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The tropical savannas of northern Australia are a dynamic system where humans, wildlife, 

forage and fire interact to create habitat mosaics suitable for large herbivores.
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Abstract 

Australian mammals have exhibited exceptionally high rates of decline since European 

settlement 230 years ago, especially in arid and semi-arid regions. In recent decades there has 

been increasing concern over the current declines of small mammals in northern tropical 

savannas.  In these systems, little scientific attention has been given to the suite of large 

macropods, family Macropodidae, (common wallaroo [Osphranter robustus], antilopine 

wallaroo [O. antilopinus] and agile wallaby [Notamacropus agilis]), some thought to be 

declining by Aboriginal Traditional Owners. These species may be impacted by feral 

herbivores and contemporary fire regimes, threats that are both linked to small mammal decline 

and impact forage quantity and quality. A multi-scale approach – from landscape- to local-

scales – was utilized with the overall objectives of exploring the nexus between fire, forage 

and herbivory in two regions of northern Australia and examining the applicability of the 

concept of pyricherbivory, the spatial and temporal interactions of fire and grazing, to 

Australian savannas.  The North Kimberley bioregion in Western Australia and Arnhem Land 

in the Northern Territory are regions of largely intact tropical savanna, each with well-

established feral herbivores and active Indigenous fire management. Arnhem Land, where 

water buffalo (Bubalus bubalis) is the dominant feral herbivore, has a continual history of 

Aboriginal fire management, in contrast to the North Kimberley, where fire management was 

disrupted by European colonial activity and with a more recent establishment of the dominant 

feral herbivore, cattle (Bos spp.). Arnhem Land has also been the focus of several feral 

herbivore surveys in the recent past, unlike the North Kimberley.  

My thesis begins by using aerial surveys, road transects and remote camera trapping to examine 

the effects of feral cattle and fire on the distribution and abundance of large macropods in the 

North Kimberley. Density and biomass of feral cattle exceeded that of macropods regardless 

of survey technique utilised.  Density estimates for cattle were up to 125 times higher (0.3-10.0 

km-2) than estimates for macropods (0.08-0.49 km-2). Cattle biomass, based on the aerial 

surveys (corrected for perception bias), were 15 and 95 times higher than macropods for 

infertile (279 versus 19 kg km-2) and fertile savannas (518 versus 5 kg km-2), respectively. 

Proximity to the nearest pastoral property was a significant predictor of the aerial sightings of 

feral cattle, suggesting cattle are continuing to expand throughout the area from adjacent 

pastoral lands. Abundance and foraging activity of cattle were positively associated with 
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recently burnt areas. In contrast, camera trapping showed agile wallaby and wallaroo 

occurrence and foraging behaviour were associated with unburnt areas. Agile wallabies and 

wallaroos were negatively associated with cattle and showed substantial diurnal and seasonal 

separation consistent with an antagonistic interspecific interaction. These multi-scale surveys 

suggest that recent landscape changes such as altered fire regimes and introduced herbivores 

have negatively impacted large grazing macropod species.  

Isotopic analysis of faecal samples was conducted in the North Kimberley to evaluate how 

macropods and feral cattle utilise such variable forage resources throughout the dry season. 

Feral cattle, wallaroos and agile wallaby utilised forage resources differently, consistent with 

previous related studies comparing buffalo and macropods in Arnhem Land.  The contribution 

of grass to the diet of the agile wallaby was unrelated to substrate fertility, fire or dry season 

period (early, mid-, late dry season) which aligns with their known status as a mixed feeder. 

Wallaroos had the highest contribution of grass to their diet, compared to cattle and agile 

wallaby, with higher proportions of grass consumed on fertile substrates, regardless of fire or 

dry season period. Cattle diets incorporated more grass in burnt, fertile areas and in the early 

and late dry season, with a decrease in grass utilisation during mid-dry season, most likely 

related to the availability of alternative food resources. Cattle diets were highly variable in 

response to forage quality, ranging from 0-91% grass compared to wallaroos, ranging from 36-

100% grass. Diets of wallaroos and cattle were correlated with live forage fibre content (R2 = 

0.41 and 0.56, respectively). As fibre content increased with herbaceous biomass curing, grass 

intake decreased, precipitously so for cattle, demonstrating their diet flexibility.  

To understand the underlying mechanisms of local-scale competition in both the North 

Kimberley and Arnhem Land, we used remote camera trapping and grazing exclosures to 

examine how herbivory, fire, seasonality, and soil fertility affect forage quantity and quality, 

in turn affecting herbivore distribution. We found that, even at low herbivore densities, grazing 

reduced forage quantity (live, dead and total standing herbaceous biomass) and increased 

forage quality (crude protein content of live herbaceous biomass). Fibre content of live 

herbaceous biomass was significantly lower in burnt vs. unburnt sites and fertile vs. infertile 

sites. There was no significant distinction between early and late dry season fires. However, 

sites burnt in the late dry season had the highest crude protein content of live biomass, 

highlighting the importance of heterogeneous fire regimes in providing high-quality forage 

throughout the dry season.  Field sites in Arnhem Land had lower measures of overall forage 
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quality (lower crude protein and higher fibre contents of live biomass) but supported more feral 

herbivores and wallaroos than sites in the North Kimberley. One possible explanation is that 

water buffalo and feral cattle may exert different levels of competitive pressure on native 

herbivores. Results suggest that pyricherbivory strongly influences the feeding behaviour of 

feral herbivores and some native herbivores. 

 

In summary, I found that the biomass of introduced feral herbivores far outweighs that of native 

herbivores at the two study locations in Australia’s northern savannas. Macropods are not 

behaving as predicted by the theory of pyricherbivory, which contends that herbivores are 

drawn to, and utilise, recently burnt, highly nutritious forage. Macropod foraging was 

associated with unburnt areas of low forage quality, in contrast to both historical and 

contemporary records of Traditional Ecological Knowledge regarding burning for macropod 

management. This discrepancy is possibly due to competition with feral herbivores for limited 

high-quality forage. Feral cattle and water buffalo have a wider dietary breadth than large 

macropods in the savannas and are thus better able to cope with forage of lower quality by 

varying their relative intake of grass and browse. The largest native grazing herbivores, 

wallaroos, are less capable of such dietary plasticity. Collectively, my results point to the 

importance of ongoing control of large feral herbivores in conservation areas and the 

incorporation of more late dry season fires in addition to early dry season burning to maintain 

forage quality for macropods throughout the dry season, more closely replicating the historical 

Indigenous fire regime. Further surveys of grazing macropods elsewhere in the tropical 

savannas of Australia are necessary to confirm regional population declines and advance our 

understanding of the complex relationships between native and feral herbivores, forage, fire 

and Indigenous wildlife management.  
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1.1 SAVANNA DYNAMICS: FIRE AND HERBIVORY  

 

Fire is a natural process in many ecosystems across the globe (Bond and Keeley, 2005) where 

it influences nutrient cycling, distribution, abundance and vigour of wildlife, livestock, and 

vegetation, and affects human use of landscapes.  Likewise, grazing by herbivores, large 

herbivores especially, can alter fire regimes, as well as nutrient cycling, vegetation structure 

and species composition (Chaneton et al., 1996; Ash and McIvor, 1998b; Asner et al., 2009).  

Both fire and grazing are strongly influenced by human activity. Humans can alter the 

seasonality, frequency and size of fires, both by lighting and suppressing fires (Bowman et al., 

2011; Archibald, 2016), while hunting of native herbivores and the introduction of exotic 

herbivores and pastoralism alters the abundance, diversity and distribution of herbivores across 

the landscape.  

 

Savannas are a dynamic laboratory in which to study interactions between fire and grazing as 

they are one of the primary ecosystems in the world where large herbivores and fire occur in 

abundance. Fire has been likened to a global herbivore and both fire and herbivores are able to 

exert consumer control over ecosystems (Bond and Keeley, 2005), but although fire may 

compete with herbivores for plant biomass it can also provide benefits to competing herbivores.  

In grass dominated ecosystems, such as grasslands and savannas, fire consumes poor-quality 

dry forage and replaces it with high-quality forage.  Pyricherbivory describes this process; 

herbivores follow nutritious grasses resprouting after fire (known as ‘green pick’) resulting in 

a fine-scaled patch mosaic of vegetation caused by the differential grazing pressure (Fig. 1.1; 

Fuhlendorf and Engle, 2001).  Grazing pressure regulates fire on the landscape as different 

patches vary in flammability creating a feedback between herbivores, vegetation and fire; this 

feedback is thought to increase ecosystem productivity and biodiversity (Fuhlendorf and Engle, 

2001; Fuhlendorf et al., 2009). Similarly, the pyrodiversity hypothesis proposes that spatial 

heterogeneity of landscape fire leads to higher biodiversity (Martin and Sapsis, 1992). 

Pyricherbivory is just one example of how pyrodiversity operates to connect biodiversity with 

ecosystem processes and patterns via fire (Bowman et al., 2016).   

 

Pyricherbivory and pyrodiversity have been most thoroughly examined within the North 

American grassland and African savanna ecosystems with ungulate herbivores. The interaction 

of fire and grazing supersedes either process working individually to shape grassland 

ecosystems in the North American Great Plains and operates similarly for native and introduced 
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species (Allred et al., 2011a). This interaction has been linked to greater botanical and 

vegetation structural diversity (Fuhlendorf and Engle, 2004) and the shifting mosaic of habitat 

patches across the landscape in varying states of recovery from the forces of fire and herbivory 

can fulfil habitat needs for more species than a uniformly managed landscape (Fuhlendorf et 

al., 2006; Engle et al., 2008; Ricketts and Sandercock, 2016). Similarly, African grazing lawn 

distribution and persistence is explained by pyricherbivory (Archibald et al., 2005; Archibald, 

2008) and in systems with a high diversity of large herbivores, such as African savannas, the 

scale and patchiness of fires can influence the selectivity by herbivores for years following a 

fire (Kimuyu et al., 2017).  Australian savannas draw several parallels with other grass-

dominated systems around the world including a long history of grazing and high fire 

frequencies, however, the relative low density of herbivores, marsupial herbivore guild and 

nutrient deficient soils may be important differences relating to how pyricherbivory and 

pyrodiversity function on the continent. 

Figure 1.1 Conceptual model of the interacting consumer controls exerted by fire and 

herbivory. Adapted from (Fuhlendorf and Engle, 2004). 
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1.2 THE AUSTRALIAN CONTEXT: NORTHERN TROPICAL SAVANNAS IN FLUX 

 

 “Fire, grass, kangaroos and human inhabitants, seem all dependant on each other for 

existence in Australia; for any one of these being wanting, the others could no longer continue. 

Fire is necessary to burn the grass, and form those open forests, in which we find the large 

forest-kangaroo; the native applies that fire to the grass at certain seasons, in order that a 

young green crop may subsequently spring up, and so attract and enable him to kill or take 

kangaroo with nets.”   

-Major Thomas Mitchell (Mitchell, 1848, p. 412) 

 
Fire and herbivory remain integral to the formation and maintenance of ecosystems 

characterised by high fire frequency, such as tropical savannas, that account for approximately 

22% of global land area (Ramankutty and Foley, 1999) and 26% of mainland Australia.  

Northern Australia’s tropical savannas have likely been experiencing and been shaped by 

frequent fires since the development of its monsoon climate in the late Tertiary (Bowman, 

2002), receiving the majority of its rainfall during the austral summer wet season, December 

to April. Alternately, the remainder of the year is relatively dry.  This wet–dry cycle allows for 

the rapid accumulation of forage (edible herbaceous biomass) during the wet season while 

plants have ample water resources followed by conditions that rapidly dry out the vegetation.  

This cycle both allows the landscape to support large-bodied grazing animals, such as 

macropods (i.e. members of the marsupial family Macropodidae, including kangaroos and 

wallabies) and extinct megafauna, and makes the landscape a ready fuel source for fires.  The 

“boom–bust” nature of high-quality forage in these savannas in addition to a long history of 

both natural and Indigenous fire has led to an intricate web of relationships between vegetation, 

large herbivores, and fire that has evolved over millennia, complicated by the relatively recent 

introduction of feral grazing animals and changed fire regimes following European settlement. 

 

1.2.1 ‘Fire-stick farming’: traditional Aboriginal fire use and contemporary fire regimes 

 

Australia’s savannas have a long history of human occupation (beginning around 65,000 years 

ago; Clarkson et al., 2017) and subsequent Aboriginal fire use that changed the previous 

lightning fire regime and altered the landscape (Bowman, 1998). The traditional fire regime is 

characterized by frequent, small fires lit throughout the dry season with high spatial and 



Chapter 1    Introduction 

5 

temporal heterogeneity (Vigilante, 2001). Aboriginal fire use, coined ‘fire-stick farming’ 

(Jones, 1969), was utilized for many reasons including food gathering (foraging and hunting), 

protection of sacred sites and plant resources, and ease of travel (Lewis, 1989; Bowman et al., 

2001; Walsh and Cross, 2004).  Though northern Australia would have had high fire 

frequencies in the absence of humans, due to lightning strike density and dry fuel sources, it is 

the Aboriginal inhabitants that have harnessed this tool for improved production of resources 

and the use of fire to provide high-quality forage for grazing macropods is well documented 

(Lewis, 1989; Saint and Russell-Smith, 1997; Bowman et al., 2001). 

Landscape fire changed drastically where Aboriginal populations were moved off country and 

into settlements (Russell-Smith, 2001; Vigilante, 2001; Edwards et al., 2003; Fisher et al., 2003; 

Russell-Smith et al., 2003; Legge et al., 2011b).  The fire regime shifted to large, high intensity 

fires burning predominantly in the late dry season in unmanaged landscapes (Vigilante, 2001).  

In areas historically characterized by predominantly late dry season burning, there is evidence 

of a seasonal shift to early dry season burning as European management pre-emptively burnt 

landscapes in an attempt to eliminate late dry season wildfires (Bowman et al., 2007a).  

Increased tree mortality, reduced production of fruit by trees, reduced fire patchiness, and 

damage to rainforest patches and populations of obligate-seeding trees and shrubs have all 

resulted from shifting fire regimes (McKenzie and Belbin, 1991; Russell-Smith and Bowman, 

1992; Bowman and Panton, 1993; Williams, 1995; Setterfield, 1997; Williams, 1997; Legge et 

al., 2015; Trauernicht et al., 2015).  In areas where Traditional Owners have been given back 

rights to their land (under the Native Title Act 1993) fire regimes have changed to smaller fires 

in the early dry season resulting in higher landscape heterogeneity (Legge et al., 2015) than 

unmanaged lightning regimes (Bird et al., 2008).   

1.2.2 Marsupial herbivores: past and present 

In prehistoric times, the savannas of Australia were inhabited by a diversity of megaherbivores, 

including giant kangaroos (e.g. Procoptodon goliah [c. 240 kg]) and the largest known 

marsupial herbivore weighing up to 2,700 kg (Diprotodon optatum; Long et al., 2002). 

However, by the Late Pleistocene, 26 herbivorous species larger than the biggest extant 

herbivore (Macropus rufus [c. 60 kg]) had become extinct (Flannery, 1990), linked by some to 

overhunting by humans (Johnson, 2006) and biased towards browsers (Bowman et al., 2010b). 

Today, there is only a small suite of large herbivores with a range across the northern tropical 
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savannas including the common wallaroo (Osphranter robustus [c. 40 kg]), antilopine wallaroo 

(O. antilopinus [c. 35 kg]), and agile wallaby (Notamacropus agilis [c. 20 kg]).  These are some 

of Australia’s largest extant native herbivores, occurring in varied assemblages with smaller 

macropods across the north, and are of importance to local Aboriginal populations as both a 

food source and spiritually/culturally (Altman, 1982).  The common wallaroo, antilopine 

wallaroo and agile wallaby are all listed by the International Union of Conservation and Nature 

as species of least concern even though the antilopine wallaroo and agile wallaby populations 

are noted as declining with no known major threats listed for either species (IUCN 2018). There 

is anecdotal evidence to support this claim in the northern savannas (Ritchie, 2007; White et 

al., 2009; Roberts et al., 2016) where introduced grazers are well-established.   

1.2.3 Niche vacancy and the introduction of domestic livestock 

Australian tropical savannas were devoid of megaherbivores (> 100 kg) when European settlers 

introduced grazing animals starting in the 1820s (Letts, 1962).  Subsequently, these ungulate 

herbivores (e.g. cattle [Bos spp.], water buffalo [Bubalus bubalis], horse [Equus caballus] and 

donkey [E. asinus]) established large feral populations and have resisted eradication despite 

extensive control attempts of some species (Freeland and Boulton, 1990). By 1985, the Top 

End of the Northern Territory had approximately 341,406 ± 22,693 buffalo, 355,963 ± 20,475 

cattle (both domestic and feral) and 71,806 ± 6,114 horses and it was recommended that 

attempts at feral cattle and buffalo eradication be abandoned (Bayliss, 1985; Bayliss and 

Yeomans, 1989b).  Indeed, feral herbivores in the northern savannas have become more 

populous in Australia than in their native habitat (Freeland, 1990) and some (cattle and water 

buffalo) have become a major source of protein for Aboriginal populations, making their 

extirpation undesirable (Altman, 1982; Bowman and Robinson, 2002; Robinson et al., 2005). 

Cattle and water buffalo (450-1,200 kg), the largest and most numerous feral herbivores 

(Bayliss and Yeomans, 1989b), can affect existing native herbivores directly by introducing 

competition for forage, water and habitat or indirectly by manipulating the habitat through 

trampling/habitat degradation and changes to the fire regime (Taylor and Friend, 1984; Petty 

et al., 2007; Bowman et al., 2011; Eldridge et al., 2016).  These feral ungulates are more 

generalised feeders compared to the relatively specialised native macropods. Specialists utilize 

their chosen resources more efficiently but are only favoured under optimal habitat conditions 
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compared to generalists who can adjust to fluctuating or degraded habitats (Brown, 1996; 

Bowman et al., 2010b; Poisot et al., 2011).   

 

1.2.4 The North Kimberley and Arnhem Land: analogous regions with divergent contemporary 

disturbances 

 

Tropical savannas span the longitudinal range of Australia, comprising several biogeographical 

regions. The North Kimberley in northern Western Australia and Arnhem Land in the north-

eastern Northern Territory are part of two of the three major sandstone regions of the northern 

tropical savannas and are considered to be sister bioregions (Fig. 1.2;  Cracraft, 1991; Bowman 

et al., 2010a). Arnhem Land is dominated by infertile sandy soils (Aldrick, 1976) while the 

North Kimberley is a combination of infertile sands and relatively fertile volcanic soils though 

average herbaceous biomass in Eucalytpus tetrodonta habitats for the Kimberley and Arnhem 

Land are similar (1.30 and 1.14 t ha-1, respectively; Bowman et al., 2007b), while tall grass 

savannas have a higher grassy biomass. Both regions have a similar rainfall pattern, receiving 

over 90% of rain between November and April with comparable mean rainfall (approximately 

1200 mm; Bureau of Meteorology 2018). Both regions share the same suite of large grazing 

macropods mentioned above (Table 1.1), except for the black wallaroo (Osphranter bernardus) 

endemic to Arnhem Land, and ethnographic evidence recorded from Traditional Owners in 

both regions confirms the traditional use of burning for production of forage for kangaroos 

(Bowman et al., 2001; Bowman and Vigilante, 2001).  

