.242) 0.447 (0.509) 0.495 (0.358) 0.190 (0.154) 0.088 (0.237) 0.270 (1.121) 

Musashino Bank 0.316** (0.123) 1.297*** (0.283) 0.604*** (0.139) 0.267*** (0.101) 0.004 (0.148) -1.110** (0.492) 

Nanto Bank -0.177 (0.644) -2.703 (2.107) 0.447 (0.783) 0.064 (0.675) -0.508 (0.778) 3.451 (4.462) 

Nishi-Nippon City  0.096 (0.121) 1.046 (0.836) 0.236* (0.128) 0.104 (0.083) -0.157 (0.149) -0.326 (0.399) 

Ogaki Kyoritsu Bank 0.628*** (0.210) 1.348 (0.887) 0.818*** (0.240) 0.542*** (0.141) 0.285 (0.315) 0.473 (0.635) 

Oita Bank 0.451** (0.183) 1.132 (0.881) 0.706*** (0.266) 0.430** (0.171) 0.123 (0.219) 0.571 (0.617) 

San-In Godo Bank 0.545** (0.266) 1.725*** (0.561) 1.055*** (0.149) 0.782*** (0.226) 0.009 (0.414) -3.007*** (1.090) 

Seventy-seven Bank 0.027 (0.169) 0.764** (0.329) 0.339** (0.133) 0.065 (0.136) -0.237 (0.233) -0.370 (0.362) 

Shinsei Bank -0.093 (0.426) -0.947 (1.594) -0.461 (0.432) -0.357 (0.229) -0.083 (0.262) 0.333 (0.721) 

Shizuoka Bank -0.108 (0.097) 0.051 (0.059) 0.018 (0.096) -0.069 (0.133) -0.381** (0.187) -0.208 (0.304) 

Sumito Mitsui Fin. -0.034 (0.121) 0.021 (0.474) -0.043 (0.071) -0.035 (0.057) -0.088 (0.124) 0.101 (0.642) 

Suruga Bank 0.148 (0.220) 1.429*** (0.425) 0.347 (0.234) 0.049 (0.179) -0.152 (0.192) -0.643 (0.724) 

Tochigi Bank 0.609*** (0.195) 2.118** (1.056) 0.907*** (0.171) 0.631*** (0.234) 0.248 (0.197) 0.868 (0.993) 

Toho Bank 0.065 (0.289) -0.164 (1.149) 0.461* (0.254) 0.030 (0.217) -0.387 (0.339) -0.940 (1.062) 

Tokoyo Tomin Bank 0.221 (0.156) 1.711** (0.822) 0.213 (0.466) 0.359 (0.229) 0.121 (0.492) -1.361 (1.409) 

Yachiyo Bank 0.336 (0.293) 0.819 (0.820) 0.406 (0.316) 0.158 (0.192) -0.201 (0.447) -1.842 (2.098) 

Yamagata Bank 1.080** (0.415) 2.447** (1.116) 1.088*** (0.349) 0.619** (0.283) 0.468 (0.552) 1.632 (1.157) 

Yamaguchi Finl.G. -0.029 (0.181) 0.141 (0.702) 0.135 (0.139) 0.032 (0.137) -0.387 (0.257) -0.801 (0.607) 

Note: Regression results from Equation (4.4) and examine the lagged relation between trading volume and the changes in betas for each bank in our sample. Quantile regression estimates are from Equation (4.5) and test 

the lagged relation between the variables at specific quantiles for each bank in our sample. Standard errors are displayed in parentheses below the coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, 

and 1% levels, respectively. 

 

 



132 

 

Panel B: Changes in jump beta and lagged trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   

Aichi Bank 0.223 (0.264) 1.200** (0.511) 0.309*** (0.087) 0.298** (0.149) -0.162 (0.303) -1.619*** (0.432) 

Akita Bank 1.172** (0.562) 1.222 (2.048) 0.471 (0.360) 0.453* (0.265) 0.109 (0.508) 1.861 (1.664) 

Aomori Bank -0.140 (0.326) 0.287 (0.601) 0.116 (0.144) 0.073 (0.137) -0.083 (0.252) -1.099 (1.145) 

Aozora Bank -0.203 (0.243) -1.601 (1.116) -0.136 (0.185) 0.085 (0.286) 0.116 (0.464) -0.104 (0.990) 

Awa Bank 0.293 (0.300) 0.831 (1.434) 0.314*** (0.109) 0.144 (0.163) -0.216 (0.236) -0.582 (0.998) 

Bank Of Iwate -0.383 (0.344) -0.126 (1.229) 0.183 (0.116) 0.180 (0.162) -0.465* (0.270) -2.063** (0.874) 

Bank Of Kyoto 0.388 (0.604) 0.722 (3.826) 0.268* (0.150) -0.001 (0.192) -0.125 (0.300) -1.486*** (0.362) 