 

Colonial activity in the North Kimberley and Arnhem Land starting in the late 1800’s led to 

movement of Aboriginal populations off country and into settlements and a subsequent shift in 

fire regime towards large, high-intensity fires predominantly in the late dry season on 

unmanaged landscapes (Russell-Smith, 2001; Vigilante, 2001; Edwards et al., 2003; Fisher et 

al., 2003; Russell-Smith et al., 2003; Legge et al., 2011b). Subsequently, lands under European 

management have been dominated by early dry season fires in an attempt to control the large 

late season fires previously dominating the landscape (Bowman et al., 2007a). However, 

Arnhem Land has an unbroken history of Aboriginal ownership and management and the 

outstation movement starting in the 1980s led to Aboriginal groups establishing small 

settlements back on homelands and a return to more traditional livelihoods which support 

customary burning practices (Yibarbuk et al., 2001). Aboriginal populations in the North 

Kimberley have been progressively confined to settlements off-country as their homelands 
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were claimed by colonists, including pastoralists, and government.  Native Title claims won in 

the North Kimberley in recent decades have allowed Traditional Owners to reclaim their 

traditional lands and establish fire management programs better replicating historical fire 

regimes (Vigilante et al., 2004; Vigilante et al., 2017) but the North Kimberley is still 

dominated by non-traditional ignition sources (e.g. aerial incendiaries) with fire ignitions 

concentrated in the early dry season compared to Arnhem Land with an even distribution of 

fires throughout the dry season (Petty and Bowman, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Location of the North Kimberley and Arnhem Land (shaded orange) within the 

greater context of the Australian tropical savannas (shaded beige).  

 

The dominant feral herbivores in Arnhem Land (water buffalo) and the North Kimberley (cattle) 

are both bulk-feeding ruminants (Table 1.1), utilising fermentation during digestion to process 

large amounts of high-roughage forage, and of similar body size. However, Arnhem Land has 

a longer history of invasion by large feral herbivores than the North Kimberley. Water buffalo 

introductions started in the Northern Territory in the 1820s (Letts, 1962) compared to the North 

Kimberley where feral cattle dispersed from pastoral leases starting in the 1900s. Due to the 

proximity to the scientific base of the Northern Territory (Darwin), Arnhem Land has been 

more extensively surveyed for both feral and native herbivores (Bayliss and Yeomans, 1989b; 

Koenig et al., 2003; Saalfeld, 2006; Ritchie et al., 2008) including research on diet and habitat 

associations (Telfer and Bowman, 2006; Murphy and Bowman, 2007b; Telfer et al., 2008; 

Bowman et al., 2010b). There has been little published regarding feral cattle and large native 
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macropod surveys and landscape distribution in the North Kimberley (Ritchie et al., 2008) 

owing to the distance from Perth, the main research base in Western Australia, and no studies 

in either region looking specifically at interactions between feral herbivores and native 

macropods.      

1.3 CONCEPTUAL MODEL OF FACTORS AFFECTING MACROPOD 
ABUNDANCE 

The nexus between vegetation, herbivore abundance, and fire in tropical savannas has been 

made more complex by recent changes to this long-evolved system. Potential factors relating 

to macropod decline are considered in a conceptual model (Fig. 1.3). The factors presented 

here are not exhaustive and were not all explored during this project (only factors in the shaded 

polygon were considered further), however, it is important to acknowledge other factors not 

dealt with here that may be contributing to changes in large macropod abundance in northern 

Australia's tropical savannas.  

1.3.1 Factors affecting macropod abundance further considered in this project 

Fire 

Increased fire frequency, intensity and extent are often provided as reasons for widespread 

floral and faunal declines in the northern savannas (Woinarski et al., 2001; Pardon et al., 2003; 

Woinarski et al., 2004; Legge et al., 2008; Woinarski et al., 2010). Extensive research has been 

undertaken into impacts of altered fire regimes on small mammals, reptiles and birds (e.g. 

Pardon et al., 2003; Woinarski et al., 2004; Legge et al., 2008; Woinarski and Legge, 2013; 

Lawes et al., 2015) but macropods have been studied to a lesser extent.  Across northern 

Australia, Ritchie et al. (2008) found antilopine wallaroos to be more abundant at sites burnt 

more than once by late dry season fires during the 3-year study period and common wallaroos 

to be less abundant on burnt sites. In contrast, Telfer et al. (2008) found common wallaroos in 

Arnhem Land to be marginally associated with recently burnt areas. Murphy and Bowman 

(2007b) found that the relationship to burnt areas was dependant on habitat and large 

macropods were more abundant on burnt areas only on moist sites whereas more infertile sites 

had a higher abundance in unburnt areas. Of the previous studies, Ritchie et al. (2008) was the 

only to incorporate sites outside Arnhem Land. 
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Competition with feral species 

In concert, altered fire regimes and introduced large herbivores have reduced landscape 

productivity by reducing vegetative cover and habitat alteration (Burbidge and McKenzie, 

1989) and studies suggest that the interactive effects of introduced grazers and changed fire 

regimes have been largely underestimated in regard to faunal declines across northern 

Australian savannas (Woinarski and Ash, 2002; Kutt and Woinarski, 2007; Legge et al., 2008; 

Legge et al., 2019). Similar to changed fire regimes, grazing impacts of large feral herbivores 

on small mammals have been examined (e.g. Legge et al., 2011a) but to a lesser degree on 

macropods which are likely to be negatively impacted by such introductions. Although Ritchie 

et al. (2008) found antilopine wallaroos were more abundant on cattle grazing sites than 

conservation lands on basaltic geology and no difference in abundance between sandstone 

conservation lands versus cattle grazing sites, the authors recognized that pastoral leases are 

typically in more productive parts of the landscape than conservation areas and provide access 

to artificial watering points so the association may be more directly related to substrate fertility 

and better water accessibility. Similarly, common wallaroos were more abundant on sites 

grazed by cattle than conservation area on granitic geology (Ritchie et al., 2008). Though this 

previous work in the tropics has examined the association between macropods and pastoral 

lands, it has not looked specifically at interspecific associations between feral and native 

herbivores. 

 

Habitat requirements 

Habitat requirements of the antilopine and common wallaroos and agile wallaby have been 

extensively studied in the tropical savannas. The antilopine wallaroo is found in woodlands 

and open forests in gently undulating terrain with perennial grass-dominated understoreys and 

avoid rocky areas (Croft, 1987; Ritchie, 2007). The antilopine wallaroo is associated with 

permanent water (Ritchie et al., 2008) because this species uses evaporative cooling (thus more 

water loss) and does not use rock shelters during the day (Dawson, 1995). The abundance and 

distribution of the common wallaroo are strongly influenced by climate with a weak positive 

correlation with water availability (Ritchie et al., 2008). The common wallaroo is associated 

with rockier habitats and the species uses boulders, rock outcrops and caves as a shelter 

resource for thermoregulation allowing less dependence on water sources (Croft, 1987; 

Dawson, 1995; Telfer and Garde, 2006). The agile wallaby utilises a range of habitats including 

upland undulating woodlands, valleys, alluvial plains and forests and are often associated with 

riverine habitats (Bell, 1973; Croft, 1987; Press, 1988; Stirrat, 2003). 
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Table 1.1 Dominant native and introduced herbivores in the North Kimberley and Arnhem Land. 

Species Weight (kg) Habitat Feeding Behaviour 

Native 

Common wallaroo 

Osphranter robustus 
25-55

rocky ranges and plateaux in 

arid shrublands, grasslands 

and wet eucalypt forests 

grazer - forages on grasses and 

forbs 

nocturnal and crepuscular, rests 

during the day in cave or under 

rock overhang 

Antilopine wallaroo 

O. antilopinus
20-49

tropical savannas with 

perennial grasses, usually on 

plains and low hills 

grazer - forages on grasses 

active throughout day and night in 

wet season and emerges from 

shelter in late afternoon in dry  

Agile wallaby 

Notamacropus agilis 
15-27

wide range of grassy forest 

and woodland communities, 

often in riverine habitats in 

tropical savannas 

mixed - grazes and browses on 

wide variety of plants, also eats 

fallen fruit 

shelters during the day under dense 

vegetation and emerges in late 

afternoon to feed 

Introduced 

Water buffalo        

Bubalis bubalis 
450-1,200

floodplains and adjacent 

slopes in the Top End of NT 

grazer - aquatic vegetation during 

wet season; dry season includes 

terrestrial veg and browse 

nocturnal and crepuscular, spends 

days in muddy wallow and nearby 

wooded country 

Cattle          

Bos taurus 
400-1,100

riverine habitats, plains and 

low hills 

grazer - forages on grasses and 

forbs 

crepuscular, shelters in rainforest 

patches, riverine habitat and rock 

overhangs 

Cattle information gathered from local knowledge; all other entries from (McKenzie, 1981) 
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Forage 

Macropods have been shown to vary their diet in relation to fluctuating forage quality and 

quantity, for example, eating a larger proportion of grass on burnt areas where nitrogen content 

is highest (Telfer and Bowman, 2006; Murphy and Bowman, 2007b). Forage quantity and 

quality can fluctuate greatly in tropical savannas due to dynamic processes such as fire and 

herbivory or more static underlying factors such as soils. However, it is unknown how these 

factors influence the diet of the largest macropods in the Kimberley region as previous diet 

studies have been conducted exclusively in the Northern Territory or subtropical regions. 

Previous studies have reported that the antilopine wallaroo only grazes grasses (Croft, 1987) 

while the diet of the common wallaroo includes large amounts of non-grass, such as woody 

browse and forbs, when grass is in limited supply (Dawson, 1995; Telfer and Bowman, 2006). 

The agile wallaby prefers grasses and legumes, but broadens its diet to include browse, leaf 

litter, fruits, flowers and roots when forage quality is low during the dry season (Stirrat, 2002). 

 

1.3.2 Factors affecting macropod abundance not in the scope of this project 

 

Hunting 

Aboriginal hunting was most likely a more substantial pressure on abundance of large 

macropods in pre-European times with subsistence hunting and the Aboriginal population 

distributed across the northern savannas. Even so, research done in the deserts of northern 

Western Australia, south of the tropical savannas, found that benefits to the common wallaroo 

population from Aboriginal burning outweighed the negative effects of Aboriginal hunting 

(Codding et al., 2014).  

 

Predation 

In addition to bottom-up controls (forage), herbivore populations are affected by top-down 

controls (predators). Dingoes, considered the only major predator of large macropods (apart 

from humans; Robertshaw and Harden, 1989), are controlled over large areas of southern 

Australia and large macropod abundance is typically highest where dingoes are absent (Pople 

et al., 2000; Letnic et al., 2009). This is true in the tropical savannas as well, large macropods 

were more abundant on sites where dingo baiting occurred (Leo et al., 2019). While dingoes 

remain widespread and abundant throughout most of northern Australia (Ritchie et al., 2008), 

predation risk isn’t necessarily dependent on predator density, but can be related to the presence 

of alternative prey (Nordberg and Schwarzkopf, 2019). Caughley et al. (1980) found this to be 
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true in pastoral lands of southern Australia where large macropods were present at lower 

densities when preyed upon by dingoes with abundant alternative prey, in this case, rabbits. 

Croft (1987) suggests common wallaroos might escape predation by dingoes because they can 

outmanoeuvre them in rocky terrain where they typically are found. Alternately, antilopine 

wallaroos and agile wallabies may have a higher predation risk as they are more dependent on 

water, where predators focus hunting.  

Disease 

Monitoring and testing of a sentinel herd of cattle, an early detection system for biosecurity 

risks, at Kalumburu Mission in the North Kimberley starting in 1989 as part of the Northern 

Australia Quarantine Strategy program has not revealed evidence of disease outbreak and 

biosecurity officers have more recently (since 2013) been gathering community animal health 

reports from Indigenous ranger groups across northern Australia without any reports 

specifically relating to large macropod health concerns (Cassandra Wittwer, pers. comm., 

2018). In addition, there have been no reported population crashes before 1989 for antilopine 

or common wallaroos or agile wallabies in the tropical savannas (Speare et al., 1989). 

Climate change 

Macropods in the northern savannas are well-adapted to harsh conditions with characteristics 

such as minimal water dependence, body heat management and reproductive control via 

embryonic diapause and seasonal anoestrous (Jackson and Vernes, 2010). However, as 

temperatures increase due to climate change, northern macropods may suffer range reductions. 

For example, the antilopine wallaroo is projected to have an 89% range contraction with a 

2.0˚C increase in mean annual temperature (Ritchie and Bolitho, 2008).  Additionally, suitable 

climatic conditions for both antilopine and common wallaroos are likely to disappear from the 

Northern Territory and Western Australia under warmer conditions, with a modest scenario 

(0.4˚C increase) leading to a 22% reduction in the core range of the antilopine wallaroo (Ritchie 

and Bolitho, 2008).  Increases to mean annual temperature projected by 2070 are predicted to 

threaten the antilopine wallaroo with extinction and reduce the habitat of the four largest 

macropods by an average of 96% (Ritchie and Bolitho, 2008). 
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Figure 1.3 Conceptual model of factors affecting abundance of large macropods. Factors with 

a direct impact on population size are denoted with solid lines while indirect connections are 

denoted with dashed lines and are not exhaustive. This project focused on factors within the 

shaded polygon only. Previous research in the northern tropical savannas is denoted as 

superscript numerals as follows: 1 - (Ritchie et al., 2008); 2 - (Telfer et al., 2008); 3 - (Murphy 

and Bowman, 2007b); 4 - (Ritchie, 2007); 5 - (Croft, 1987); 6 - (Dawson, 1995); 7 - (Telfer 

and Garde, 2006); 8 - (Bell, 1973); 9 - (Stirrat, 2003); 10 - (Press, 1988); 11 - (Telfer and 

Bowman, 2006); 12 - (Stirrat, 2002); 13- (Codding et al., 2014); 14 - (Leo et al., 2019); 15 - 

(Ritchie and Bolitho, 2008). 

1.4 THESIS OUTLINE 

Arnhem Land has a longer history of feral megaherbivore establishment and a relatively 

uninterrupted traditional fire regime compared to the North Kimberley, two mechanisms that 

can create and maintain landscape mosaics. Paired studies in these regions can fill knowledge 

gaps regarding fire, forage and herbivory and place findings in the framework of a well-

established scientific body of research.  Additionally, comparison of similar geological 

substrates in the North Kimberley and Arnhem Land with slight variations in fire and differing 

dominant feral herbivores allows for interpretation of results over a broader geographical range 

and generalisation regarding the role of large feral herbivores. Past research has largely focused 

on feral herbivores and native macropods independently. However, there is a need to study 
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both herbivore groups together in relation to savanna dynamics in northern Australia. It is in 

this context that I examine the complexity of associations between forage, fire and herbivory 

of the dominant species. 

1.4.1 Thesis aims 

My thesis explores the interrelationships between forage, fire and large native and introduced 

herbivores on lands under Aboriginal management by utilizing landscape ecology and targeted 

experiments to further the understanding of fire and grazing dynamics in tropical savannas.  

Specifically, the aims are to: 

• Compare the density and biomass of native and feral large herbivores and investigate

environmental factors affecting multi-scale herbivore distribution in Australian tropical

savannas;

• Examine the dietary breadth of large herbivores and evaluate the implications for

success of feral cattle and water buffalo;

• Explore the effects of fire and herbivory on forage quantity and quality and investigate

the mediating role of forage between fire and herbivore distribution.

This research was undertaken in collaboration with Wunambal Gaambera Aboriginal 

Corporation (WGAC; covered under a cooperative research agreement) and the Uunguu 

Rangers in the North Kimberley, and Kune Traditional Owners in Arnhem Land. The WGAC, 

Uunguu Rangers and Kune Traditional Owners participated in the planning and 

implementation of fieldwork for this project and I relied heavily on their Traditional Ecological 

Knowledge (TEK) to provide baseline information about habitat and wildlife abundance on 

traditional lands. The TEK was an immeasurable resource regarding knowledge of local flora, 

fauna and ecosystem processes such as fire, and provided important information on changing 

environmental conditions that was otherwise unrecorded in the scientific literature.  

1.4.2 Overview of chapters 

My thesis consists of five chapters: experimental chapters (Chapters 2–4) are written in the 

style of peer-reviewed journal articles and will be submitted for publication. Chapter 2 has been 

submitted and is currently under review (Reid et al., 2019a), Chapter 3 has been accepted for 

publication by Austral Ecology (Reid et al., in press) and Chapter 4 is in preparation for 
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submission (Reid et al., 2019b). In all cases I was the lead author and developed and conducted 

the research under guidance of my supervisory team. The articles have been reformatted 

(including figure and table numbering) for ease of reading and references have been collated 

into a single section at the end of the document. 

  

Arnhem Land and the North Kimberley represent two large expanses of intact tropical savanna, 

currently under the management of Aboriginal Traditional Owners, with active fire 

management and populations of both native and feral large herbivores.  Including both areas 

as study sites allows for examination of processes and patterns at a sub-continental scale (Table 

1.2). Arnhem Land has a more comprehensive record of feral herbivore surveys than the North 

Kimberley due to its proximity to the scientific research base in Darwin, NT. In order to 

conduct a proper comparison of large herbivore density and distribution in the northern 

savannas, large-scale herbivore surveys were required in the North Kimberley.  In Chapter 2, I 

describe a landscape-wide survey of feral and native large herbivores in the North Kimberley 

and examine multi-scale herbivore distribution in relation to biotic and abiotic variables 

including interspecific competition. 

 

Anecdotal evidence from Traditional Owners and past research (Ritchie, 2007; White et al., 

2009; Roberts et al., 2016) suggest a decline in some large macropod species in the northern 

tropical savannas. These declines coincide with the expansion of large feral herbivores in 

Australia and therefore may be driven by resource competition with the introduced species. In 

Chapter 3, I examine the proportion of C4 grass consumption and dietary breadth of macropods 

and feral cattle throughout the dry season as it relates to fire and substrate fertility as a potential 

mechanism for the success of feral herbivores and to determine the level of overlap in 

utilisation of food resources.  