Bank Of Nagoya -0.124 (0.200) 0.006 (0.602) 0.148* (0.088) 0.076 (0.121) 0.047 (0.178) -0.299 (0.866) 

Bank Of Okinawa -0.021 (0.207) 0.669 (0.744) 0.202 (0.336) 0.022 (0.114) -0.089 (0.131) -0.602 (0.955) 

Bank Of The Ryukyus 0.411** (0.176) 0.874** (0.395) 0.517*** (0.190) 0.248* (0.135) -0.067 (0.217) -0.242 (0.400) 

Bank Of Yokohama -0.048 (0.126) 0.139** (0.068) 0.300*** (0.092) 0.127 (0.123) -0.263 (0.282) -1.249*** (0.435) 

Chiba Bank 0.435** (0.183) 1.484*** (0.286) 0.336 (0.434) 0.224** (0.106) 0.012 (0.227) -0.290 (0.251) 

Chugoku Bank 0.121 (0.201) 0.996** (0.460) 0.202* (0.118) 0.076 (0.092) -0.145 (0.141) -0.532 (1.023) 

Daishi Bank 0.426 (0.268) 0.432 (3.120) 0.435*** (0.138) 0.076 (0.139) 0.075 (0.230) -0.218 (0.739) 

Fukui Bank -0.159 (0.290) 0.406 (0.700) 0.438 (0.270) 0.213 (0.231) -0.511** (0.251) -1.202 (0.992) 

Fukuoka Financial  0.044 (0.119) -0.149 (0.195) 0.149 (0.314) 0.038 (0.144) -0.012 (0.283) 0.812 (0.651) 

Gunma Bank 0.182 (0.181) 0.296 (1.002) 0.088 (0.103) 0.019 (0.080) 0.023 (0.162) -0.362 (0.288) 

Hachijuni Bank 0.172 (0.209) 0.534 (0.786) 0.171* (0.100) 0.083 (0.099) -0.130 (0.191) -0.548 (0.568) 

Higashi Nippon Bank 0.451 (0.391) 1.034 (1.925) 0.480* (0.288) 0.323*** (0.119) 0.078 (0.344) -1.015 (1.633) 

Higo Bank 0.551*** (0.202) 0.804 (1.233) 0.322* (0.169) 0.224*** (0.036) 0.246 (0.213) 0.0354 (0.613) 

Hiroshima Bank 0.002 (0.111) 0.007 (0.349) 0.065 (0.089) 0.021 (0.100) -0.130 (0.175) 0.308 (0.513) 

Hokkoku Bank 0.487 (0.435) 1.283 (1.894) 0.296 (0.243) 0.236 (0.186) 0.201 (0.173) -0.115 (0.322) 

Hokuetsu Bank -0.030 (0.184) -0.159 (0.579) -0.075 (0.224) -0.124 (0.082) 0.061 (0.222) 1.068 (0.793) 

Hokuhoku Financial  -0.522 (0.401) -0.147 (3.993) 0.014 (0.132) 0.049 (0.173) -0.107 (0.262) -0.947 (0.660) 

Hyakugo Bank -0.144 (0.172) 0.168** (0.070) 0.234*** (0.075) 0.092 (0.160) -0.255 (0.284) -0.431 (0.970) 

Hyakujushi Bank 0.016 (0.235) 0.705** (0.300) 0.261** (0.131) 0.238* (0.131) -0.150 (0.229) -1.131 (1.284) 
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Iyo Bank 0.518* (0.305) 1.211 (1.062) 0.407*** (0.147) 0.094 (0.147) -0.083 (0.178) -0.152 (0.470) 

Joyo Bank -0.319 (0.233) 0.309** (0.126) 0.114 (0.105) 0.078 (0.138) -0.230 (0.256) -1.375* (0.810) 

Juroku Bank 0.309* (0.177) 1.106* (0.577) 0.321** (0.148) 0.194 (0.161) 0.014 (0.178) -0.344 (0.547) 

Kagoshima Bank 0.266 (0.260) 0.872* (0.441) 0.482*** (0.159) 0.192 (0.159) -0.055 (0.230) -0.910 (2.213) 

Keiyo Bank -1.247 (1.621) 1.588*** (0.562) 0.470*** (0.148) 0.161 (0.115) 0.001 (0.145) -0.434 (7.980) 

Miyazaki Bank -0.370 (0.273) -2.400 (2.064) 0.015 (0.183) 0.206 (0.289) -0.069 (0.248) 0.0556 (0.917) 

Musashino Bank -0.398 (0.309) 0.125 (0.728) 0.159* (0.091) 0.006 (0.132) -0.505 (0.313) -1.328 (1.081) 

Nanto Bank -0.420 (0.674) 0.678 (1.543) 0.584 (0.439) 0.282 (0.215) 0.131 (0.609) -2.979 (4.078) 

Nishi-Nippon City  -0.007 (0.209) 1.241** (0.519) 0.221*** (0.081) 0.091 (0.100) -0.108 (0.173) -0.928 (0.714) 

Ogaki Kyoritsu Bank -0.104 (0.208) 0.281 (0.374) 0.170 (0.114) 0.175 (0.153) -0.114 (0.258) -1.004** (0.425) 

Oita Bank 0.020 (0.249) 0.944** (0.466) 0.169* (0.096) 0.023 (0.113) -0.009 (0.268) -1.419 (1.436) 

San-In Godo Bank -0.037 (0.202) 0.496 (0.482) 0.160* (0.086) 0.048 (0.116) -0.191 (0.249) -1.321* (0.735) 

Seventy-seven Bank 0.077 (0.209) 0.321 (0.724) 0.087 (0.079) 0.006 (0.113) -0.159 (0.162) -0.594*** (0.221) 

Shinsei Bank 0.175 (0.206) -0.098 (0.240) -0.064 (0.146) -0.137 (0.145) 0.092 (0.272) 0.819* (0.447) 

Shizuoka Bank 0.191 (0.163) 0.878 (0.652) 0.073 (0.178) -0.074 (0.185) -0.085 (0.120) 0.037 (0.204) 

Sumito Mitsui Fin.  -0.101 (0.098) -0.137 (0.161) -0.050 (0.058) -0.055 (0.102) -0.063 (0.149) -0.403 (0.407) 

Suruga Bank 0.041 (0.561) -0.446 (5.413) 0.043 (0.132) -0.061 (0.109) 0.011 (0.198) -0.504* (0.290) 

Tochigi Bank 0.114 (0.252) 0.192 (0.516) 0.213 (0.129) 0.101 (0.132) 0.020 (0.182) -0.789 (1.694) 

Toho Bank -0.170 (0.248) 0.560 (1.123) -0.061 (0.161) -0.184 (0.175) -0.432 (0.317) -0.814 (0.678) 

Tokoyo Tomin Bank 0.238* (0.137) 1.673 (2.048) 0.060 (0.492) 0.164 (0.296) 0.421 (0.348) 0.765 (0.799) 

Yachiyo Bank 0.501 (0.418) 0.847 (3.587) 0.183 (0.884) 0.605 (0.660) 0.497 (0.627) 0.027 (3.118) 

Yamagata Bank 0.328 (0.339) 0.832 (0.794) 0.360* (0.194) 0.222 (0.216) 0.094 (0.436) -2.074 (2.578) 

Yamaguchi Finl.G. -0.095 (0.139) 0.322** (0.131) 0.103 (0.176) -0.057 (0.196) -0.060 (0.126) -0.732 (1.052) 
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Panel C: Changes in standard beta and lagged trading volume 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   Lagvolume   

Aichi Bank 0.165 (0.189) 0.794*** (0.244) 0.377*** (0.124) 0.093 (0.140) -0.313 (0.229) -1.200 (0.765) 

Akita Bank -0.198 (0.170) 0.179 (0.142) 0.120* (0.067) -0.044 (0.101) -0.288* (0.164) -1.096* (0.649) 

Aomori Bank -0.187 (0.154) 0.138 (0.091) 0.004 (0.095) -0.085 (0.073) -0.223* (0.133) -1.243 (0.854) 

Aozora Bank -0.207 (0.164) -0.152 (0.583) 0.038 (0.111) -0.177 (0.198) -0.210 (0.217) -1.422* (0.736) 

Awa Bank -0.116 (0.203) 0.161 (0.288) 0.087 (0.058) -0.010 (0.070) -0.033 (0.192) -1.271 (0.808) 

Bank Of Iwate -0.022 (0.201) 0.548** (0.224) 0.171* (0.088) 0.009 (0.066) -0.165 (0.245) -1.481 (1.123) 

Bank Of Kyoto -0.098 (0.094) 0.105* (0.062) 0.018 (0.055) -0.033 (0.054) -0.145* (0.083) -0.230 (0.301) 

Bank Of Nagoya -0.137 (0.088) 0.113** (0.045) 0.073 (0.078) -0.021 (0.059) -0.147 (0.118) -1.222** (0.523) 

Bank Of Okinawa -0.020 (0.155) 0.754*** (0.216) 0.257** (0.107) 0.016 (0.072) -0.015 (0.251) -1.251*** (0.474) 

Bank Of Ryukyus -0.085 (0.115) 0.148 (0.191) 0.188*** (0.052) 0.008 (0.052) -0.172* (0.097) -0.848*** (0.242) 

Bank Of Yokohama -0.066 (0.061) 0.067 (0.051) 0.058 (0.055) -0.087 (0.054) -0.064 (0.089) -0.890** (0.373) 

Chiba Bank -0.156 (0.144) 0.071 (0.112) -0.107 (0.097) -0.061 (0.076) -0.090 (0.144) -0.106 (0.858) 

Chugoku Bank -0.152 (0.121) 0.244*** (0.091) 0.081* (0.043) 0.006 (0.066) -0.178 (0.151) -0.265 (0.614) 