 

Forage is the mediating factor between fire and herbivory in savanna ecosystems. Both fire and 

herbivores act as consumers of savanna vegetation and thus influence the quantity and quality 

of vegetation available for the other consumer. The complicated nature of these interactions as 

they relate to both native and introduced herbivores require further investigation. In Chapter 4, 

I utilise grazing exclosures to investigate the effects of fire, soil fertility, season and herbivory 

on forage quantity and quality. Additionally, I examine how forage quantity and quality alter 

herbivore distribution of native and feral species to explore potential management strategies 

beneficial to native herbivores.
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Table 1.2 Multi-scale monitoring methods utilised in the Kimberley (K) and Arnhem Land (A) to obtain measurements regarding herbivore 

abundance, distribution, behaviour and diet and forage quantity and quality. Measurements obtained provide information on specific factors 

affecting macropod abundance as modelled in Fig. 1.3 as well as linkages between forage, fire and herbivory as outlined in Fig. 1.1. Data were 

often utilised in multiple chapters. 

Scale Monitoring Method Region Measurements obtained Associated model factors Chapters 
Largest 

Aerial Survey K 
Herbivore abundance Baseline abundance data 2 

Joint species distribution Habitat requirements, Competition 2 
Interspecific relationships Competition 2 

Road Transects K Herbivore abundance Baseline abundance data 2 

Remote Camera 
Trapping K, A 

Herbivore abundance Baseline abundance data 2, 4 
Joint species distribution Habitat requirements, Competition, Predation 2 

Activity patterns Competition, Predation 2 
Scat surveys K Dietary range Competition 3 

Smallest Grazing exclosures K, A Forage biomass Forage 3, 4 
Forage crude protein and fibre Forage 3, 4 
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Distribution and abundance of large herbivores in a 
northern Australian tropical savanna: a multi-scale 
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2.1 ABSTRACT 

Australian mammals have exhibited exceptionally high rates of decline since European 

settlement 230 years ago with much focus on small mammals in northern tropical savannas.  In 

these systems, little scientific attention has been given to the suite of large herbivorous 

macropods, family Macropodidae, (common wallaroo [Osphranter robustus], antilopine 

wallaroo [O. antilopinus] and agile wallaby [Notamacropus agilis]) thought to be declining by 

traditional Aboriginal landowners. These species may be impacted by feral herbivores and 

contemporary fire regimes, two threats linked to small mammal decline. A multi-scale 

approach using aerial surveys, road transects and camera trapping was utilised to determine the 

effects of feral cattle and fire on the distribution and abundance of large macropods in the North 

Kimberley bioregion. Feral cattle density and biomass exceeded that of macropods regardless 

of survey technique utilised.  Density estimates for cattle were up to 125 times higher (0.3-10.0 

km-2) than estimates for macropods (0.08-0.49 km-2). Cattle biomass, based on the aerial survey 

estimates (corrected for perception bias), were 15 and 95 times higher than macropods for 

infertile (279 versus 19 kg km-2) and fertile savannas (518 versus 5 kg km-2), respectively. 

Proximity to the nearest pastoral station was a significant predictor of the aerial sightings of 

feral cattle. Abundance and foraging activity of cattle were positively associated with recently 

burnt areas. In contrast, camera trapping showed agile wallaby and wallaroo occurrence and 

foraging behaviour were associated with unburnt areas. Agile wallabies and wallaroos were 

negatively associated with cattle and showed substantial diurnal and seasonal separation 

consistent with an antagonistic interspecific interaction. Collectively, this study suggests that 

recent landscape changes such as altered fire regimes and introduced herbivores have 

negatively impacted large grazing macropod species.   

2.2 INTRODUCTION 

Australian mammals have exhibited an exceptionally high rate of decline comprising almost 

30% of all the world’s known mammal extinctions since 1600 AD (Baillie et al., 1996; 

McKenzie et al., 2007). Around 10% of Australian endemic mammal species have gone extinct 

since European colonisation 230 years ago (Woinarski et al., 2015).  Much of the recent focus 

has been on “critical weight range” mammals, marsupials and rodents with small body mass 

(35 – 5500g), in the northern tropical savannas where declines are linked to introduced 

predators, competition and habitat degradation by feral and domestic livestock, and the 
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increased frequency, size and severity of landscape fires following the decline of Aboriginal 

patch burning (Woinarski et al., 2001; Pardon et al., 2003; Legge et al., 2008; Woinarski et al., 

2010; Woinarski et al., 2014). Notably, land clearance, which is a threatening process for many 

species globally, is not implicated in the northern Australian small mammal declines, reflecting 

that most northern savannas remain free of agricultural development (Woinarski et al., 2007; 

Bradshaw, 2012).  

Compared to the small mammal declines, little attention has been given to the conservation 

status of Australia’s larger mammals (Ziembicki et al., 2015).  Unlike the tropical savannas of 

Africa, the native Australian large herbivore assemblage now lacks megaherbivores (> 100 kg) 

and has few species > 20 kg.   The large native herbivores with a widespread range across the 

savannas of northern Australia are all macropods (i.e. members of the marsupial family 

Macropodidae, including kangaroos and wallabies): common wallaroo (Osphranter robustus), 

antilopine wallaroo (O. antilopinus) and agile wallaby (Notamacropus agilis). These species 

occur in varied assemblages, with biogeographic patterns strongly controlled by terrain and 

climate (Ritchie and Bolitho, 2008; Ritchie et al., 2008), often with other smaller macropods 

(e.g. rock-wallabies [Petrogale spp.] and northern nail-tail wallaby [Onychogalea unguifera]). 

A suite of marsupial megaherbivores became extinct in the Late Pleistocene, coincident with 

human colonisation (Johnson, 2006; Johnson, 2016).  European settlers introduced large 

ungulate grazing animals (e.g. cattle [Bos spp.], water buffalo [Bubalus bubalis], wild horses 

[Equus caballus] and donkeys [E. asinus]), starting in the 1820s, at various places in northern 

Australia (Letts, 1962).  These domesticated species subsequently established feral (wild) 

populations, rapidly expanding and achieving higher densities than in their native ranges and 

predictions from the body-size population density relationship (Freeland, 1990).  Their success 

suggests that introduced herbivores are occupying an ecological niche that became vacant 

following the Pleistocene extinctions (Bowman et al., 2010b). 

Compared to the largest northern grazing macropods (55kg), bovines are much larger (> 10 

times), are generalist bulk-feeders, utilise both grass and browse, and have fundamentally 

different digestive systems (ruminant vs. non-ruminant foregut fermenters; Sanson, 1989; 

Bowman et al., 2010b). Hence the dietary breadth of bovines and macropods is different in 

terms of forage quantity and quality, whereby macropods can utilise phytomass more 

efficiently than bovines, which are better able to adjust to fluctuating forage quality (Brown, 

1996; Bowman et al., 2010b; Poisot et al., 2011).  In semi-arid and arid rangelands used for 
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cattle and sheep production, the provision of water points, control of dingoes and promotion of 

pasture has led to population irruptions of red (O. rufus) and grey kangaroos (Macropus 

fuliginosus, M. giganteus) indicating that, in some settings, large populations of introduced and 

native herbivores can co-exist at high densities (Caughley et al., 1980; Calaby and Grigg, 1989). 

However, in tropical savannas introduced herbivores especially feral bovines (cattle and water 

buffalo) can negatively affect native herbivore abundance directly by competing for high-

quality forage, water and habitat, or indirectly by degrading the habitat (Taylor and Friend, 

1984; Petty et al., 2007; Bowman et al., 2011; Eldridge et al., 2016).   

Surveys across Australia’s tropical savannas suggest some macropods (antilopine wallaroo) 

are declining (Ritchie, 2007) although the ubiquity of this decline and drivers are poorly 

understood. Higher temperatures and more intense dry seasons associated with climate change 

may become a threatening process to large macropod populations in northern Australia in the 

future (Ritchie et al., 2008) but are unlikely to have seriously affected population dynamics in 

the recent past.  Introduced predators that have been linked to small mammal declines, feral cat 

(Felis catus) and European red fox (Vulpes vulpes), are unlikely to impact large macropods. 

The range of the European red fox does not extend into the tropics and feral cats are not known 

to predate adult large macropods, although they are predated by the dingo (Canis lupus dingo) 

and wild dog (C. lupus familiaris and C. lupus dingo x C. lupus familiaris). 

 Similar to small mammal populations, changed fire regimes have been implicated in macropod 

declines in tropical savannas (Woinarski et al., 2014). The strongly seasonal rainfall pattern of 

the monsoon tropics leads to rapid production of tall grass during the wet season followed by 

desiccation during the dry season creating a high biomass of combustible grass with low 

nutritional quality. Aboriginal people used patch burning to provide nutritious ‘green pick’ for 

herbivores by setting numerous small fires throughout the dry season (Crawford, 1982; 

Braithwaite, 1991; Saint and Russell-Smith, 1997; Murphy and Bowman, 2007b). This 

management approach is a form of pyricherbivory, an ecological process whereby herbivores 

follow post-fire nutritious resprouting grasses resulting in a patch mosaic of vegetation caused 

by differential grazing pressure (Fuhlendorf and Engle, 2001). The Aboriginal socio-ecological 

tradition of patch burning drastically changed since European settlement (Russell-Smith, 2001; 

Vigilante, 2001; Edwards et al., 2003; Fisher et al., 2003; Russell-Smith et al., 2003; Legge et 

al., 2011b) shifting to large, high intensity fires burning predominantly in the late dry season 

in unmanaged landscapes (Vigilante, 2001).   
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Introduced large herbivores may also be a potential driver of macropod decline. Experiments 

have shown that cattle stocking can be increased via nutrient supplementation and strategic 

patch burning during the dry season (Mott et al., 1981; Winter, 1987).  It is therefore possible 

that cattle and macropods compete for green pick, or that the combination of altered fire 

regimes and introduced large herbivores have reduced landscape productivity (Burbidge and 

McKenzie, 1989). Indeed, some Aboriginal Traditional Owners show growing concern over 

the negative impact of inappropriate fire regimes and feral species on populations of large 

macropods (Wunambal Gaambera Aboriginal Corporation, 2010). 

 

The Uunguu Indigenous Protected Area (Uunguu IPA), in the North Kimberley bioregion of 

Western Australia, is an ideal location to study the interactions between macropods and feral 

bovines because it has never been used for pastoralism or experienced large-scale vegetation 

clearing, is little affected by economic development and has highly diverse savannas on both 

fertile and infertile substrates (Fig. 2.1). The feral herbivore assemblage is dominated by cattle, 

that have only recently spread from adjoining pastoral leases, with much smaller populations 

of wild horses and donkeys.  Although modes of Aboriginal fire management were disrupted 

in the 1930s with the nearby establishment of Kalumburu Mission, Uunguu IPA is currently 

managed by its Aboriginal Traditional Owners in a way intended to replicate the historical fire 

regime. In this setting we used a variety of survey methods to address three linked questions: 

1) How do the density and biomass of native and non-native herbivores (macropods and 

cattle, respectively) differ? 

2) Do the occurrence and abundance of macropods and cattle have similar environmental 

correlates, especially relating to time since fire? 

3) Do macropods and cattle show competitive exclusion in space and time?  

These questions are approached using a range of different methods applied at varying spatial 

and temporal scales (Fig. 2.2). At the landscape-scale, aerial and vehicle-based censuses were 

used to provide snapshot estimates of herbivore density and examine environmental correlates 

impacting landscape distribution of herbivores.  Camera traps were used to gauge site-level 

environmental correlates of herbivore diversity, abundance and foraging behaviour on fertile 

and infertile substrates and evidence of on-going interspecific associations. These methods 

allow us to evaluate the hypothesis that cattle and macropods occupy separate niches and 

examine how both groups are influenced by fire. 
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Figure 2.1 Geographic context of the study area (a) location of the Uunguu IPA, North 

Kimberley, Western Australia; (b) mean annual precipitation (MAP; mm) across the top end 

of Australia; (c) aerial survey 2016-2017 transects and macropod and cattle sightings; (d) fertile 

and infertile soil parent material with the location of monitoring sites and road transects.  Data 

sources: MAP data modelled using methods from Hijmans et al. (2005) and data from BMA 

(2005); geology (used to determine site fertility) as classified by DMPWA (2010). 



Chapter 2    Distribution and abundance 

25 

Figure 2.2 Survey schedule for aerial surveys, road transects and remote camera trapping on fertile and infertile savannas in the Uunguu IPA, 

North Kimberley, Western Australia from 2015-2017. Orange boxes designate a fire occurrence at a camera trap site; road transects were a mix of 

burnt and unburnt area, as were the aerial surveys. Annual wet season rainfall (mm) is recorded in light blue. An “x” designates each month the 

given survey type occurred.
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2.3 METHODS 

2.3.1 Study Area 

This study was undertaken in the North Kimberley bioregion of Western Australia on the 

Uunguu Indigenous Protected Area (approximately 8,000 km2), declared in 2011 and managed 

by the Wunambal Gaambera Aboriginal Corporation (WGAC, the Uunguu IPA is an IUCN 

category VI protected area; Fig. 2.1a). The vegetation is dominated by eucalypt (Eucalyptus 

and Corymbia spp.) savanna with a physiognomy of woodland and open forest with an 

understorey of hummock and tussock grasses on infertile soils and a mixture of perennial and 

annual tussock grasses on more fertile soils.  The climate is defined by a monsoonal wet–dry 

seasonal cycle with mean annual rainfall of 1,100-1,600 mm across a steep latitudinal gradient 

(Fig. 1b; BMA, 2018). Approximately 90% of annual rainfall occurs during the 5-month wet 

season (December-April), greatly impacting the availability of fresh water throughout the 

middle of the year. 

Much of the landscape burns each dry season. Most fire ignitions are anthropogenic but 

lightning storms concentrated in the transition between the dry and wet season (October-

December) can ignite fires. The mean fire return interval for all of the Uunguu IPA is 2.5 years 

with 73% of fires occurring in the early dry season (before 1 August). Significant changes to 

the historical fire regime occurred around the mid-1900s because the Wunambal Gaambera 

people, the Aboriginal people of the region, had moved to nearby settlements and as a result 

traditional fire management ceased in most areas. A small community was re-established at 

Mitchell Plateau in the 1980s, but fire management was limited in scale (Vigilante et al., 2004). 

Historical fire regimes have been better replicated in recent decades with the establishment of 

Aboriginal fire management programs (Vigilante et al., 2004; Vigilante et al., 2017).  

The large macropod populations known to occur on the Uunguu IPA are the antilopine wallaroo, 

common wallaroo and agile wallaby. Macropods are an important traditional food resource for 

Wunambal Gaambera people, and culturally significant animals.  Fire is used to manage forage 

and habitat mosaics for macropods and, less commonly today, to facilitate hunting them 

(Vigilante et al., 2009).  Pastoral leases adjacent to the Uunguu IPA were established in the 

1900s and cattle grazing intensified in the 1950s and 1960s, such that these leases became a 

major source of feral cattle dispersal.  Johnstone and Burbidge (1991) documented the arrival 
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of cattle at Mitchell Plateau in 1976 while some coastal peninsulas have remained cattle free 

due to exclusion fencing and rugged terrain (McKenzie and Belbin, 1991).  The Western 

Australian state government carried out an aerial shooting program at Mitchell Plateau from 

2007 to 2017, initially targeting all cattle and subsequently only bulls (Corey et al., 2013). 

Although annual culls of up to 30% of the total cattle population occurred within the Uunguu 

IPA during the study period, cattle have a high maximum population rate of increase (0.17; 

Bayliss and Yeomans, 1989b) resulting in only a modest potential population decline (13%). 

In addition, there is a high likelihood that cattle continue to migrate into the Uunguu IPA from 

surrounding properties. All cattle in the study area are considered feral.  

 

2.3.2 Aerial Survey 

 

Aerial surveys were conducted in June 2016 and August 2017 to determine macropod and cattle 

distribution and abundance across the Uunguu IPA in the dry season (Fig. 2.1c). The survey 

methodology was based on established aerial survey techniques for wildlife populations 

(Caughley and Grice, 1982, Bayliss and Yeomans, 1989b, Marsh and Sinclair, 1989).  Overall 

there were 26 transects (17 in 2016 and 9 in 2017), on average 6.5 km apart and orientated east-

west (except on peninsulas), with a mean length of 43 km, resulting in a coverage of 5.2% of 

the property. Surveys were conducted up to 3 h after sunrise or 3 h before sunset to capture 

daylight times of highest macropod activity. 

 

A fixed-wing aircraft was flown at a mean altitude of 76 m (250 ft) above ground level and an 

average ground speed of 204 km h-1 (110 kn). Fiberglass rods were attached to aircraft wing 

struts to delineate a 200 m wide transect on each side. Each survey had three observers seated 

in the starboard middle and rear and port rear with each observer rotating through the seat 

positions such that all combinations of two observers sat on a side together for a portion of the 

survey allowing for correction of perception bias described by the double-count technique 

(Caughley and Grice, 1982). Two observers remained constant for the 2015 and 2016 surveys, 

but the third observer differed. Species, number of animals and transect zone (inside, low, high, 

outside as marked by wing struts) were recorded for each sighting on digital voice recorders. 

Flight paths were logged using a handheld global positioning system (GPS) recording latitude, 

longitude, and date and time every 30 s which was divided into six intervals to provide 

estimated location every 5 s.  Sighting location was determined by matching the date and time 

from the observer log with the flight path log, and the midpoint of the recorded transect zone. 
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Error associated with sighting locations could be from estimated time lag between observation 

and nearest GPS record (up to 280 m, i.e. the distance travelled in 5 s at 204 km h-1) and location 

within the transect zone (up to 50 m, i.e. the maximum distance from transect zone midpoint 

to edge of zone). Environmental data was collected at the start of each transect including air 

temperature at flying height, cloud cover percent and light conditions (bright or dull). Survey 

conditions averaged 28.7 ˚C, 8% cloud cover and 86% bright light conditions. 

Population estimates 

Perception bias correction factors for starboard and port side observations were 3.08 and 10.00 

and 1.87 and 3.14, for macropod and cattle, respectively; these values were averaged across 

observers and habitats. Uncorrected and corrected (for perception bias only) population 

estimates were calculated using the ratio method for unequal transects in Caughley (1979b) 

following the method of Edwards et al. (2004) that was adapted from Caughley (1979a), Marsh 

and Sinclair (1989) and Caughley and Sinclair (1994). Observations outside the transect were 

removed for population estimates but included in the habitat association analysis. Validated 

correction factors for both macropods and cattle within the study region do not exist, therefore, 

no correction factors were applied for habitat or species. Densities were calculated based on 

transect area and herbivore biomass estimates were calculated using an average of 450 kg for 

cattle, the slaughter weight of shorthorn steers (DEDJTRV, 2018), and 32 kg for macropods, 

the average of female and male weight limits for antilopine wallaroo, common wallaroo and 

agile wallaby (Menkhorst and Knight, 2001).  