Daishi Bank -0.033 (0.088) 0.213*** (0.074) 0.044 (0.078) -0.014 (0.087) -0.130 (0.087) -0.672 (0.432) 

Fukui Bank 0.149 (0.266) 0.263 (0.167) 0.175* (0.092) 0.089 (0.142) -0.214 (0.193) -0.767 (0.653) 

Fukuoka Financial  -0.292*** (0.096) -0.017 (0.242) -0.167 (0.130) -0.233** (0.111) -0.393** (0.159) -0.824 (0.635) 

Gunma Bank -0.045 (0.052) 0.034 (0.086) -0.033 (0.044) -0.081 (0.053) -0.046 (0.084) -0.084 (0.145) 

Hachijuni Bank -0.026 (0.056) -0.063 (0.112) -0.005 (0.066) 0.030 (0.044) -0.005 (0.053) -0.078 (0.313) 

Higashi Nippon Bank -0.077 (0.179) 0.135 (0.843) 0.182** (0.073) -0.055 (0.129) -0.348* (0.196) -0.054 (0.892) 

Higo Bank -0.145 (0.147) 0.299 (0.279) 0.144 (0.117) -0.062 (0.095) -0.090 (0.198) -0.662 (0.581) 

Hiroshima Bank -0.153 (0.100) 0.150** (0.075) 0.032 (0.066) -0.022 (0.064) -0.093 (0.109) -0.855** (0.411) 

Hokkoku Bank -0.008 (0.088) 0.112 (0.072) 0.085 (0.078) -0.019 (0.067) -0.180 (0.163) -0.293 (0.272) 

Hokuetsu Bank -0.140 (0.113) -0.061 (0.676) -0.016 (0.065) -0.154** (0.077) -0.055 (0.144) -0.072 (0.519) 

Hokuhoku Financial  -0.191 (0.150) 0.028 (0.102) 0.073 (0.075) 0.070 (0.161) -0.132 (0.234) -0.785*** (0.253) 

Hyakugo Bank -0.295 (0.214) 0.189*** (0.057) 0.080 (0.064) 0.047 (0.079) -0.187 (0.146) -1.318** (0.527) 

Hyakujushi Bank -0.140 (0.128) 0.304** (0.144) 0.048 (0.092) -0.080 (0.059) -0.222* (0.120) -0.978** (0.425) 
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Iyo Bank -0.123 (0.076) 0.192*** (0.046) 0.063 (0.064) -0.054 (0.062) -0.210 (0.130) -0.664*** (0.186) 

Joyo Bank -0.090 (0.061) 0.077 (0.100) -0.042 (0.048) -0.052 (0.064) -0.233** (0.117) -0.302 (0.190) 

Juroku Bank 0.036 (0.103) 0.216 (0.325) 0.136** (0.067) 0.072 (0.060) -0.177 (0.164) -0.410 (0.266) 

Kagoshima Bank 0.011 (0.169) 0.270 (0.415) 0.219*** (0.083) -0.002 (0.098) -0.126 (0.080) -1.605* (0.818) 

Keiyo Bank -0.171** (0.085) 0.160** (0.072) -0.003 (0.054) -0.097* (0.057) -0.224 (0.145) -0.699*** (0.206) 

Miyazaki Bank 0.016 (0.164) 0.606 (0.402) 0.118 (0.093) -0.055 (0.061) -0.172 (0.230) -0.652 (0.517) 

Musashino Bank -0.303** (0.151) 0.164*** (0.061) 0.058 (0.061) -0.066 (0.096) -0.249** (0.096) -1.320*** (0.316) 

Nanto Bank 0.092 (0.264) 1.371 (0.940) 0.239 (0.414) 0.145 (0.142) 0.171 (0.374) 0.311 (1.324) 

Nishi-Nippon City  -0.018 (0.069) 0.311 (0.193) 0.035 (0.022) 0.058 (0.036) -0.023 (0.091) -0.632** (0.259) 

Ogaki Kyoritsu Bank -0.079 (0.073) 0.311* (0.188) 0.035 (0.031) 0.058 (0.040) -0.023 (0.099) -0.632** (0.255) 

Oita Bank -0.111 (0.117) 0.125** (0.059) 0.091** (0.044) -0.035 (0.099) -0.300 (0.226) -0.703 (0.441) 

San-In Godo Bank -0.052 (0.095) 0.098 (0.092) 0.051 (0.062) 0.042 (0.075) -0.066 (0.147) -0.713* (0.390) 

Seventy-seven Bank -0.110 (0.114) 0.074 (0.054) 0.075 (0.068) -0.027 (0.052) -0.061 (0.135) -0.690 (0.565) 

Shinsei Bank 0.151 (0.184) -0.097 (0.064) -0.178** (0.087) -0.126 (0.101) 0.061 (0.282) 1.001*** (0.227) 

Shizuoka Bank -0.041 (0.075) -0.009 (0.099) -0.117 (0.081) -0.093 (0.071) -0.005 (0.132) 0.160 (0.272) 

Sumito Mitsui Fin. 0.016 (0.110) 0.064 (0.073) 0.020 (0.072) -0.027 (0.048) -0.179 (0.109) -0.426 (0.374) 

Suruga Bank -0.047 (0.063) 0.178*** (0.059) 0.058 (0.095) -0.023 (0.041) -0.107 (0.104) -0.717* (0.429) 

Tochigi Bank -0.134 (0.131) 0.634*** (0.179) 0.162*** (0.060) -0.014 (0.119) -0.214 (0.228) -2.046*** (0.426) 

Toho Bank -0.178 (0.125) 0.123 (0.088) 0.089 (0.101) -0.078 (0.082) -0.156 (0.227) -0.548 (0.417) 

Tokoyo Tomin Bank 0.064 (0.082) 0.208 (0.182) 0.008 (0.139) 0.053 (0.186) 0.169 (0.249) -0.169 (0.304) 

Yachiyo Bank 0.211 (0.236) 0.848 (0.514) 0.209 (0.198) 0.086 (0.293) 0.343 (0.386) -0.414 (0.811) 

Yamagata Bank 0.218 (0.341) 0.907 (0.663) 0.269 (0.163) 0.213 (0.164) -0.292 (0.409) -2.361*** (0.795) 

Yamaguchi Finl.G. -0.021 (0.134) -0.015 (0.129) -0.057 (0.094) -0.077 (0.157) -0.069 (0.265) 0.159 (0.357) 
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Table 4.6: Changes in prices and trading volume for individual banks 

 

Panel A: Changes in prices and trading volume for individual banks 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Volume   Volume   Volume   Volume   Volume   Volume   

Aichi Bank -0.004 (0.008) -0.034** (0.017) -0.011 (0.010) -0.018* (0.010) 0.010 (0.009) 0.034 (0.020) 

Akita Bank -0.009 (0.009) -0.025 (0.033) -0.019* (0.011) -0.010 (0.009) -0.002 (0.015) 0.029 (0.024) 

Aomori Bank -0.012 (0.010) -0.044** (0.022) -0.018* (0.010) -0.010 (0.008) 0.005 (0.008) -0.003 (0.012) 

Aozora Bank -0.042 (0.027) -0.098 (0.167) -0.057 (0.041) -0.038 (0.025) -0.032 (0.034) 0.101 (0.083) 

Awa Bank -0.011 (0.007) -0.034** (0.014) -0.016 (0.010) -0.001 (0.006) -0.009 (0.006) 0.016 (0.025) 

Bank Of Iwate -0.010 (0.007) -0.002 (0.017) -0.015 (0.014) -0.011 (0.008) -0.014* (0.008) 0.016 (0.027) 

Bank Of Kyoto -0.008 (0.007) -0.005 (0.013) -0.007 (0.009) 0.000 (0.009) -0.003 (0.012) -0.021 (0.014) 

Bank Of Nagoya -0.011 (0.006) -0.016 (0.022) -0.024*** (0.009) -0.017* (0.010) 0.000 (0.012) 0.024* (0.013) 

Bank Of Okinawa -0.003 (0.006) -0.060*** (0.021) -0.019** (0.009) -0.004 (0.006) 0.022** (0.010) 0.028 (0.024) 

Bank Of The Ryukyus -0.010 (0.007) -0.041 (0.014) -0.025*** (0.005) -0.013** (0.005) 0.016* (0.009) 0.040*** (0.015) 

Bank Of Yokohama -0.009 (0.012) -0.007 (0.028) 0.000 (0.011) 0.014 (0.014) -0.005 (0.029) -0.007 (0.033) 

Chiba Bank -0.013 (0.013) -0.015 (0.024) 0.006 (0.018) -0.011 (0.016) -0.018 (0.017) 0.029 (0.064) 

Chugoku Bank -0.012 (0.0075) -0.001 (0.012) -0.011 (0.011) -0.006 (0.009) -0.024* (0.014) -0.013 (0.019) 

Daishi Bank -0.017** (0.0072) -0.008 (0.021) -0.017** (0.007) -0.021 (0.014) -0.018* (0.011) 0.000 (0.009) 

Fukui Bank -0.002 (0.012) -0.013 (0.052) -0.010 (0.015) -0.004 (0.014) -0.004 (0.015) 0.004 (0.015) 

Fukuoka Financial Gp. -0.068* (0.039) -0.071 (0.082) -0.125** (0.062) -0.070 (0.050) -0.044 (0.048) -0.051 (0.093) 

Gunma Bank -0.004 (0.007) -0.009 (0.013) -0.006 (0.007) -0.002 (0.007) 0.011 (0.012) 0.010 (0.017) 

Hachijuni Bank -0.010 (0.007) -0.018 (0.018) -0.010 (0.009) -0.002 (0.013) -0.005 (0.012) -0.038* (0.021) 