Joint species distribution modelling 

Aerial transect observations were further analysed with binomial Hierarchical Modelling of 

Species Communities (HMSC; Ovaskainen et al., 2017) to determine if herbivore groups 

(cattle, macropods) were associated with specific habitat characteristics and to examine 

species-to-species association. We used the ‘HMSC’ package in R (Blanchet, 2018) that 

provides significance of environmental correlates for each species as well as the amount of 

variation each correlate accounts for in species occurrence. This package is a Bayesian joint 

species distribution model that allows for the examination of signals of environmental filtering 

and biotic filtering and was chosen for its ability to handle both joint species and single species 

distribution modelling within a single package. Only 2016 data were used for joint species 

modelling (macropod and cattle) because no macropods were sighted in the 2017 survey and 

there was concern that it was due to the varying conditions between 2016 and 2017 surveys 
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including moisture conditions and different observers. Data from both the 2016 and 2017 

surveys were utilised to model cattle distribution.  

 

Pseudo-absences were randomly generated (n = 1000) within the aerial transects and added to 

aerial sighting data for analyses. Using the location of each animal sighting or pseudo-absence, 

a GIS was used to associate time since fire, fertility, distance to perennial water and distance 

to nearest pastoral tenure. These variables were included in the model along with a species co-

occurrence matrix (joint species on the 2016 survey) or cattle occurrence (cattle only from the 

2016 and 2017 surveys).  Convergence of parameters for all models was evaluated by visual 

inspection of the Markov chain Monte Carlo trace plots to ensure a representative sample from 

the posterior distribution before further evaluation of model outputs. The 95% central credible 

interval was used to assess the level of statistical relationship of cattle and macropods with a 

given environmental covariate. If the credible interval does not include zero, it can be 

concluded that this covariate relates positively or negatively (according to if the credible 

interval is above or below zero) to occurrence with this level of statistical support. ‘HMSC’ 

package outputs include significance between each species and environmental covariates, 

percent variability associated with each covariate and a species-to-species correlation matrix 

assessing associations amongst species after accounting for all environmental correlates. 

 

2.3.3 Land system pasture potential 

 

A pastoral potential classification map was obtained from the Department of Agriculture, based 

on CSIRO land system mapping assessments (Speck et al., 1960), and overlaid with the 

Uunguu IPA boundaries.  Each of the five pasture potential categories had a range of carrying 

capacity densities (i.e. very low: 1 – 2.5 animal km-2), the minimum density was used to 

calculate a weighted average pasture potential for the entirety of the Uunguu IPA. 

 

2.3.4 Road Surveys 

 

Seven transects were surveyed between 2015 and 2016 during the dry season months July-

September following the approach of Ritchie et al. (2008) (Fig. 2.1d).  Transects were selected 

along existing road networks and based on dominant savanna fertility, fertile (n = 5) and 

infertile (n = 2), fire management and proximity to camera trap monitoring sites. Repeat 

surveys for each 5 km transect were conducted at each sampling period between one to three 
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consecutive days consisting of two morning surveys (05:30-07:30 hrs) and two afternoon 

surveys (17:00-18:30 hrs) with an average of 3.6 ± 1.1 repeat surveys. Surveys were conducted 

with a vehicle moving 10-15 km h-1 while three observers visually scanned the surrounding 

area.  Species (cattle, antilopine wallaroo, common wallaroo, agile wallaby), group size, burn 

status and GPS location on each transect were recorded for each sighting.  A laser rangefinder 

was used to estimate visibility every 1000 m on each side of the road; with an average visibility 

of 88.7 m ± 26.6 SE. Average density estimates were calculated using transect length and 

average visibility for width using the mean of repeat surveys at each sampling period. 

Herbivore biomass estimates were calculated as above. Joint species distribution modelling 

was not conducted on road survey data due to lack of macropod sightings. 

2.3.5 Remote Camera Trapping 

Site establishment and data acquisition 

Monitoring sites (n = 11) were selected to span geological formations that yield comparatively 

fertile soils (n= 7; Carson Volcanics) and relatively infertile soils (n = 4; King Leopold 

Sandstone and Colluvium and Alluvium; Fig. 2.1d) based on geological classifications 

(Geoscience Australia, 2012, DMP, 2010). The fertile sites are characterized by gently 

undulating to hilly terrain with shallow stony soils dominated by a mixture of perennial and 

annual tussock tall grasses; infertile sites are characterized by gently undulating sandstone 

terrain with sandy soils of variable depth dominated by a mixture of hummock grasses in the 

endemic Australian genus Triodia and perennial and annual tussock grasses.  Sites were 

selected based on fire management and utilization by both large macropods and feral cattle. 

Aboriginal Traditional Owners located sites in recently burnt and unburnt areas known to be 

historically good macropod habitat and areas were searched for macropod and cattle dung to 

confirm presence of both herbivore groups. Distance to nearest perennial freshwater source 

was calculated for each site (DLAWA, 2003, Crossman and Li, 2015). Fire history of each site 

for the duration of the project (2015-2017) and one-year previous (2014) was derived from 

observations and a satellite-derived (MODIS) fire history (NAFI, 2018). See Appendix A for 

detailed site descriptions. 

Five cameras (RECONYX PC800 Hyperfire, RECONYX, Inc., Holmen, USA) were deployed 

at each site at various periods between 2015-2017 ranging from 31 to 294 trap nights (Fig. 

2.1d). Areas around the cameras (~25 m2) were cleared with a brush-cutter and cameras were 
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attached to robust trees 1 m above the ground for fire protection and to reduce false triggers 

due to wind blowing the vegetation.  Clipping the grass was necessary but likely to stimulate 

localized new growth if moisture conditions were suitable, however, we assume here that a 

small area within a larger unburnt area would not be drawing in animals that were not already 

in the vicinity. Cameras were set to trigger mode with motion sensor on medium/high 

sensitivity, three photos per trigger with a 1 s interval between photos and a 1 min quiet period 

between triggers.  

Images were classified as containing cattle, dingo or macropod species (if identifiable), number 

of animals and behaviour. Due to the difficulty of positively identifying antilopine and common 

wallaroos in the night-time black and white photos these two large-bodied species were lumped 

together and are referred to as “wallaroos,” agile wallabies were separate, and a further category 

for unknown macropods was created for macropods unidentifiable to species. Behaviour was 

defined as foraging if the animal was clearly chewing or had its head down to the forage below 

and all other activities lumped together as non-foraging. A measure of abundance of the top 

predator, the dingo, which may influence herbivore distribution was calculated per site based 

on monthly camera trap records.  Date, time and temperature were automatically recorded for 

each photo. Temperature represents herbivore activity period as it is a continuous variable 

closely linked to time of day which was expected to show a divergent pattern for cattle and 

macropods; Julian date represents seasonal dryness. Distance to perennial water, site fertility, 

time since fire and a measure of dingo abundance (calculated as a monthly ratio of dingo photos 

to trap nights by site) were determined for each photo trigger. 

Herbivore abundance 

Across all sites, animal detections per trap night was compiled to provide an index of activity. 

Differences amongst species were tested using analysis of variance (ANOVA) and Tukey HSD 

for multiple comparisons where the overall ANOVA was significant (p ≤ 0.05).  Data were 

checked for normality and heteroscedasticity and log transformed prior to analysis. 

The total number of individual animals detected for each species at each site during each 2-

week period that cameras were deployed was determined. The midpoint of each 2-week period 

was used to establish time since fire and Julian date to model total individuals detected. We 

also determined presence or absence of agile wallabies, wallaroos, unidentified macropods and 

cattle to calculate the total (native and non-native combined) herbivore species richness in each 
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2-week period.  Unidentified macropods were only included if no other macropod group had

been counted so that total species present ranged from 0-3.   Data were analysed using

generalized linear mixed modelling to determine if effects of time since fire, site fertility, dingo

abundance, and season on the total number of individuals of each species was similar to

significant environmental correlates for basic detection data used in joint species modelling.

This analysis was also utilised to examine a suspected interaction between substrate fertility

and time since fire on herbivore abundance.  Normal probability and residual plots were

examined to determine appropriate distribution families. Total animals detected per species

were modelled using a negative binomial distribution in the ‘glmmTMB’ package in R (Brooks

et al., 2017).  Total trap nights per 2-week period per site was used as an offset for all models

to account for incomplete 2-week periods and camera malfunction; site was included as a

random variable.

Joint species distribution modelling 

Camera trap detection/non-detection data were further analysed using binomial Hierarchical 

Modelling of Species Communities to determine environmental factors affecting presence 

(cattle, agile wallabies, wallaroos and dingo) and foraging behaviour (cattle, agile wallabies 

and wallaroos) and to examine species-to-species association and species-to-species effects on 

foraging behaviour. Model evaluation and interpretation as described in “Aerial Survey-Joint 

species distribution modelling” section.   

Diurnal patterns of cattle, macropods and dingo 

Diurnal activity profiles for cattle, agile wallaby, wallaroos and dingo were examined to 

determine the level of overlap in species at camera sites using the ‘overlap’ package in R to 

provide a non-parametric kernel density estimate using the default smoothing parameters 

recommended by Ridout and Linkie (2009).The coefficient of overlap, Δ, ranging from 0, no 

overlap, to 1, exact overlap, was calculated (Ridout and Linkie, 2009). 
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2.4 RESULTS 

2.4.1 Density and biomass of native and non-native herbivores 

Landscape-scale: aerial survey and pasture potential estimate 

A total of 96 animal group sightings were recorded during the 2016 and 2017 aerial surveys 

(72 cattle groups and 24 macropod groups).  Mean group size (± SE) for cattle and macropod 

sightings was 2.4 ± 0.26 and 1.4 ± 0.12, respectively. Only groups recorded inside the transects 

were used for density estimates: 140 cattle in 54 groups and 33 macropods in 23 groups. The 

corrected (for perception bias only) population estimates for the Uunguu IPA (7,815 km2) were 

6,096 ± 1, 603 for cattle and 3,845 ± 1,343 for macropods, yielding densities of 0.78 and 0.49 

km-2, respectively. Population estimates for cattle were 1.6 and 4.3 times higher than macropod 

population for corrected and uncorrected estimates with a precision of 24% and 26% for cattle 

(corrected and uncorrected estimates, respectively) and 27% and 35% for macropods. Cattle 

and macropod densities based on corrected population estimates were similar for infertile 

savannas (0.62 and 0.59 km-2) but 6.8 times higher for cattle than macropods in fertile savannas 

(1.15 and 0.17 km-2).  Biomass estimates of cattle were 15 and 95 times higher than macropods 

for infertile and fertile savannas, respectively (Fig. 2.3). The pasture potential estimate based 

on land system mapping assessments for the Uunguu IPA was 1.45 km-2. 

Medium-scale: road survey 

For all transects and sample periods there was only a single macropod sighting, two antilopine 

wallaroos, yielding an overall density estimate of 0.08 km-2.  Cattle were 125 times more 

abundant and had approximately 1800 times the biomass of macropods. A total of 164 cattle 

were sighted, yielding a density of 10.0 km-2 (Fig. 2.3).   

Site-scale: remote camera trapping 

Across all sites, a total of 3,703 triggers were recorded for cattle and macropods during 20,591 

trap nights.  Cattle had the highest total abundance (0.23 individuals night-1 vs. 0.07 and 0.08 

night-1 for wallaroos and agile wallabies, respectively) as measured by detections per trap night 

(p ≤ 0.05; Fig. 2.3). 
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Figure 2.3 Density (km-2) and biomass 

(kg km-2) estimates for feral cattle and 

macropods based on property-wide aerial 

surveys (uncorrected and corrected for 

perception bias) and road surveys in 

savannas on fertile and infertile substrates. 

Abundance, as measured by individual 

animals per trap night, and standard error 

for feral cattle, agile wallaby, wallaroos 

(antilopine and common) and dingo on 

fertile and infertile substrates. Surveys 

were conducted during 2015-2017 in the 

Uunguu IPA, North Kimberley, Western 

Australia. 
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2.4.2 Environmental correlates of occurrence and foraging of large herbivores 

Landscape-scale: aerial survey 

The joint species distribution model using 2016 aerial survey data showed that the greatest 

variability (38%) in macropod occurrence was associated with substrate fertility with a 

significant (p ≤ 0.05) association with infertile savanna. Macropods were significantly (p ≤ 

0.05) associated with greater distance to pastoral lease, accounting for an additional 30% of 

variability in occurrence (Table 2.1). Cattle occurrence was not significantly (p > 0.05) related 

to any of the correlates (substrate fertility, time since fire, distance to perennial water and 

nearest pastoral station). 

The single species distribution model for cattle occurrence across all of the Uunguu IPA 

showed significant (p ≤ 0.05) effects of proximity to pastoral stations, recently burnt areas and 

increased distance from perennial water, correlates explaining respectively 60%, 21% and 15% 

of the variation (Table 2.1). 

Site-scale: remote camera trapping 

Herbivore species occurrence and abundance 

The joint species distribution model based on presence data of agile wallabies, wallaroos, cattle 

and dingoes showed that the random variable (site) accounted for approximately 50% of 

variation for all species except dingoes (Table 2.1).  Agile wallaby occurrence was significantly 

(p ≤ 0.05) associated with longer time since fire, cooler temperatures and the late dry 

season/early wet season (R2 = 0.22). Wallaroo occurrence was significantly (p ≤ 0.05) 

associated with longer time since fire, increased distance to water and cooler temperatures and 

had the best fit of all species in the model (R2 = 0.57). Cattle occurrence was significantly (p ≤ 

0.05) associated with recently burnt areas, proximity to perennial water, warmer temperatures, 

late wet season/early dry season and low dingo abundance (R2 = 0.31). Dingo occurrence was 

significantly (p ≤ 0.05) associated with fertile savannas, proximity to water and cooler 

temperatures (R2 = 0.13).   

Large herbivore abundance (total number of individuals per species per bi-weekly camera 

trapping period) was examined with single species GLMMs and was positively related to 

seasonal dryness for all species (p ≤0.05) meaning that total animals detected increased towards 

the end of dry season/beginning of wet season (Tables 2.2 and Appendix B).  Agile wallaby  
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Table 2.1 Species distribution modelling results including variance partitioning and environmental correlate significance from four models: 1) 

landscape occurrence from 2016 aerial survey records for cattle and macropods, 2) landscape occurrence from 2016 and 2017 aerial survey records 

for cattle, 3) occurrence and 4) foraging behaviour from 2015-2017 camera trap records for cattle, agile wallabies, and a combined category for 

wallaroos (antilopine and common). Models 3 and 4 include site as a random variable. Values in the table represent the amount of variance each 

correlate accounts for in each model. Correlates with significant positive relationships are in bold and significant negative relationships are in bold 

italics for all models as determined by the 95% central credible intervals. 

Scale Method Model Species Fertility TSF Water Pastoral 

Landscape Aerial 
1 Cattle 0.09 0.39 0.18 0.34 

Macropods 0.38 0.06 0.25 0.32 
2 Cattle only 0.04 0.21 0.15 0.60 

Scale Method Species Fertility TSF Water Temp Julian Dingo Site 

Site 

Camera- 
Occurrence 3 

Cattle 0.10 0.12 0.18 0.09 0.00 0.02 0.49 
Agile 0.10 0.16 0.07 0.17 0.02 0.00 0.49 

Wallaroo 0.02 0.33 0.10 0.03 0.00 0.01 0.51 
Dingo 0.11 0.01 0.44 0.04 0.00 0.28 0.12 

Camera- 
Foraging 4 

Cattle 0.05 0.23 0.07 0.08 0.01 0.00 0.56 
Agile 0.24 0.16 0.12 0.35 0.01 0.01 0.12 

Wallaroo 0.10 0.26 0.02 0.02 0.00 0.02 0.57 
TSF: time since fire; Water: distance to perennial water; Pastoral: distance to nearest pastoral lease; Temp: 
temperature; Julian: Julian date; Dingo: dingo abundance index 
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and cattle abundance were positively associated with dingo abundance in contrast to analyses 

using presence/absence data suggesting that higher dingo numbers are associated with areas 

with higher numbers of their potential prey species.  The number of individual cattle was higher 

on recently burned areas whereas the number of agile wallabies increased in longer unburnt 

areas (p < 0.05) in agreement with joint species distribution analysis. An interaction between 

site fertility and time since fire was significant (p < 0.05) for the abundance of wallaroos. The 

abundance of wallaroos decreased with time since fire on infertile sites and increased with time 

since fire in fertile sites until approximately 1.5 years post-burn, then declined (Fig. 2.4).  

Table 2.2 Model fit of generalized linear mixed models of total number of animals detected 

for agile wallabies, wallaroos, cattle and dingoes from camera traps established at 11 sites from 

2015-2017 in the Uunguu IPA, North Kimberley, Western Australia. Correlates with 

significant (p < 0.05)  positive relationships are in bold and significant negative relationships 

are in bold italics for all models. 

Response variable Modela ΔAICcb Explained 
deviancec 

Total agile wallaby ~ SF + TSF + DA + SD 0.0 0.04 
~ 1 11.4 0.00 

Total wallaroos ~ SF * TSF + DA + SD 0.0 0.03 
~ 1 3.0 0.00 

Total cattle ~ SF + TSF + DA + SD 0.0 0.01 
~ 1  16.2 0.00 

Total dingo ~ SF + TSF + SD 0.0 0.02 
~ 1 4.4 0.00 

aSF site fertility; TSF time since fire; DA dingo abundance; SD 
seasonal dryness. All models contained log(total trap nights/site/2 
weeks) as an offset and site as a random variable. 
bAICc second order Akaike’s Information Criterion for large and small 
sample sizes; ΔAICc is the difference between the model’s AICc value 
and the minimum AICc of all models in the candidate set. Models are 
ranked in ascending order of ΔAICc. 
cExplained deviance is the proportional reduction in residual deviance, 
relative to the null model. 

Foraging behaviour 

Joint species distribution model results for wallaroo and cattle showed that site accounted for 

over 50% of variation in detection of foraging behaviour, with time since fire explaining 

approximately 25% (Table 2.1). Observed wallaroo foraging behaviour was significantly (p ≤ 

0.05) associated with infertile savannas, longer time since fire, cooler temperatures, late dry 
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season/early wet season and higher dingo abundance and had the best fit of all species in the 

model (R2 = 0.51).  Observed cattle foraging behaviour was significantly (p ≤ 0.05) associated 

with recently burnt areas, warmer temperatures and late wet season/early dry season (R2 = 0.17).  

Variation in agile wallaby foraging behaviour was largely explained by temperature (35%) and 

site fertility (24%) and significantly associated (p ≤ 0.05) with infertile savannas, longer time 

since fire, increased distance to perennial water, cooler temperatures and the late dry 

season/early wet season (R2 = 0.20; Table 2.1).  