Higashi Nippon Bank -0.003 (0.011) -0.005 (0.019) -0.009 (0.017) -0.010 (0.009) 0.016 (0.013) -0.055 (0.045) 

Higo Bank -0.005 (0.009) -0.018 (0.021) -0.019 (0.012) -0.003 (0.013) -0.002 (0.010) 0.000 (0.022) 

Hiroshima Bank -0.008 (0.007) -0.040*** (0.014) -0.022*** (0.003) -0.008 (0.009) 0.009 (0.011) 0.048** (0.022) 

Hokkoku Bank -0.013* (0.007) -0.038*** (0.014) -0.018** (0.007) -0.014 (0.011) -0.010 (0.010) 0.000 (0.015) 

Hokuetsu Bank -0.002 (0.009) -0.008 (0.009) 0.010 (0.006) 0.003 (0.010) -0.018 (0.012) 0.009 (0.028) 

Hokuhoku Finl. Gp. -0.029 (0.018) -0.005 (0.034) -0.033* (0.017) -0.021 (0.019) -0.023 (0.036) -0.025 (0.058) 
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Hyakugo Bank -0.015** (0.006) -0.032 (0.019) -0.020*** (0.006) -0.017** (0.007) -0.006 (0.009) -0.006 (0.025) 

Hyakujushi Bank -0.012 (0.008) -0.040 (0.038) -0.020** (0.010) -0.007 (0.007) -0.005 (0.011) -0.013 (0.042) 

Iyo Bank -0.009 (0.007) -0.014 (0.024) -0.009 (0.010) -0.012 (0.009) -0.014 (0.009) -0.008 (0.012) 

Joyo Bank -0.007 (0.009) -0.014 (0.015) -0.003 (0.011) 0.001 (0.014) -0.010 (0.012) 0.002 (0.031) 

Juroku Bank -0.014 (0.009) -0.012 (0.026) -0.017 (0.017) -0.014 (0.010) -0.018 (0.011) -0.006 (0.014) 

Kagoshima Bank -0.011 (0.008) -0.040*** (0.009) -0.005 (0.008) -0.010 (0.009) -0.007 (0.014) 0.000 (0.025) 

Keiyo Bank -0.006 (0.007) -0.047*** (0.007) -0.030*** (0.009) -0.004 (0.008) 0.014* (0.008) 0.038*** (0.010) 

Miyazaki Bank -0.021* (0.011) -0.076*** (0.029 -0.026* (0.014) -0.009 (0.009) 0.001 (0.012) 0.026 (0.018) 

Musashino Bank -0.005 (0.006) -0.016 (0.015) -0.008 (0.006) -0.005 (0.009) -0.002 (0.007) 0.018** (0.009) 

Nanto Bank -0.023** (0.010) -0.009 (0.025) -0.017 (0.014) -0.025*** (0.009) -0.036 (0.022) -0.036 (0.024) 

Nishi-Nippon City Bank -0.002 (0.006) 0.011 (0.010) -0.013* (0.007) 0.003 (0.007) 0.003 (0.013) 0.017 (0.039) 

Ogaki Kyoritsu Bank -0.013* (0.007) -0.028 (0.017) -0.011 (0.008) 0.001 (0.009) -0.011 (0.008) -0.021 (0.019) 

Oita Bank -0.015* (0.008) -0.024* (0.014) -0.013 (0.009) -0.012 (0.012) -0.008 (0.013) -0.031* (0.016) 

San-In Godo Bank -0.009 (0.009) -0.014 (0.016) -0.009 (0.011) -0.013 (0.012) -0.001 (0.018) 0.001 (0.030) 

Seventy-seven Bank -0.012 (0.012) -0.028 (0.023) -0.003 (0.019) -0.007 (0.009) -0.017 (0.019) 0.001 (0.029) 

Shinsei Bank 0.010 (0.019) -0.029 (0.080) 0.013 (0.027) -0.002 (0.025) 0.020 (0.025) 0.082 (0.061) 

Shizuoka Bank -0.005 (0.011) 0.001 (0.035) -0.010 (0.015) -0.010 (0.013) -0.004 (0.017) -0.004 (0.017) 

Sumito Mitsui Finl. Gp. -0.011 (0.009) -0.019 (0.040) -0.016 (0.023) -0.004 (0.014) -0.011 (0.011) -0.032 (0.039) 

Suruga Bank -0.011 (0.015) 0.006 (0.036) 0.003 (0.027) -0.004 (0.024) -0.036* (0.020) -0.039 (0.026) 

Tochigi Bank -0.009 (0.006) -0.031** (0.012) -0.020** (0.008) -0.012* (0.006) 0.002 (0.008) 0.016 (0.012) 

Toho Bank -0.013* (0.007) -0.010 (0.022) -0.023 (0.014) -0.014 (0.010) 0.000 (0.008) 0.032 (0.034) 

Tokoyo Tomin Bank 0.038* (0.021) 0.132 (0.102) 0.005 (0.041) 0.028 (0.028) 0.057 (0.046) 0.093 (0.108) 

Yachiyo Bank -0.068 (0.064) -0.019 (0.891) -0.063 (0.054) -0.027 (0.040) -0.010 (0.046) -0.003 (0.029) 

Yamagata Bank -0.012* (0.007) -0.032 (0.026) -0.011 (0.010) -0.011 (0.009) -0.009 (0.009) -0.012 (0.019) 

Yamaguchi Finl.G. 0.018 (0.028) -0.039 (0.081) 0.012 (0.054) 0.008 (0.037) 0.050 (0.047) 0.055 (0.036) 

Note: OLS and QR regression results from Equation (4.6) and examine the relation between trading volume and the stock returns for each bank in our sample. Standard errors are displayed in parentheses below the 

coefficients. Asterisks *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 
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Panel B: Changes in prices and lagged-trading volume for individual banks 

  OLS   Q05   Q25   Q50   Q75   Q95   

  Volume   Volume   Volume   Volume   Volume   Volume   

Aichi Bank -0.007 (0.008) -0.032* (0.018) -0.015 (0.011) -0.017** (0.008) 0.010 (0.014) 0.038* (0.019) 

Akita Bank -0.013 (0.009) -0.031 (0.029) -0.016** (0.008) -0.014 (0.012) -0.008 (0.018) 0.010 (0.026) 

Aomori Bank 0.002 (0.006) 0.004 (0.020) -0.002 (0.010) 0.011 (0.009) 0.003 (0.007) -0.011 (0.012) 

Aozora Bank -0.032 (0.031) -0.078 (0.170) -0.130 (0.086) -0.015 (0.038) -0.019 (0.029) 0.080 (0.082) 

Awa Bank -0.008 (0.006) -0.031*** (0.011) -0.007 (0.008) -0.003 (0.0078) -0.013 (0.008) 0.013 (0.025) 

Bank Of Iwate -0.004 (0.008) 0.002 (0.020) -0.003 (0.017) -0.002 (0.009) -0.010 (0.009) 0.001 (0.029) 

Bank Of Kyoto -0.016** (0.007) -0.036*** (0.010) -0.013 (0.008) -0.007 (0.009) -0.010 (0.013) -0.030** (0.012) 

Bank Of Nagoya -0.009 (0.007) -0.041* (0.022) -0.028*** (0.009) -0.018** (0.007) -0.001 (0.009) 0.033*** (0.013) 

Bank Of Okinawa -0.002 (0.008) -0.048** (0.019) -0.015* (0.008) 0.003 (0.007) 0.015 (0.011) 0.039 (0.025) 

Bank Of The Ryukyus -0.009 (0.007) -0.041** (0.017) -0.022*** (0.004) -0.018** (0.007) 0.009 (0.011) 0.038* (0.020) 

Bank Of Yokohama -0.010 (0.011) -0.033 (0.029) 0.001 (0.011) 0.021* (0.011) -0.038 (0.024) -0.020 (0.040) 

Chiba Bank -0.016 (0.015) -0.012 (0.024) -0.014 (0.017) -0.031* (0.018) -0.031* (0.016) -0.054 (0.059) 

Chugoku Bank -0.008 (0.007) -0.012 (0.014) 0.000 (0.011) -0.001 (0.011) -0.017 (0.013) -0.020 (0.013) 

Daishi Bank -0.012* (0.007) -0.024 (0.018) -0.017* (0.008) -0.013 (0.012) -0.015 (0.012) -0.003 (0.013) 

Fukui Bank -0.025** (0.010) -0.029 (0.045) -0.040*** (0.014) -0.012 (0.014) -0.018 (0.016) -0.032* (0.019) 

Fukuoka Financial Gp. -0.029 (0.026) 0.027 (0.071) -0.006 (0.037) -0.046** (0.023) -0.066 (0.042) 0.009 (0.137) 

Gunma Bank -0.009 (0.007) -0.010 (0.017) -0.008 (0.0058) -0.004 (0.009) 0.001 (0.012) -0.016 (0.027) 

Hachijuni Bank -0.014* (0.008) -0.030* (0.017) -0.017 (0.010) -0.007 (0.012) -0.014 (0.010) -0.042*** (0.016) 

Higashi Nippon Bank -0.004 (0.013) -0.006 (0.036) -0.004 (0.020) -0.012 (0.010) 0.007 (0.016) -0.058 (0.042) 

Higo Bank -0.005 (0.010) -0.017 (0.014) -0.011 (0.013) -0.009 (0.011) 0.007 (0.016) -0.015 (0.023) 

Hiroshima Bank -0.012* (0.006) -0.041** (0.018) -0.023*** (0.004) -0.013** (0.007) 0.006 (0.013) 0.009 (0.027) 

Hokkoku Bank -0.010 (0.010) -0.048** (0.022) -0.016 (0.010) -0.014 (0.013) -0.004 (0.017) 0.021* (0.011) 