Figure 2.4 Total antilopine and common wallaroo fortnightly camera trap detections plotted 

with increasing time since fire between 2015-2017 pooled for fertile (n=7) and infertile (n=4) 

savanna sites in the Uunguu IPA, North Kimberley, Western Australia.  Insets show contrary 

relationship between time since fire and total wallaroo abundance in fertile and infertile 

substrates representing the significant interaction term (p < 0.05) between time since fire and 

substrate fertility from generalized linear modelling. 

2.4.3 Interspecific relationships 

Landscape-scale: aerial survey 

There was no significant association between macropods and cattle sightings detected by the 

aerial surveys. 
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Site-scale: remote camera trapping 

After accounting for environmental covariates, both agile wallabies and wallaroos were 

negatively associated with cattle (p ≤ 0.05; Fig. 2.5a).  Dingoes and agile wallabies were 

positively associated (p ≤ 0.05), and cattle and dingoes were negatively associated (p ≤ 0.05). 

Only agile wallabies and wallaroos exhibited foraging behaviour together less often than 

expected after accounting for environmental covariates (p ≤ 0.05; Fig. 2.5b). 

Camera derived activity profiles show a distinct separation in activity period between species 

(Fig. 2.6). Cattle were active primarily during mid-afternoon and before sunrise. Agile 

wallabies were active during the night with peak activity before sunrise overlapping 73% with 

cattle while wallaroos were primarily active from before sunset and throughout the night 

without a distinct peak and a 57% overlap with cattle. The dingo activity profile was similar to 

agile wallabies with 78% overlap during a 24-hour period. 

Figure 2.5 Species-to-species association matrix for (a) presence and (b) foraging behaviour 

for agile wallaby (agile), antilopine and common wallaroos combined (wallaroo), cattle and 

dingo using 2015-2017 camera trap data in the Uunguu IPA, North Kimberley, Western 

Australia.  Blue colours are negative associations and red are positive associations as shown 

by the colour scale; non-significant relationships (p > 0.05) are noted. 
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Figure 2.6 Relationship between time and temperature and activity overlap for feral cattle and 

agile wallabies, cattle and wallaroos, and dingoes and agile wallabies for camera trap records 

in the Uunguu IPA, North Kimberley, Western Australia 2015-2017.  Record times were 

converted to solar time to account for changing sunrise and sunset times throughout the year. 

Delta is the proportion of overlap in activity period between species and dashed lines denote 

sunset and sunrise. 
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2.5 DISCUSSION 

This study was framed around three questions concerning (a) abundance (b) distribution and 

environmental controls, and (c) interspecific relationships of native and non-native large 

herbivores in a monsoonal eucalypt savanna using a range of methods that span local- to 

landscape-scale. We found that the density, abundance and biomass of feral cattle exceeded 

that of macropods, regardless of survey technique utilised (aerial survey, road transects, remote 

camera trapping). Cattle were most abundant near pastoral leases while macropods were more 

abundant further from pastoral leases and on infertile, sandstone substrates.  As expected by 

the pyricherbivory model, cattle occurrence and observed grazing were significantly associated 

with recently burnt areas, yet, contrary to the model, agile wallaby and wallaroo occurrence 

and foraging were associated with longer unburnt areas. Consistent with competitive exclusion, 

joint species distribution models revealed that macropods occurred with cattle less frequently 

than expected by chance, and temporal separation is evident both diurnally and seasonally. 

Below we contextualise our findings in light of previous studies of cattle and macropod 

abundance and distribution, their responses to landscape fire and theories of herbivore niche 

separation. 

2.5.1 Abundance of cattle and macropods 

Our landscape-wide estimate of cattle density was 0.78 cattle km-2 (aerial survey corrected for 

observer bias) though differing between fertile and infertile substrates (1.15 and 0.62 km-2). 

This density estimate is slightly lower than the cattle density of 1.38 km-2 (uncorrected for 

observer bias or habitat) reported by an aerial survey conducted in 2008 covering 

approximately 10% of the Uunguu IPA, centred on infertile substrates that abutted a large area 

of fertile savanna (Corey et al., 2013). This is also similar to the minimum estimated cattle 

density (1.36 km-2) derived from pasture potential based on land system mapping assessments 

for the same area (Speck et al., 1960). Our density estimate based on the aerial survey is around 

half (54%) of the minimum pasture potential estimate (1.45 km-2) for the Uunguu IPA. Our 

density estimate is also lower than the typical carrying capacity of 1-3 cattle units km-2 for 

northern Western Australian pastoral lands (DPIRDWA, 2018). This most likely reflects that 

the Uunguu IPA is not being managed for cattle production and that the feral cattle populations 

have been recently culled so are unlikely to have reached carrying capacity.  
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Our density estimates are broadly comparable to feral bovine densities recorded in other 

eucalypt savannas outside the study area using similar aerial and ground survey techniques, 

with ground surveys consistently producing higher estimates (Fig. 2.7; Ridpath et al., 1983; 

Bayliss and Yeomans, 1989a; Koenig et al., 2003; Bayliss et al., 2006; Saalfeld, 2006; Gorman 

et al., 2007; Australian Wildlife Services, 2010; Eldridge, 2012b). Our density estimates are 

similar to those available for introduced bovines of similar size (Bos javanicus and Bubalus 

bubalis) in their native habitats (Hoogerwerf, 1970; Eisenberg and Seidensticker, 1976).  Cattle 

biomass, based on the corrected aerial survey estimates, was estimated to be 351 kg km-2, less 

than half the previously reported ungulate biomass for northern Australian monsoon tallgrass 

by Mott et al. (1981) and an order of magnitude less than large herbivore biomass estimates 

for some African savannas (8427 kg km-2; Damuth, 1982). Collectively these observations 

support the view that the empty megaherbivore niche in Australian savannas can be effectively 

filled by introduced bovines (Freeland, 1990; Bowman et al., 2010). 

Figure 2.7 Published estimates of feral bovine densities for aerial (uncorrected, corrected for 

observer bias and corrected for visibility and observer bias) and ground-based surveys in 

Western Australia and the Northern Territory (Ridpath et al. 1983; Bayliss and Yeomans, 

1989b; Koenig et al., 2003; Bayliss et al., 2006; Saalfeld, 2006; Gorman et al., 2007; Australian 

Wildlife Services, 2010; Eldridge, 2012b; Corey et al., 2013). N. NT = North Northern 

Territory; S. NT = South Northern Territory; MRNP = Mitchell River National Park located 

within Uunguu IPA; Uunguu = Uunguu IPA. 
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Macropod densities found in our study were much lower than those reported for pastoral 

landscapes in South Australia and central and southern Queensland (Caughley and Grigg, 1981; 

Caughley and Grigg, 1982; Caughley et al., 1985; Pople et al., 1998), where land management, 

including provision of artificial water points and dingo control, compensate for the competitive 

effects of high cattle densities (Fig. 8).  Our macropod density estimates were also lower than 

less intensely managed tropical savannas in Western Australia, the Northern Territory and 

Queensland (Fig. 2.8; Croft, 1987; Ritchie et al., 2008; Ritchie et al., 2009).  For instance, 

ground-based surveys in the mesic savannas of the Northern Territory in the early 1980s 

provided substantially higher densities (up to 325 times higher) than this study (Croft, 1987). 

One exception is the study of Koenig et al. (2003) that reported a very low (0.023 km-2) 

uncorrected aerial survey macropod density (Osphranter robustus, O. antilopinus, O. 

bernardus) in Arnhem Land. Aside from land management, it is possible that soil infertility in 

the North Kimberley and Arnhem Land is the primary reason for macropod scarcity.  However, 

there is some evidence that macropods are also declining.  Ritchie (2007) provides anecdotal 

evidence of decline and road surveys during 2003-2005 in the North Kimberley, including our 

study area, reported a higher total density of antilopine wallaroos than this study (4 km-2 vs. 

0.08 km-2; Ritchie et al., 2008) although whether this points to a trend in declining macropod 

densities in northern Australia’s tropical savannas is unclear and highlights the need for further 

surveys. Such surveys must use a diversity of methods, as we have done, because of the variable 

sightability of macropods.  For instance, using camera traps we found common wallaroos were 

abundant, yet this species was not sighted on our road surveys.  

Regardless of the survey technique utilized (aerial survey, road transects, remote camera 

trapping) we have shown that the biomass of a large non-native herbivore (cattle) is much 

higher than the native herbivore biomass in the Uunguu IPA by 1 and 2 orders of magnitude 

(based on corrected aerial surveys) for infertile and fertile savannas, respectively. This pattern 

is even more pronounced in Arnhem Land where the biomass of non-native cattle and buffalo 

is 98 and 725 times higher than macropods, respectively (based on densities reported by Koenig 

et al. 2003).  It is important to acknowledge that because habitat correction factors could not 

be applied for cattle and macropod density estimates, these differences may be exaggerated. 

Nonetheless, even when macropod densities are higher than cattle, the non-native herbivores 

still have a higher total landscape biomass.  For example, on a pastoral lease in arid central 

Australia where the density of red kangaroos (M. rufus; 0.91 km-2) is higher than cattle (cattle 

estimates were not corrected for visibility so represent a minimum population; Australian 
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Wildlife Services, 2010), non-native herbivore biomass is at least 1.2 times that of macropods. 

The vast difference in biomass between native and non-native large herbivores highlights the 

need to convert density measurements to have a more realistic understanding of feral herbivore 

abundance. 

Figure 2.8 Published estimates of agile wallaby, antilopine wallaroo, common wallaroo and 

all large macropod species combined for aerial (uncorrected, corrected for observer bias only, 

corrected for visibility and observer bias and corrected for visibility only) and ground-based 

surveys across Northern Australia (Caughley and Grigg, 1982; Short et al., 1983; Caughley et 

al., 1985; Croft, 1987; Pople et al., 1998; Koenig et al., 2003; Ritchie et al., 2008; Ritchie et 

al., 2009). N. QLD = North Queensland, Pastoral = surveys conducted on pastoral country in 

Central and South Queensland and South Australia; N. NT = North Northern Territory; WA = 

Western Australia; N. Kimberley = North Kimberley; Uunguu = Uunguu IPA; C. Kimberley = 

Central Kimberley. WA was a state-wide survey except for the deserts and the Kimberley 

region.  Areas outside the tropical north include densities of eastern grey, western grey and/or 

red kangaroo in their total macropod densities.  

2.5.2 Distribution and environmental correlates 

Cattle occurrence, abundance and foraging were influenced by both season and time of day (as 

represented by temperature). Cattle detections were less frequent at the camera trap sites 

towards the end of the dry season/beginning of wet season, but the number of total individuals 
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detected was higher, suggesting larger group sizes later in the year possibly due to limited water 

resources towards the end of the dry season. Daily activity was associated with warmer 

temperatures and daylight hours, consistent with other studies (Borchard and Wright, 2010).  

Landscape distribution of feral cattle was closely associated with pastoral leases and post-burn 

regrowth and inconsistently associated with water points. Importance of proximity to historical 

distribution points suggests that bovines are opportunistically expanding from pastoral 

properties that border the Uunguu IPA. Geographic complexity across the property such as 

rugged sandstone may impede northward movement especially in the west and distribution is 

periodically being altered by aerial shooting programs designed to limit the spread and density 

of feral cattle. Landscape-scale occurrence and site-scale occurrence, abundance and foraging 

behaviour of cattle were all significantly associated with recently burnt areas consistent with 

multi-scale pyricherbivory, whereby herbivores are attracted to the nutritious regrowth 

following a fire event (Fuhlendorf and Engle, 2001). Though it is well established that water 

points strongly influence bovine landscape distribution (Koenig et al., 2003; Allred et al., 

2011a), our analyses did not reveal such clear-cut relationships, most likely because of the 

persistence of ephemeral water sources into the dry season. Site-scale cattle occurrence was 

linked to perennial water, but foraging behaviour was not, suggesting recently burnt areas are 

a stronger driving force (Allred et al., 2011a).   

In contrast to cattle, the landscape-scale distribution of macropods was associated with greater 

distance to adjacent pastoral properties suggesting macropods may be geographically displaced 

northwards as feral cattle expand from the south into the Uunguu IPA. We also found substrate 

fertility affects the distribution and abundance of macropods. Camera trapping suggests 

common wallaroo are common in infertile sandstone habitats, possibly on fertile substrates as 

well, whereas antilopine wallaroos are more strongly associated with fertile substrates (Ritchie 

et al., 2008). We found wallaroos occurred further from perennial water bodies while agile 

wallaby foraging was associated with proximity to water, corroborating previous literature on 

differences in physiological tolerance of dryness between wallaroos and the agile wallaby 

(Ritchie et al., 2009; Stirrat, 2009). However, the ranges of the two wallaroo species are thought 

to be differentiated in part by their tolerance of water scarcity (Croft, 1981; Letnic et al., 2014) 

where antilopine wallaroos require access to permanent water (Ritchie et al., 2008; Ritchie et 

al., 2009). Our inability to reliably differentiate the two wallaroo species prevented us from 

identifying the environmental factors that differentiate these macropods across the study area. 
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Contrary to the pyricherbivory model, macropod occurrence, abundance and foraging were not 

uniformly associated with recently burnt areas and patterns varied between species.  For the 

two wallaroos, we found an interaction between fertility and time since fire whereby abundance 

was highest on recently burnt areas in infertile savanna and abundance increased in fertile 

savanna sites up to approximately 1.5 years after a fire. Interactions between habitat and time 

since fire have been previously reported for both cattle and macropods (Vermeire et al., 2004; 

Murphy and Bowman, 2007b; Ritchie et al., 2008; Ritchie et al., 2009). The cause of this 

interaction could be related to avoidance of cattle on recently burnt fertile areas and the ability 

of macropods, with more selective feeding ecology, to utilize the smaller and more sparsely 

distributed amounts of green pick available on infertile substrates (Dawson, 1995). Common 

wallaroo abundance has been previously linked to low fire frequency but antilopine wallaroo 

abundance has been shown to increase with late dry season fires (Ritchie et al., 2008; Ritchie 

et al., 2009) highlighting the importance of maintaining or reintroducing the seasonal 

heterogeneity of the historical Aboriginal fire regime known to affect macropod abundance 

(Murphy and Bowman, 2007). Fire management programs in the North Kimberley in recent 

years have reduced late dry season fires by 50% (Corey et al., 2016) in efforts to better control 

late dry season wildfires and generate carbon credits with the abatement of greenhouse gas 

emissions. Current carbon credit programs provide economic incentives to participants for 

burning before 1 August encouraging fire management programs to focus on early dry season 

burning (Carbon Credits, 2018). Such a management regime of only early dry season burning 

may be disadvantaging the antilopine wallaroo whereas incorporating mid-dry season and late 

dry season burning, if moisture conditions are appropriate to allow for green pick emergence, 

could produce new forage throughout the dry season. The spatial pattern of fire is also likely 

an important influence on macropod species abundance.  For instance, in arid central Australia 

Codding et al. (2014) found common wallaroo scat densities were higher in early seral (recently 

burnt) patches with emerging green pick and mid-seral patches with longer time since fire 

where fruits and herbaceous browse had recovered.  Ritchie et al. (2008) and Telfer et al. (2008) 

also note the nexus between fire mosaics and the abundance of the common wallaroo.  

Macropod activity was also linked to seasonal shifts and diurnal cycles. In contrast to cattle 

activity patterns, macropods were more abundant and foraging more frequently at study sites 

at the end of the dry season/beginning of the wet season and were detected and foraging more 

frequently in cooler temperatures linked to night-time or crepuscular activity, a result found 

previously for the common wallaroo and agile wallaby (Ealey, 1967; Kaufmann, 1974; Stirrat, 
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2004). Green-Barber and Old (2018) similarly found that macropod occurrence and behaviour 

were dictated by season and time of day with feeding occurring most often at night and early 

morning in the summer and early-morning to mid-afternoon in winter.  

2.5.3 Interspecific relationships 

Our findings of spatial and temporal partitioning of landscape resources between macropods 

and cattle may be a result of competition.  Consistent with previous studies, we found cattle 

mostly foraged during the day while macropods foraged at night (Ealey, 1967; Kaufmann, 

1974).  Although we found no association between cattle and macropod presence with the aerial 

survey data, we did find a significant negative association at the site-level using camera 

trapping. Previous work across northern Australia has suggested cattle abundance was not an 

important factor for predicting wallaroo distribution (Ritchie et al., 2008; Ritchie et al., 2009).  

Elsewhere, competitive relationships between cattle and macropods is mixed and context-

specific.  Non-native and native herbivore interactions can be affected by habitat quality 

(Dudzinski et al., 1982; Daskin and Pringle, 2016).  For example, in Arnhem Land, feral 

herbivores are most strongly associated with more fertile habitat and native species with less 

fertile habitats (Koenig et al., 2003).  In less productive semi-arid ranglelands, cattle production 

can be adversely affected by large macropod abundance (Kutt et al., 2012; Frank et al., 2016) 

but on improved pastures, there can be a positive association between cattle and macropods 

(eastern grey kangaroos) with little evidence of competition (Payne and Jarman, 1999). Despite 

competition with higher densities of cattle, pastoral lands can sustain very high macropod 

populations in response to provision of water points and reduced predation by dingoes 

(Caughley et al., 1985).  Herbivorous species have a higher potential for competition when 

resources are limiting (Dudzinski et al., 1982), especially with independent evolutionary 

histories (Davis et al., 2017).  Although much of Australia’s tropical savannas have high 

pasture productivity associated with the wet season, by the end of the dry season they can 

become nutrient deserts if there have been no fires to initiate new growth. Thus, it is possible 

that the most intense competition between cattle and macropods occurs at the end of the dry 

season and is strongly influenced by fire, or lack thereof. In addition to competition for food 

resources, predation by dingoes may be more heavily skewed towards macropods than cattle 

given the positive association of dingoes and agile wallabies and negative association with 

cattle.  
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2.6 CONCLUSION 

Using a multi-scale survey approach, we have found that feral cattle, a non-native herbivore, 

are more abundant in terms of density and biomass than the largest native herbivores in a little-

modified Australian tropical savanna.  Further, there is some evidence suggestive of population 

declines of macropods, which may be related to a contemporary fire regime of early season 

burning that has replaced the traditional Aboriginal practice of burning throughout the dry 

season, as well as competition with cattle for the highest quality forage resources.  Multi-scale 

monitoring as applied in this study is essential to determine if large macropods are declining 

across northern Australia because camera trapping can record macropod species and 

behaviours that are often unidentifiable using aerial survey and road transects.  The ecological 

cause of putative macropod declines, including the nexus of soil fertility and season of burning, 

warrants further investigation.  
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3.1 ABSTRACT 

 
Australian savannas lack native megaherbivores (> 1,000 kg body mass), but since the 

commencement of European colonisation in the 19th century bovine livestock, such as cattle 

(Bos spp.) and water buffalo (Bubalus bubalis), have established large feral populations that 

continue to geographically expand. The largest extant native herbivores are marsupials in the 

family Macropodidae (henceforth 'macropods': common wallaroo, Osphranter robustus [c. 40 

kg]; antilopine wallaroo, O. antilopinus [c. 35 kg]; agile wallaby, Notamacropus agilis [c. 20 

kg]) and occur at low densities, with evidence that some species are in decline, the cause of 

which remains uncertain. We tested the hypothesis that bovines and macropods compete for 

nutritious forage in the North Kimberley, Western Australia. To do so, we used carbon isotope 

analysis of feral cattle and native macropod dung (as a proxy for the relative contribution of C4 

grass to their diet) and nutrient analysis of standing herbaceous biomass. Grass consumption 

varied between macropod species, being highest in the two larger wallaroo species and lowest 

in the smaller agile wallaby reflecting its broader dietary range. Grass consumption by 

wallaroos was maximal on fertile sites and negatively correlated with fibre content of live 

biomass, which was lowest on fertile and burnt sites highlighting the importance of dry season 

burning to provide wallaroos with continuous access to high-quality, low-fibre forage. The 

relative abundance of grass in the diet of cattle was lowest in the middle of the dry season with 

an interaction between fire and substrate fertility where grass consumption was highest on 

fertile sites, particularly those recently burnt. Grass consumption by cattle was also negatively 

correlated with the fibre content of live biomass. Introduced bovines shift their diets to non-

grasses as quality of herbaceous biomass declined with increasing fibre content, by contrast, 

the largest macropod herbivores do not have this dietary flexibility.  We conclude a plausible 

mechanism for the success of bovines and the decline of large macropods in Australian 

savannas is competition for nutritious grass that is abundant immediately after landscape fire.  