Hokuetsu Bank 0.001 (0.008) -0.002 (0.010) 0.012 (0.007) 0.003 (0.012) -0.010 (0.011) 0.007 (0.034) 

Hokuhoku Finl. Gp. -0.028 (0.024) 0.008 (0.033) -0.013 (0.029) -0.014 (0.023) -0.032 (0.033) -0.121*** (0.042) 

Hyakugo Bank -0.014** (0.007) -0.038 (0.025) -0.019*** (0.006) -0.019** (0.009) -0.012 (0.014) -0.017 (0.031) 

Hyakujushi Bank -0.011 (0.009) -0.039* (0.023) -0.021** (0.008) -0.005 (0.008) 0.000 (0.012) -0.021 (0.031) 
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Iyo Bank -0.009 (0.007) -0.015** (0.007) -0.007 (0.011) -0.007 (0.012) -0.006 (0.008) -0.009 (0.012) 

Joyo Bank -0.006 (0.0010) -0.014 (0.025) -0.011 (0.017) 0.003 (0.016) -0.006 (0.011) 0.002 (0.032) 

Juroku Bank -0.012 (0.010) -0.017 (0.033) -0.019 (0.014) -0.011 (0.014) -0.007 (0.013) 0.004 (0.013) 

Kagoshima Bank -0.010 (0.008) -0.0226* (0.012) -0.004 (0.009) -0.012 (0.010) -0.003 (0.017) -0.010 (0.028) 

Keiyo Bank -0.007 (0.007) -0.049*** (0.012) -0.025** (0.011) -0.008 (0.007) 0.009 (0.007) 0.045*** (0.013) 

Miyazaki Bank -0.012 (0.009) -0.066* (0.035) -0.012 (0.014) -0.003 (0.007) -0.007 (0.014) 0.021 (0.021) 

Musashino Bank -0.009 (0.006) -0.013 (0.018) -0.009* (0.005) -0.011 (0.009) -0.005 (0.008) 0.017 (0.016) 

Nanto Bank -0.001 (0.009) -0.027 (0.028) 0.015 (0.011) 0.007 (0.008) 0.006 (0.015) -0.042 (0.030) 

Nishi-Nippon City Bank -0.003 (0.006) 0.012 (0.012) -0.014 (0.009) 0.000 (0.007) -0.002 (0.013) 0.018 (0.032) 

Ogaki Kyoritsu Bank -0.014** (0.007) -0.022 (0.015) -0.013* (0.007) 0.002 (0.013) -0.018** (0.008) -0.012 (0.018) 

Oita Bank -0.011 (0.008) -0.028* (0.015) -0.012 (0.010) -0.006 (0.014) -0.003 (0.012) -0.025 (0.019) 

San-In Godo Bank -0.014 (0.010) -0.011 (0.018) -0.019 (0.016) -0.013 (0.015) -0.012 (0.014) 0.002 (0.028) 

Seventy-seven Bank -0.012 (0.013) -0.032 (0.021) -0.016 (0.024) -0.007 (0.014) -0.017 (0.027) 0.002 (0.018) 

Shinsei Bank 0.011 (0.024) 0.079 (0.112) -0.027 (0.030) -0.023 (0.015) 0.017 (0.032) 0.079 (0.080) 

Shizuoka Bank -0.007 (0.011) -0.006 (0.014) -0.010 (0.017) -0.006 (0.015) -0.002 (0.013) -0.017 (0.022) 

Sumito Mitsui Finl. Gp. -0.005 (0.020) 0.014 (0.051) -0.025 (0.028) -0.004 (0.016) -0.008 (0.023) -0.028 (0.045) 

Suruga Bank -0.013 (0.016) 0.012 (0.027) 0.010 (0.022) -0.004 (0.023) -0.049** (0.022) -0.048 (0.030) 

Tochigi Bank -0.011* (0.006) -0.031*** (0.010) -0.019*** (0.005) -0.014* (0.008) 0.004 (0.009) 0.008 (0.016) 

Toho Bank -0.013* (0.007) -0.014 (0.021) -0.024 (0.015) 0.007 (0.011) -0.001 (0.009) -0.029 (0.031) 

Tokoyo Tomin Bank 0.030 (0.033) -0.028 (0.112) 0.012 (0.080) 0.015 (0.060) 0.063 (0.081) 0.108 (0.102) 

Yachiyo Bank -0.024 (0.024) -0.015 (0.061) -0.054* (0.032) -0.038 (0.037) 0.021 (0.048) -0.002 (0.033) 

Yamagata Bank -0.007 (0.008) -0.043** (0.020) -0.002 (0.010) -0.002 (0.009) -0.003 (0.012) -0.005 (0.016) 

Yamaguchi Finl.G. 0.027 (0.025) -0.002 (0.083) 0.051 (0.039) 0.015 (0.035) 0.015 (0.045) 0.045 (0.051) 
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