 

3.2 INTRODUCTION 

 
Australia has no extant native megaherbivores with a body mass of > 100 kg, although 

European colonisation of northern Australia commencing around the 1820s established large 

feral populations of livestock (e.g. cattle [Bos sp.], water buffaloes [Bubalus bubalis], horses 

[Equus caballus] and donkeys [E. asinus]) which continue to expand their geographic range 

(Letts, 1962; Freeland, 1990).  The success of these feral herbivores in Australian savannas 
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suggests that they may be occupying an ecological niche that became vacant following the 

extinction of native megafauna in the late Pleistocene (Bowman et al., 2010b). 

In contrast to savannas elsewhere in the world, where both domesticated livestock and the large 

native herbivores are typically ungulates, Australia’s native herbiovores are taxonomically and 

functionally distinct, being non-ruminant foregut feeding macropods (i.e. members of the 

marsupial family Macropodidae, including kangaroos and wallabies) including the antilopine 

wallaroo (Osphranter antilopinus), common wallaroo (O. robustus) and agile wallaby 

(Notamacropus agilis; Fig. 3.1).  Suspected decline of some macropod species has been 

reported by Aboriginal Traditional Owners and past research (Ritchie, 2007; White et al., 2009; 

Roberts et al., 2016; Reid et al., 2019a), coincident with the introduction and expansion of 

large feral bovines such as cattle and water buffalo. While agile wallabies are considered 

intermediate feeders utilising both browsing and grazing strategies, common and antilopine 

wallaroos are thought to be more dependent on a grass diet (Sanson, 1989) but none have the 

gut capacity required to handle large amounts of poor-quality grass. The macropod declines 

may be caused by competition with feral bovines for food resources, which are generalist bulk- 

feeders.   In Arnhem Land, water buffalo utilize a larger proportion of browse in their diet as 

the dry season progresses combating the nutritional decline of grasses (Bowman et al., 2010b). 

However, water buffalo are thought to have a broader diet and be better adapted to poor-quality 

grass than cattle (Eldridge, 2012a) so it is unknown if cattle exhibit the same dietary trends. 

Tropical savannas are characterised by an annual cycle of weather extremes and frequent fire, 

conditions which greatly influence forage (herbaceous biomass consumed by herbivores) 

quantity and quality. The strongly seasonal rainfall pattern of the monsoon tropics leads to 

rapid production of tall grass during the wet season followed by desiccation during the dry 

season creating a high biomass of combustible grass with low nutritional quality and a ‘boom-

bust’ cycle of forage quantity and quality (Mott et al., 1985). In northern Australian savannas, 

Australian Aboriginal people traditionally used patch burning to provide nutritious ‘green pick’ 

for herbivores by setting numerous small fires throughout the dry season (Crawford, 1982; 

Braithwaite, 1991; Saint and Russell-Smith, 1997; Murphy and Bowman, 2007b). This is 

because the fibre content of live forage is lower and crude protein content is higher in post-

burn regrowth (Reid et al., 2019b) meaning that post-fire green pick is more digestible and 

nutritious. The Aboriginal socio-ecological tradition of patch burning has drastically changed 

since European settlement (Russell-Smith, 2001; Vigilante, 2001; Edwards et al., 2003; Fisher 



Chapter 3                                                                                                                Dietary range  

 

53 
 

et al., 2003; Russell-Smith et al., 2003; Legge et al., 2011b) and altered fire regimes have been 

implicated in macropod declines in tropical savannas (Woinarski et al., 2014). 

 

The Uunguu Indigenous Protected Area (Uunguu IPA), in the North Kimberley bioregion of 

Western Australia, is an ideal location to study the feeding ecology of macropods and feral 

cattle and how this is influenced by fire and soil fertility. This region has never been used for 

pastoralism or experienced large-scale vegetation clearing, is little affected by economic 

development, and represents a diversity of savannas on both fertile and infertile substrates (Fig. 

3.2). In the Uunguu IPA, feral cattle are the dominant introduced herbivores and have only 

recently spread from adjoining pastoral leases, with rare populations of wild horses and 

donkeys.  Although modes of Aboriginal fire management were disrupted in the 1930s with 

the nearby establishment of Kalumburu Mission, the Uunguu IPA is currently managed by its 

Aboriginal Traditional Owners in a way intended to replicate the historical fire regime. In this 

setting we used isotopic analysis of dung and forage nutrient analysis to address three linked 

questions: 

1) Do macropods and feral cattle differ in their seasonal consumption of grass? 

2) How do fire, substrate fertility and progression of dry season influence the proportion 

of grass in the diet? 

3) What fire-influenced forage attributes affect the proportion of grass intake? 

This study was designed to harmonise with previous projects conducted in Arnhem Land, 

Northern Territory, another large swath of relatively undisturbed tropical savanna (Fig. 3.2; 

(Telfer and Bowman, 2006; Murphy and Bowman, 2007b; Bowman et al., 2010b). The 

combination of results from this study and previous similar studies allows for the examination 

of savanna dynamics at a sub-continental scale. 
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Figure 3.1 The large herbivore assemblage in the Uunguu IPA consists of three native 

macropod species (a) agile wallaby (c. 20 kg), (b) antilopine wallaroo (c. 35 kg) and (c) 

common wallaroo (c. 40 kg) and has several introduced herbivores including feral horses and 

donkeys but are dominated by (d) feral cattle (c. 450–1,100 kg). The primary feral herbivore 

in Arnhem Land is the water buffalo (c. 450 – 1,200 kg). Photo credits: Fig. 1b – Sally Vigilante, 

Fig. 1c – Tom Vigilante. 

b 

c 

a 

d 
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Figure 3.2 Location of the Uunguu IPA (black) within the North Kimberley bioregion, Western 

Australia where dung and forage samples were collected for this study and the location of 

previous macropod and feral bovine dietary studies at Kolorbidahdah, Arnhem Land, Northern 

Territory.  

 

3.3 METHODS 
 

3.3.1 Study Area 

 

This study was undertaken in the North Kimberley bioregion, Western Australia in the Uunguu 

IPA (approximately 8,000 km2) declared in 2011 and managed by Wunambal Gaambera 

Aboriginal Corporation (WGAC, Kalumburu, Australia). The vegetation is dominated by 

eucalypt (Eucalyptus and Corymbia spp.) savanna with a physiognomy of open forest and 

woodland with a grassy understorey.  The climate is defined by a monsoonal wet–dry season 

cycle with mean annual rainfall of 1,100–1,600 mm across a steep latitudinal gradient, 

approximately 90% of which falls during the 5-month wet season (December-April; BMA, 

2018). 

 

Much of the landscape burns each dry season. Nearly all fires are intentionally ignited by 

humans, but lightning strikes concentrated in the transition between the dry and wet season 

(October to December) also ignite fires. The mean fire return interval for the Uunguu IPA 

during the project was 2.5 years with 73% of fires occurring in the early dry season (before 1 
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August). Significant changes to the historical fire regime occurred around the mid-1900s 

because the Wunambal Gaambera people, the Aboriginal people of the region, had moved to 

nearby settlements and, as a result, traditional fire management ceased in most areas. Historical 

fire regimes have been better replicated in recent decades with the establishment of Aboriginal 

fire management programs (Vigilante et al., 2004; Vigilante et al., 2017).  

The large species of macropod (marsupial family: Macropodidae) known to occur in the 

Uunguu IPA are the agile wallaby, antilopine wallaroo and common wallaroo. Recent 

monitoring of large herbivores in the study area has shown large macropods collectively to be 

less abundant than feral cattle, and that the agile wallaby and common wallaroo are more 

common than the antilopine wallaroo which is rarely sighted (Reid et al., 2019a). Pastoral 

leases adjacent to the Uunguu IPA were established in the 1900s and intensified in the 1950s 

and 1960s becoming a source of cattle (Bos taurus) dispersal, the most abundant introduced 

herbivore in the area.   

3.3.2 Site establishment 

Monitoring sites (n = 11; 3-5 ha each) were selected to span geological formations with 

relatively fertile soils (n = 7; Carson Volcanics) and infertile soils (n = 4; King Leopold 

Sandstone and Colluvium and Alluvium) based on geological maps (DMPWA, 2010; 

Geoscience Australia, 2012) and site-based observations. The fertile sites were characterized 

by gently undulating to hilly terrain with shallow stony soils dominated by a mixture of 

perennial and annual tussock tall grasses (e.g. Sorghum spp., Themeda australis, Heteropogon 

contortus, Sehima nervosa, Chrysopogon fallax); infertile sites were characterized by gently 

undulating sandstone terrain with sandy soils of variable depth dominated by a mixture of 

hummock grasses (Triodia spp.) and perennial and annual tussock grasses (e.g. Sorghum spp., 

Eriachne sulcata).  Sites were selected based on fire history and utilization by both large 

macropods and feral cattle.  In identifying study sites, we had guidance from Aboriginal 

Traditional Owners about areas known to be preferred macropod habitat. The identified areas 

were searched for macropod and cattle dung to confirm presence of both herbivore groups. 

Sites were either recently burnt or unburnt, defined by occurrence of fire in the dry season of 

measurement. In 2016, 8 sites were unburnt and 3 sites were burnt and in 2017, 3 sites were 

unburnt and 8 sites were burnt. Fire history of each site was constructed from field observations 

and satellite-derived (MODIS) burnt area records (NAFI, 2018). Five permanent 1-m2 quadrats 
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were established at each monitoring site for forage measurements, location of quadrats was 

selected to capture the characteristic grasses on fertile and infertile sites. 

3.3.3 Isotopic analysis of dung 

To evaluate whether grass intake differs between species, and whether it is related to fire history, 

substrate fertility and season, we collected fresh dung samples for isotopic analysis in the early 

dry season (EDS; May–June), mid-dry season (MDS; July–August) and late dry season (LDS; 

September–October) of 2016 and 2017. Fires occurring at monitoring sites during the course 

of this study ranged from approximately 500 to 11,000 ha, while home ranges for the species 

studied are significantly smaller, approximately 25 ha for the agile wallaby (Stirrat, 2003), 10 

ha for common wallaroo, 76 ha for antilopine wallaroo (Croft, 1987) and 330 ha for cattle 

(Howery et al.,  1996; Cowie et al., 2016). We therefore assume that dung collected at a 

monitoring site is from plant material consumed at that monitoring site or from nearby areas 

with analogous fertility and recent fire history. Dung samples were not collected during the wet 

season (November-April) due to access constraints. Macropod dung was considered fresh if it 

was without cracking or deterioration and retained an intact shiny black coating. Macropod 

dung in this condition is generally estimated to be less than 3 months old. Dung deteriorates 

faster during the wet season or when affected by fire in the dry season (Telfer et al., 2006), 

therefore fresh dung found during the early dry season when the first collections were made 

can reasonably be assumed to have been recently deposited. Cattle dung was considered fresh 

if it was in a recognizable pile and the interior of the dung was still moist or dark brown in 

colour. Cattle dung deterioration is assumed to be faster than macropod dung due to its higher 

moisture content and lack of hard exterior coating.  Dung with any evidence of being burnt was 

not collected to ensure it was deposited after fires at the monitoring sites. Each sample was 

allocated to one of three categories: small to medium-sized macropod dung (< 18.5 mm wide; 

agile wallaby), large macropod dung (> 18.5 mm wide; antilopine and common wallaroo) and 

cattle dung. Macropod dung categories were based on average sizes found by Telfer et al. 

(2006). At each site, and on each sampling occasion, 0–10 individual dung samples were 

collected, based on dung availability, for each of the three categories by a thorough foot-based 

search of the site. In some instances, there were no fresh samples available. Samples were 

stored in plastic bags by category and subsequently oven-dried at 60˚C for 24–48 hours. The 

dimensions of the macropod dung samples were measured in the lab with callipers and a 

classification tree was used to separate samples into agile wallaby and wallaroos (Telfer et al., 
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2006). Antilopine and common wallaroo dung samples were not reliably differentiated based 

on the classification tree of Telfer et al. (2006) and these two species were pooled in further 

analyses and referred to collectively as “wallaroos,” as has been done in other studies (Murphy 

and Bowman, 2007b; Letnic et al., 2014). Samples were pooled for each combination of dry 

season segment (early, mid, late), substrate fertility (fertile, infertile), fire history (burnt, 

unburnt), year (2016, 2017) and species (agile wallaby, wallaroo, cattle) and 1–3 replicates for 

each sent for isotopic analysis (n = 180). No late dry season fires occurred at monitoring sites 

during 2016-2017, so all fires were early dry season fires (before 1 August).  

 

A 1 cm3 subsample of each dung sample was ground to a fine powder with an electric mill then 

loaded into tin cups for analysis of carbon isotope abundances (ẟ13C) using a VarioMICRO 

Elemental Analyser (Elementar, Langenselbold, Germany) and Continuous-Flow Isotope Ratio 

Mass Spectrometer (IsoPrime, Cheadle, UK). The ẟ13C data is reported in parts per thousand 

(‰) where ẟ13C refers to the ratio of 13C to 12C relative to an internationally defined scale (V-

PDB). The ẟ13C results were normalised to an IAEA reference material, IAEA C8, with a 

consensus value of ẟ13CV-PDB = -18.31‰ (Gonfiantini et al., 1995; Le Clercq et al., 1997) and 

analysed with commercial reference standards from Elemental Microanalysis – ‘High Organic 

Sediment Standard OAS’ (CatNo. B2151) and ‘Protein Standard OAS’ (CatNo. B2155) as 

quality control references. All results are the mean of repeat measurements with the standard 

deviation of the replicate analyses less than or equal to ± 0.6.  

 

Carbon isotope composition of dung samples was used as an estimate of seasonal variation in 

diet contributed by plants using the C4 photosynthetic pathway (Jones et al., 1979) which in 

northern Australia are primarily grasses, and nearly all grasses are C4 (Bowman and Cook, 

2002; Murphy and Bowman, 2007a). Therefore, we assume that the ẟ13C value of a dung 

sample is equivalent to proportion of grasses in the diet. The relative contribution of grass to 

the diet was calculated as: 

 

% grass in diet =   
 μẟ13CC3 - (ẟ13Csample - Ꜫ *diet-dung)                    

μẟ13CC3 - μẟ13CC4 
 

 

where μẟ13CC3 and μẟ13CC4 are the global means of ẟ13C for C3 (-26.5‰) and C4 (-12.5‰) 

plants, respectively (Van der Merwe, 1982; Cerling et al., 1997), and Ꜫ *
diet-dung is the average 

× 100 
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estimated 13C enrichment which occurs between diet and dung (-0.8⁰⁄₀₀; Sponheimer et al., 

2003).  

 

3.3.4 Forage quantity and quality 

 

Biomass, crude protein and fibre content of live herbaceous biomass were measured at each 

monitoring site for each visit at which dung samples were collected for isotopic analysis to 

examine the relationship between forage attributes and grass intake.   

 

Biomass  

At each sampling occasion, average height and cover of live herbaceous vegetation were 

measured in the permanent quadrats. Live biomass was measured at the final sampling occasion 

each dry season by clipping all herbaceous vegetation inside permanent forage quadrats and 

separating live and dead biomass. Forage samples were dried in an oven at 60˚C for 48 hours 

and weighed.  Live biomass measurements were significantly correlated (p < 0.001) with live 

forage volume (forage height multiplied by forage cover); thus, we were able to estimate live 

biomass for sampling occasions throughout the dry season.   

Crude protein and fibre  

To measure crude protein and fibre content, a minimum of 10 g live biomass representative of 

the dominant species of grass and herbs was clipped and placed into a sealed plastic bag at each 

sampling occasion. Samples were dried as above and milled to pass through a 1-mm sieve. 

Crude protein was determined by combustion (AOAC Official Method 990.03., 2005) with a 

CN628 Carbon/Nitrogen Determinator. To provide a measure of the fibrous bulk of the forage, 

amylase and sodium sulphite treated neutral detergent fibre (aNDF) content was assessed with 

ANKOM Technology Method 6 (ANKOM Technology, Macedon, NY, USA) using solutions 

as outlined in Van Soest et al. (1991). This measure is based on the amount of hemicellulose, 

cellulose and lignin following the removal of protein/starch contamination using addition of 

amylase and sodium sulphite.  

 

3.3.5 Analysis 

 

Ordinary least-squares linear modelling was used to examine the influence of species on 

percent grass in the diet by comparing the null model and a model with species as the predictor 
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variable. The influence of fire, substrate fertility and dry season period on grass content of the 

diet of each species was also examined with ordinary least-squares linear modelling. A total of 

eight candidate models, representing all combinations of the three explanatory variables (fire, 

substrate fertility, season), were developed to explain variation in the grass content of herbivore 

diet. Models were compared using AICc, the second-order form of Akaike's Information 

Criterion. Interaction terms between all predictor variables were also added to the best-

supported model for each response variable, and AICc used to assess whether the interaction(s) 

improved the model. Linear correlation was used to examine relationships between percent 

grass in the diet of each species and fire-influenced forage attributes (biomass and fibre and 

crude protein content of live biomass). 

 

3.4 RESULTS 

 
Agile wallabies, wallaroos and cattle all differed in the proportion of grass in their diet (Table 

3.1a, Fig. 3.3). Wallaroos consumed the most grass and cattle consumed the least, albeit grass 

consumption by cattle was the most variable (ranging from 0–91%) thereby exhibiting greater 

dietary breadth compared to agile wallabies (32–91%) and wallaroos (36–100%). Agile 

wallaby grass consumption was unaffected by fire, substrate fertility or season, in line with the 

classification of mixed feeder utilising grass, forbs and browse throughout the year (Table 3.1b). 

Variation in the contribution of grass to wallaroo diet was best explained by substrate fertility, 

accounting for 42% of the deviance of the null model; wallaroos utilised more grass on fertile 

substrates (Table 3.1c; Fig. 3.4). By contrast, variation in the contribution of grass to cattle diet 

was more complex and best explained by dry season period and an interaction between fire and 

fertility (Table 3.1d; Fig. 3.5). Cattle ate a higher proportion of grass in the early and late dry 

season and less in the mid-dry season, possibly related to other food sources becoming 

available during that time such as fruiting or flowering of some browse species.  Cattle ate the 

highest proportion of grass on burnt, fertile sites, and least on infertile sites and this was 

unaffected by fire.  

 

Of live biomass, crude protein content and fibre (aNDF) content of live biomass, only fibre 

content was significantly correlated with the contribution of grass to the diet (Fig. 3.6).  Both 

wallaroos and cattle ate a significantly lower proportion of grass when live herbaceous biomass 

had a high fibre content (p < 0.001; R2 = 0.41 and R2 = 0.56, respectively). Cattle severely 

reduced grass intake as fibre content increased (Fig. 3.7); on occasions where fibre content was 



Chapter 3    Dietary range 

61 

at its highest (around 75–80%) almost no grass was consumed. Agile wallaby selection of grass 

was not correlated with any of the measured forage attributes consistent with their broad dietary 

range that includes forbs. 

Table 3.1 Species linear models for dry season proportion of grass in diet, based on ẟ13C levels 

of dung. When the best-supported model is not the null model, only models with ΔAICc < 5 

are shown. Significant predictor variables (p ≤ 0.05) are in bold for the best models.  

Response variable Model ΔAICca 
Explained 

deviance (%)b 

a) All species ~Species 0.00 22.15 

b) Agile wallaby ~1 0.00 0.00 

~Fertility 0.88 2.50 

~Fire 1.97 0.51 

c) Wallaroos ~Fertility 0.00 42.35 

~Fire + Fertility 2.25 42.36 

~Fertility + Season 3.92 42.92 

d) Cattle ~Fire * Fertility + Season 0.00 71.48 

~Fire + Fertility + Season 4.86 67.72 
aAICc second order Akaike’s Information Criterion for large and small sample sizes; 

ΔAICc is the difference between the model’s AICc value and the minimum AICc of 

all models in the candidate set. Models are ranked in ascending order of ΔAICc. 
bExplained deviance is the proportional reduction in residual deviance, relative to the 

null model. 
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Figure 3.3 Predicted dry season contribution of grass to the diet of agile wallabies, wallaroos 

and feral cattle (based on ẟ13C of dung) in the Uunguu IPA, North Kimberley, Western 

Australia. The grey shading indicates 95% confidence intervals and grey dots indicate partial 

residuals. 

 

 

 

 

 

 

 

 

 

Figure 3.4 Predicted dry season contribution of grass to the diet of wallaroos (based on ẟ13C 

of dung) on fertile and infertile soils in the Uunguu IPA, North Kimberley, Western Australia. 

The grey shading indicates 95% confidence intervals and grey dots indicate partial residuals. 
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Figure 3.5.  Predicted dry season contribution of grass to the diet of feral cattle (based on ẟ13C 

of dung) by dry season period, substrate fertility and fire history in the Uunguu IPA, North 

Kimberley, Western Australia. The grey shading indicates 95% confidence intervals and grey 

dots indicate partial residuals. 
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Figure 3.6 Seasonal variation in fibre content of live biomass (aNDF; ± SE) throughout the 

dry season in savannas burnt in the early dry season (EDS) and unburnt with relatively fertile 

and infertile underlying substrates. 



Chapter 3                                                                                                                Dietary range  

 

65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Proportion of grass in the diet of wallaroos and feral cattle on fertile and infertile 

savannas that have been burnt in the early dry season or unburnt in the Uunguu IPA, North 

Kimberley, Western Australia.   
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3.5 DISCUSSION 

Our analysis of grass consumption by agile wallabies, wallaroos (antilopine and common 

wallaroo) and feral cattle in a north Australian tropical savanna highlights fundamentally 

different dietary breadth of these species. Macropods consume a higher proportion of grass and 

have a narrower dietary breadth than feral cattle.  Thus, the large bulk feeding ungulates have 

substantial advantage over the macropods being able to tolerate the wide fluctuations in forage 

quality conditions that are characteristic of tropical savannas. Further, our analysis of forage 

quantity and quality showed that increasing fibre content of live biomass explained the decrease 

in grass consumption among both cattle and wallaroos, highlighting the importance of low fibre 

forage found on burnt, fertile sites for species more dependent on grazing, such as wallaroos.   

The variability of the contribution of grass to macropod diets reported here is generally 

consistent with previous classifications of their feeding niche by their dentition: agile wallabies 

being defined as mixed feeders and wallaroo species as specialist grazers (Sanson, 1989).  

Consistent with a prior study (Murphy et al., 2007), agile wallaby grass consumption showed 

the least variability and was unrelated to forage quantity and quality, fire activity, substrate 

fertility and dry season period highlighting their dependence on multiple food resources. Unlike 

wallaroos, this species is associated with moist riverine habitats where a wider variety of non-

grass forage (herbs and browse) is available. When green grasses are available, agile wallabies 

prefer this resource but utilise a flexible foraging strategy to exploit a variety of resources 

including browse, leaf litter, fruits, flowers and roots when preferred foods are of poor quality 

(Stirrat, 2002). Nonetheless, previous work has shown that even though agile wallabies varied 

their dietary consumption to include higher protein foods when grasses had low nitrogen 

content, they were still unable to prevent loss of body condition with this feeding strategy 

(Stirrat, 2000; Stirrat, 2002) highlighting the potential importance to macropod health of 

resprouting grass following fire, especially in the late dry season. 

Our results show broad dietary breadth of wallaroos (36–100% C4 grass), no doubt reflecting 

the pooling of wallaroo species. Previous work has shown a preference for grass in both species 

but that the common wallaroo consumes a lower proportion of grass than the antilopine 

wallaroo (Murphy et al., 2007). Common wallaroos will target grass even when the abundance 

is low (Ellis et al., 1977) and can continue to feed on grass of poor quality (high fibre and low 

nitrogen content; Freudenberger and Hume, 1992) and the antilopine wallaroo will exclusively 
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consume grass if available (Croft, 1987; Murphy et al., 2007).  However, the common wallaroo 

is associated with rocky habitats and escarpments, shown to have a greater vegetation species 

richness than the open plains providing access to more potential food resources (Freeland et 

al., 1988).  Variability of grass consumption by both wallaroo species could be explained by 

substrate fertility and forage quality: wallaroos ate more grass on fertile substrates and when 

fibre content of live biomass was low (i.e. grass forage was of high quality).  The importance 

of substrate fertility likely reflects the effect on forage nutritional quality rather than quantity 

of forage. Forage quality, not quantity, has been shown to be the best predictor of macropod 

body condition (Croft, 1987; Shepherd, 1987). Freudenberger and Hume (1992) demonstrated 

that common wallaroos can digest grass with high fibre content with sufficient nitrogen 

supplementation.  Nitrogen content in forage is highest in burnt areas (Murphy and Bowman, 

2007b), particularly in new growth following a late dry season fire (Reid et al., 2019b), 

highlighting the importance of fire on the landscape to provide nitrogen when requirements are 

at their highest and can potentially increase intake and digestibility. 

 

In contrast to previous studies, wallaroo grass intake did not vary seasonally or in response to 

early dry season fire activity. Common wallaroos and black wallaroos (Osphranter bernardus), 

endemic to Arnhem Land, have been shown to consume predominantly grass throughout the 

dry season (Telfer and Bowman, 2006). However, studies including year round measurements 

found antilopine and black wallaroos consumed a higher proportion of grasses during the wet 

season when high-quality forage was abundant with browse and forbs becoming a significant 

part of the diet during the late dry season when high-quality grass was limited (Fossan, 2005; 

Telfer and Bowman, 2006). Macropods have been shown to eat a larger proportion of grass on 

burnt areas (Telfer and Bowman, 2006; Murphy and Bowman, 2007b) although these studies 

did not differentiate between the responses of individual species. 

 

The proportion of grass in the diet of macropod species is broadly comparable between the 

North Kimberley and Arnhem Land despite differences in substrate fertility and fire regimes 

(Fig. 3.8).  The reported diet variability of common wallaroos in Arnhem Land (15-98%) was 

slightly greater than for common and antilopine wallaroos together in the North Kimberley. 

The mean grass consumption of all large macropods in Arnhem Land (antilopine, common and 

black wallaroos and agile wallaby) was lower than species in the North Kimberley (Murphy 

and Bowman, 2007b) signifying a regional difference in proportion of grass intake.  The black 

wallaroo and agile wallaby had substantially lower mean grass intake than the other macropods 
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consistent with the broader dietary breadth and diversity of resources in the habitats they 

occupy (rocky gorges and riverine respectively; Fig. 3.8).   

 

Figure 3.8 Proportion of grass consumed in the dry season by feral herbivores (water buffalo 

and cattle) and native macropod herbivores in Arnhem Land, Northern Territory (A) and the 

North Kimberley, Western Australia (N). “Various macropod spp.” includes agile wallaby and 

antilopine, common and black wallaroos combined. Superscript numbers indicate data sources 

(1, Bowman et al. 2010; 2, Telfer and Bowman 2006; 3, Murphy and Bowman 2007b). Body 

mass for each species is plotted in the top panel for comparison (Menkhorst and Knight, 2001).  
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Feral cattle had the greatest dietary flexibility compared to agile wallabies and wallaroos. We 

found grass consumption by feral cattle was related to substrate fertility, fire activity, forage 

quality and season. Grass consumption was highest on burnt, fertile sites but fire activity did 

not impact grass consumption on infertile sites likely due to lower fibre content of green forage 

on infertile sites, regardless of fire activity.  Grass consumption by feral cattle was lowest 

during the mid-dry season possibly relating to other food resources coming available, such as 

flowering and leaf flushing on semi-deciduous trees.  Cattle prefer sites closer to water and 

areas with woody vegetation for thermal refugia (Allred et al., 2011b; Allred et al., 2013; Reid 

et al., 2019a), a preference that may also provide access to a greater diversity of food resources 

such as riparian forbs and browse. The increase in grass consumption following the mid-dry 

season low may relate to new grass growth following sporadic rains at the end of the dry season. 

There have been few other studies in Australia that have directly measured dietary niche 

separation between feral herbivores and macropods (as opposed to inference based on habitat 

use) and they have focused on the arid rangelands of southern Australia. Concurring with our 

findings from tropical savannas, in shrub rangeland the common wallaroo is a grazer with 

around 80% of the diet during severe drought made up of grass (Dawson and Ellis, 1996).  By 

contrast, feral goats (Capra hircus) have broader diets with a strong preference for browse 

thereby potentially limiting competition with common wallaroos (Dawson and Ellis, 1996). In 

escarpment country of New South Wales, the yellow-footed rock wallaby (Petrogale 

xanthopusin) is a mixed feeder, like the agile wallaby, resulting in higher dietary overlap with 

feral herbivores (goats and rabbits [Oryctolagus cuniculus]) than is the case for the co-

occurring obligate grazer, the common wallaroo (Dawson and Ellis, 1979). Studies conducted 

on dietary overlap between managed livestock and macropods are more prevalent than feral 

herbivores. A review of these studies from arid rangeland concluded there was minimal dietary 

overlap between large macropods (red kangaroo [Macropus rufus] and common wallaroo) and 

livestock (sheep and cattle) due to niche separation, but competition could intensify in times of 

limited resources (Squires, 1982). By contrast, Dawson et al. (1975) found that potential dietary 

overlap between the common wallaroo and sheep in rocky mulga and adjoining flat open 

country was greatest under good pasture conditions when they compete for nitrogen-rich 

grasses. Overall, introduced herbivores generally have wider dietary breadth than native 

species, and the intensity of overlap between them is modulated by habitat type and seasonal 

conditions.  
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In general, megaherbivores can consume lower quality forage due to longer gut retention time 

than smaller mass herbivores and are more generalised in their foraging habits (Owen-Smith, 

1988) but high fibre concentrations can restrict cattle forage intake (Arelovich et al., 2008).  

Isotopic analysis of extinct Australian megaherbivores have shown they were opportunistic 

feeders adjusting dietary preference with environmental change (Gröcke, 1997), with a greater 

dietary range than extant large native herbivores and browsers were overrepresented in the suite 

of extinct marsupial megafauna (Bowman et al., 2010b).  Their extinction left a vacant niche 

for large-bodied browsing and opportunistic feeders.  Both feral cattle in the North Kimberly 

savannas (this study) and water buffalo in Arnhem Land (Bowman et al., 2010b) appear to 

have filled this niche given their greater dietary breadth than extant native herbivores switching 

from grazers under optimal conditions to browsers in the dry season as grasses lost nutritional 

value. This flexibility most likely gives both feral cattle and water buffalo an advantage over 

native herbivores during the highest stress time of the year.  

Not only are feral herbivores in northern Australia much larger than native herbivores (Fig. 8), 

they represent a much greater proportion of the total herbivore biomass on the landscape (Reid 

et al., 2019a). Megaherbivores consume a greater relative fraction of landscape forage biomass 

(Owen-Smith, 1988) which is especially relevant when native and feral herbivores have a 

shared forage preference that is seasonally limited.  The shift from grazing to browsing in both 

wallaroos and feral cattle appears to be driven by increasing fibre content of live biomass as 

opposed to decreasing crude protein content. Previous research has demonstrated that 

digestible dry matter intake declines in both ruminants and macropods as fibre content in feed 

increases (Freudenberger and Hume, 1992) which happens as grass cures (Terry and Tilley, 

1964).  

It has been suggested that Aboriginal burning has increased the abundance and geographic 

range of macropods by providing relatively constant high-quality forage (Codding et al., 2014). 

As Aboriginal fire was removed from the landscape in some areas, species’ ranges may have 

contracted allowing feral herbivores to dominate the landscape. The provision of green pick by 

late dry season fires has been linked to abundance of antilopine wallaroos (Ritchie et al., 2008), 

one of the macropod species most dependant on grasses (Fig. 8). Areas that currently have a 

lower proportion of late dry season fires than in pre-European times may be limiting the ability 

of grass-dependant species to compete with feral herbivores and maintain historical levels of 
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abundance.  However, the role that fire plays in provision of late dry season forage resources 

and the importance of this to overall large macropod abundance requires further investigation.   

 

3.6 CONCLUSION 

 
Collectively, results suggest that forage quality but not quantity is the limitation in northern 

savannas, especially for macropods that have a narrower dietary breadth than feral herbivores. 

Results from the North Kimberley confirm previous work in Arnhem Land (Bowman et al., 

2010b) showing that introduced megaherbivores occupy a feeding niche distinct from native 

herbivores, characterised by importance of browse and other non-grass resources in their diet 

and the flexibility to adjust to suboptimal forage conditions. Together, results from the North 

Kimberley and Arnhem Land are inconsistent with the notion that anthropogenic habitat 

change in the Late Pleistocene caused the megafauna extinctions (Johnson, 2016) because 

Australia’s northern tropical savannas can still support large numbers of bulk feeding 

megaherbivores.  We conclude a plausible mechanism for the success of bovines and the 

decline of large macropods in Australian savannas is competition for nutritious C4 grass that is 

abundant immediately after landscape fire. We suspect competition between bovines and 

macropods may be particularly intense in areas of relative high productivity in the matrix of 

infertile sites (Braithwaite, 1990); patch burning mosaics may mitigate this effect but this 

conjecture requires further investigation. 
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4.1 ABSTRACT 

Tropical savannas around the world support a diversity of large grazing herbivores that depend 

on a highly fluctuating resource, high-quality forage.  Annual wet–dry cycles, fire activity and 

herbivory combine to influence forage quality and availability throughout the year. In the 

savannas of northern Australia, native marsupial herbivores (wallaroos [Osphranter spp.] and 

the agile wallaby [Notamacropus agilis]) compete for resources with introduced bovines (feral 

cattle [Bos spp.] and water buffalo [Bubalus bubalis]) that now dominate the landscape. 

Reports of population declines and negative impacts of introduced herbivores on large 

macropods indicate a need to better understand the complex relationship between forage, fire 

and abundance of native and introduced large herbivores. We used herbivore exclosures, forage 

biomass and nutrient analyses and motion-sensor camera-trapping to evaluate whether forage 

quantity and quality are impacted by herbivory, soil fertility, season and fire activity and 

determine which forage attributes most influence herbivore abundance. Forage quantity, as 

measured by live, dead and total herbaceous biomass and proportion of live biomass, was 

higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage 

quality, as measured by fibre content, was not affected by herbivory, however, crude protein 

content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire 

activity and study region (North Kimberley and Arnhem Land) were important predictors of 

all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity 

(biomass) but increased quality (decreased fibre content and increased crude protein content); 

late dry season fires resulted in forage with the highest crude protein content. The Arnhem 

Land study sites, that have exclusively siliceous infertile soils, had lower quality forage but 

supported higher numbers of introduced bovines and wallaroos than the study sites in the North 

Kimberley, which also had soils derived from more fertile substrates. Potential explanations 

for this difference include reduced competition between wallaroos and water buffalo compared 

to cattle and the continuity of traditional Aboriginal fire management at the Arnhem Land study 

sites, characterised by finer scale and more even distribution of fire activity throughout the dry 

season. The predictions of the pyricherbivory conceptual model are consistent with the feeding 

behaviour of introduced bovines and some native macropods in northern Australian savannas. 
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4.2 INTRODUCTION 

 
Savanna ecosystems occupy large areas of the tropics, representing approximately 22% of 

Earth’s total land area (Ramankutty and Foley, 1999). Their formation and maintenance are 

based, in part, on highly fluctuating dynamics between fire and herbivory (Van Langevelde et 

al., 2003; Archibald et al., 2005; Bond and Keeley, 2005). Both fire and herbivory consume 

herbaceous biomass, thereby indirectly affecting each other. The interplay and feedbacks 

between fire and herbivory have been termed pyricherbivory (Fig. 4.1; Fuhlendorf and Engle, 

2001). According to this conceptual model, consumption of herbaceous biomass by fire reduces 

the amount of available forage (edible herbaceous biomass) but increases the quality of 

regrowth, or ‘green pick’, attracting herbivores to the area. At the same time, the effects of 

herbivory on vegetation can be dependent on the intensity of grazing, thereby creating a 

feedback between fire, forage quality and subsequent focal grazing (Fuhlendorf and Engle, 

2004; Archibald et al., 2005).   

 

 

 
 

 

 

 

 

 

 

 

Figure 4.1 Conceptual model of direct relationships between forage, fire and large herbivores 

in tropical savannas. Fire and herbivory reduce the quantity of forage on the landscape and 

increase the quality of forage. Forage quantity impacts the likelihood of fire on the landscape 

while forage quality impacts the abundance of herbivores. Large herbivores and landscape fire 

indirectly influence each other, and their relationship is mediated by forage. Large herbivores 

can indirectly reduce fire frequency by reducing available fuel. However, in tropical savannas 

where the wet season resets forage biomass each year, densities of herbivores are unlikely to 

be high enough to affect this.  Landscape fire improves the post-burn forage quality thus 

attracting more animals to the area. 
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In the tropical savannas of northern Australia, European colonists introduced domestic herds 

of a suite of large-bodied, bulk-feeding ruminant herbivores that, in turn, established feral 

populations. Immediately prior to the arrival of Europeans, these landscapes were occupied by 

a depauperate herbivore guild consisting entirely of macropods (i.e. members of the marsupial 

family Macropodidae, including kangaroos and wallabies) with more selective feeding 

strategies and completely lacked megaherbivores (all extant native species are < 100 kg). 

Previous research suggests that at least three of the feral herbivores, water buffalo (Bubalus 

bubalis), banteng (Bos javanicus) and cattle (Bos taurus), are filling a feeding niche left vacant 

by the Pleistocene extinction of the marsupial megafauna (Bowman et al., 2010b; Reid et al., 

in press), however, there is evidence of competition between introduced and native herbivores 

(Reid et al., 2019a). Both in Australia and elsewhere, competition between livestock and native 

herbivores is expected to intensify in the future, with trends in agricultural land-use showing a 

net redistribution towards the tropics (Mishra et al., 2002; Stewart et al., 2002; Young et al., 

2005; Foley et al., 2011; Ogutu et al., 2011; Kutt et al., 2012), highlighting the importance of 

understanding how native and introduced herbivores respond to fluctuating forage conditions. 

This is especially true when native and introduced herbivores are dissimilar, as opposed to 

African and North American savannas where both groups are ungulates and have considerable 

functional similarities (Veblen et al., 2016). 

The concept of pyricherbivory has been developed and tested in grass-dominated ecosystems 

of North America and Africa (Fuhlendorf and Engle, 2004; Archibald et al., 2005; Fuhlendorf 

et al., 2009; Allred et al., 2011a; Kimuyu et al., 2017), but fire is thought to have been used to 

manage forage nutrients and habitat mosaics for the maintenance of populations of macropods 

in tropical savannas by Australian Aborigines for thousands of years (Bowman et al., 2001; 

Vigilante et al., 2009). However, recent research has found an unexpected negative association 

between large macropods and recently burnt areas where feral cattle are well-established but 

remain at relatively low density compared to northern Australian commercial pastoral 

operations (Reid et al., 2019a). It is not clear if this relationship is present in areas dominated 

by other feral herbivores, but this finding suggests a possible change in feeding behaviour in 

response to competition for high-quality forage with introduced herbivores. Lack of high-

quality food has been shown to impact feeding behaviour in agile wallaby leading to increased 

time spent foraging and distance travelled while foraging (Stirrat, 2004) while Favreau et al. 

(2018) found that food resources were the primary driver affecting feeding rate of eastern grey 

kangaroos (Macropus giganteus). Water buffalo and feral cattle have a broader diet, consuming 
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significant quantities of both grass and browse, than the largest native herbivores providing a 

distinct advantage when high-quality grass forage is scarce (Bowman et al., 2010b; Reid et al., 

in press). The introduction of feral herbivores that overwhelm native species both in number 

and biomass (Koenig et al., 2003; Reid et al., 2019a) may result in changes to feeding strategy 

in order to better exploit forage resources and maximize energy intake. For example, 

macropods may be better able to utilise and choose to focus grazing in areas with smaller 

amounts of high-quality forage, such as burnt infertile sites with a smaller flush of green pick 

or unburnt areas, due to their smaller mouths and more selective feeding than bulk feeders (Fig. 

4.2).   

Figure 4.2 Conceptual model relating forage quantity and quality to herbivore utilization.  The 

ideal situation for an herbivore is expected to be a large quantity of high-quality forage that is 

easily accessible.  However, due to different feeding ecology of introduced and native 

herbivores accessibility of high-quality forage may vary. Bulk feeders that take large bites and 

consume a large quantity of forage might prefer grazing areas where there are large quantities 

of green grass regardless of whether it is mixed within a matrix of dead forage whereas a 

macropod might prefer smaller amounts of forage that is primarily green as they are more 

selective feeders. Grass image from Freepik.com. 

 

In comparison to tropical savannas elsewhere in the world, Australia has lower diversity and 

biomass of large herbivores, nutrient-poor soils and introduced herbivores that are 

evolutionarily distinct from the native herbivores (eutherian vs. metatherian; Mott et al., 1985). 
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There has been substantial research on relationships between forage quantity and quality, fire 

and large herbivores in tropical savanna landscapes elsewhere in the world but the unique 

context of northern Australia and recent studies suggesting competition between native and 

introduced large herbivores necessitates further investigation. To understand the nexus 

between forage, fire and herbivory and the applicability of the pyricherbivory model in 

Australian tropical savannas we addressed two key questions: (1) How do herbivory, fire, soil 

fertility and season impact forage quantity and quality? (2) How does forage quantity and 

quality impact feral and native herbivore abundance? We combined methods from the fields of 

plant and wildlife ecology –herbivore exclosures, forage chemical analyses and remote camera 

trapping – to answer these questions at two study sites in Australia’s tropical savannas. 

4.3 METHODS 

4.3.1 Study Area 

This study was undertaken in the tropical savannas of northern Australia with field sites in two 

regions: (1) North Kimberley bioregion, Western Australia; and (2) north-central Arnhem Land, 

Northern Territory. 

The North Kimberley 

 The North Kimberley (NK) sites were in the Uunguu Indigenous Protected Area (Uunguu IPA; 

approximately 8,000 km2), declared in 2011 and managed by Wunambal Gaambera Aboriginal 

Corporation (WGAC, Kalumburu, Australia; Fig. 4.3a), encompassing diverse savannas 

overlaying both fertile and infertile substrates, primarily derived from volcanic materials and 

sands, respectively. The climate is defined by a monsoonal wet–dry cycle with mean annual 

rainfall of 1,100–1,600 mm across a steep latitudinal gradient, approximately 90% of which 

falls during the 5-month wet season (December-April; Bureau of Meteorology 2018). 

The mean fire return interval during the project (2014–2017) was 2.5 years with 73% of fires 

occurring in the early dry season (before 1 August) based on a satellite-derived (MODIS) fire 

history (NAFI 2018). Significant changes to the historical fire regime occurred around the mid-

1900s in what is now the Uunguu IPA because the Wunambal Gaambera people, the Aboriginal 

people of the region, moved to nearby settlements and, as a result, traditional fire management 

ceased in most areas. Historical fire regimes have been better replicated in recent decades with 



Chapter 4                                                                                            Forage, fire and herbivory 

 

79 
 

the establishment of Aboriginal fire management programs (Vigilante et al., 2004; Vigilante et 

al., 2017). 

 

The large grazing macropods present at the North Kimberley study sites are the common 

wallaroo (Osphranter robustus), antilopine wallaroo (O. antilopinus) and agile wallaby 

(Notamacropus agilis). Pastoral leases adjacent to the Uunguu IPA were established in the 

1900s, becoming a source of feral cattle (Bos taurus) dispersal, which have now reached higher 

densities than native macropod herbivores (Reid et al., 2019a).   

 

Arnhem Land 

Arnhem Land (AL) covers a large region overlaying mainly sandy, infertile substrates (c. 

97,000 km2) in the north-eastern corner of the Northern Territory and was declared an 

Aboriginal reserve in the 1930s, subsequently owned and managed by an Aboriginal land trust. 

Field sites were located near Kolorbidahdah on the Cadell River, an isolated Aboriginal 

outstation, with a continuous history of Indigenous occupation, except for a few years in the 

1950s (Yibarbuk et al., 2001).  Mean annual rainfall is 1080 mm, with approximately 90% 

falling during the 5-month wet season (December-April; Bureau of Meteorology 2018). 

 

The mean fire return interval was 2.7 years with 48% early dry season fires for the 100 km2 

area surrounding Kolorbidahdah (Fig. 4.3b-c; NAFI 2018). Kolorbidahdah is managed in a 

traditional manner with small patches being ignited by hand throughout the dry season, mainly 

by the extended Aboriginal family residing at the outstation. The suite of grazing macropods 

in Arnhem Land is the same as in the North Kimberley with the addition of the black wallaroo 

(O. bernardus), which is endemic to Arnhem Land. The main feral herbivore is the water 

buffalo (Bubalus bubalis), originally introduced to the Northern Territory mainland in 1827, 

dominating the sub-coastal plains across the Northern Territory since the 1880s (Letts, 1962). 

 

4.3.2 Site establishment  

 

Monitoring sites (n = 14; Fig. 4.3d-e) were selected to span geological formations that yield 

comparatively fertile soils (n= 7; Carson Volcanics) and relatively infertile soils (n = 7; King 

Leopold Sandstone and Colluvium and Alluvium in the North Kimberley and Marlgowa 

Sandstone in Arnhem Land) based on geological classifications (DMPWA, 2010, Geoscience 

Australia, 2012). Vegetation at the field sites is dominated by eucalypt (Eucalyptus and 
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Corymbia spp.) savanna with a physiognomy of woodland and open forest. The fertile sites are 

characterized by gently undulating to hilly terrain with shallow stony soils dominated by a 

mixture of perennial and annual tussock tall grasses; infertile sites are characterized by gently 

undulating sandstone terrain with sandy soils of variable depth dominated by a mixture of 

hummock grasses in the endemic Australian genus Triodia and perennial and annual tussock 

grasses (DAFWA, Undated, DENRNT, 2000).  Sites were selected based on fire management 

and utilization by both large macropods and feral bovids.  Aboriginal Traditional Owners 

located sites in recently burnt and unburnt areas known to be historically good macropod 

habitat and areas were searched for macropod and bovine dung to confirm presence of both 

herbivore groups. Dingo abundance at monitoring sites, as measured by dingoes per camera 

trap night, was similar for both regions (0.011 ± 0.003 SE at Arnhem Land sites and 0.008 ± 

0.001 SE at North Kimberley sites). 

 

4.3.3 Forage quantity and quality 

 

Five pairs of permanent 1 m2 quadrats spaced 2 m apart were established at each monitoring 

site. Quadrat pairs were visually assessed for approximately equivalent vegetation biomass and 

species composition and an exclosure (1.5 x 1.5 x 2.4 m) built around one quadrat in each set 

(one site had 10 quadrat pairs; n = 150 quadrats). Exclosures were made with steel reinforcing 

mesh and 180 cm fencing posts with steel wire netting (1 mm diameter, 5 cm hex aperture) 

installed around the bottom 90 cm to keep out large and small herbivores (Fig. 4.3f). 

 

Forage sampling occurred during the dry seasons of 2015 and 2016 in Arnhem Land and 2015-

2017 in the North Kimberley. Forage cover, height, moisture, crude protein (CP) and fibre 

(aNDF) were measured at each sampling occasion for both standing dead and live herbaceous 

biomass (Table 4.1). Standing biomass was measured at the final sampling occasion each dry 

season by clipping all herbaceous vegetation inside each quadrat and separating dead and live 

biomass. Standing biomass measurements were significantly correlated (p < 0.001) with forage 

volume (forage height multiplied by forage cover) thus we were able to estimate standing 

biomass for sampling occasions throughout the dry season. Annual production, proportion of 

live biomass and an index of dead to live herbaceous biomass were calculated (Table 4.1). 

 

Forage moisture and nutrients (CP and aNDF) were sampled from the areas directly 

surrounding quadrat sets throughout the dry season. A minimum of 10 g each of standing dead 
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and live forage were clipped and placed separately into sealed plastic bags per monitoring site 

to represent the species of grass and herbs inside the quadrats. At the end of each dry season, a 

subsample from biomass clippings was kept for moisture and nutrient measurements. Samples 

were weighed in the field to provide wet weights and later dried in an oven at 60 ˚C for 48 

hours then reweighed. Dried samples were milled to pass through a 1 mm sieve.  Crude protein 

was determined by combustion (AOAC Official Method 990.03., 2005) with a CN628 

Carbon/Nitrogen Determinator. To provide a measure of the fibrous bulk of the forage, amylase 

and sodium sulphite treated neutral detergent fibre (aNDF) was assessed with ANKOM 

Technology Method 6 (ANKOM Technology, Macedon, NY, USA) using solutions as in Van 

Soest et al. (1991). Forage samples collected in 2015 were also analysed for phosphorus (CEM, 

Undated) but it was found to be significantly correlated with crude protein (r = 0.84, p < 0.05) 

and only crude protein was analysed going forward.  

4.3.4 Remote Camera Trapping 

Remote camera traps were used as an indication of herbivore abundance at monitoring sites in 

the time surrounding sampling occasions.  Five RECONYX PC800 Hyperfire cameras 

(RECONYX, Inc.) were deployed at each monitoring site at various periods between 2015-

2017 ranging from 31 to 294 trap nights (Fig. 4.1d-e). Approximately 25 m2 areas around the 

cameras were cleared with a whipper snipper and cameras were attached to robust trees 1m off 

the ground for fire protection and to reduce false triggers due to wind.  Clipping the grass was 

necessary but likely to stimulate localized new growth if moisture conditions were suitable, 

however, we assume that a small area within a larger unburnt area would not be drawing in 

animals that were not already in the vicinity. Cameras were set to trigger mode with motion 

sensor on, medium/high sensitivity, 3 photos per trigger with a 1 s interval between photos and 

a 1 m quiet period between triggers. Images were classified by species (cattle, water buffalo, 

agile wallaby, wallaroo) and number of animals. Due to the difficulty of positively identifying 

antilopine, common and black wallaroos in the night-time black and white photos these large-

bodied species were lumped together and are referred to as “wallaroos.” 
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Figure 4.3  Geographic context of the study region (a) location of the Uunguu IPA, North 

Kimberley, Western Australia and Arnhem Land, Northern Territory; fire history from 2014-

2017 for (b) the Uunguu IPA and (c) north-central Arnhem Land; substrate fertility for (d) the 

Uunguu IPA and (e) 100 km2 area surrounding Arnhem Land field sites; (f) permanent forage 

plot design in the North Kimberley and Arnhem Land, photo taken in the Uunguu IPA. Data 

sources: geology (used to determine site fertility) as classified by Geoscience Australia (2012) 

and DMPWA (2010).
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    Table 4.1 Variables measured for live and dead standing herbaceous biomass. 

Variable Description/Calculation Units 
Forage height average height of standing biomass in 1 m quadrat cm 

Forage cover visual estimate of area covered by vegetation within 1 m quadrat % 

Forage moisture 
weight of wet sample – weight of dry sample 

× 100 % 
weight of wet sample 

Crude protein true protein and non-protein nitrogen, required on a daily basis for maintenance, lactation, 
growth and reproduction. 

% 

Amylase neutral detergent fibre hemicellulose, cellulose and lignin representing the fibrous bulk of forage % 

Standing biomass dry weight of standing forage within 1 m quadrat t ha-2 

Annual production 
total standing biomass 

t ha-2 years since the quadrat was previously denuded (by fire or clipping) 

Proportion of live biomass 
live biomass 

× 100 % 
total biomass 

Index of dead to live biomass 
dead biomass 

na 
 live biomass 
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4.3.5 Analysis 

Herbivory and forage attributes 

Generalized linear mixed modelling (GLMM) was used to evaluate the effect of herbivory on 

measures of forage quantity (live, dead and total standing biomass, proportion of live biomass) 

and quality (live and dead forage moisture, CP, aNDF). Forage measurements were modelled 

by plot location (inside or outside exclosure) and compared to null models; models contained 

exclosure as a random variable. Model fit was evaluated using second order Akaike’s 

Information Criterion for large and small sample sizes (AICc). Model sets where the null model 

had the lowest AICc or were within two units of each other were considered to have equal 

support and interpreted as no effect of herbivory. 

Environment and forage attributes 

Linear modelling was used to evaluate the influence of substrate fertility, seasonality (time 

since end of wet season), fire (time since fire and fire season) and savanna region on forage 

quantity and quality. Fire season was categorized into early dry season fire (before 1 August), 

late dry season fire and unburnt in dry season of sampling. The end of wet season was 

determined by the date 95% of annual rainfall was received following the previous dry season. 

Forage measurements were averaged by monitoring site for each sampling occasion and 

principal components analysis (PCA) was conducted to determine uncorrelated forage quantity 

and quality variables. Total annual production (t ha-2) and proportion of live biomass were 

selected as measures of forage quantity and CP (%) and aNDF (%) of live biomass for forage 

quality. Since forage quality measures required destructive sampling, our forage nutrient 

dataset (CP and aNDF) only contains full dry season records for forage outside the exclosures. 

However, due to the previously mentioned relationship between forage volume and biomass, 

our data set has complete records of forage quantity from protected quadrats and we were able 

to evaluate quantity in the absence of herbivory utilising only inside quadrat data. Dependant 

variables were transformed as needed to achieve a normal distribution of residuals. Model fit 

was evaluated using AICc and models within two units of each other were considered to have 

equal support for the best model in the set and effects from the simplest model presented. Model 

visualization graphs were produced with ‘visreg’ package in R (Breheny and Burchett 2017).  
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Large herbivore abundance and forage attributes 

The number of bovines, wallaroos and agile wallabies recorded by camera trap for the 10 days 

before and after each forage sampling date were calculated as a measure of herbivore 

abundance.  A PCA was conducted to determine uncorrelated forage quantity and quality 

attributes to include in herbivore abundance models. We selected total standing biomass and 

the dead:live forage index as measures of quantity.  In contrast to the models above where 

annual production and proportion of live biomass were modelled, the attributes selected here 

are focused on what would attract large herbivores. As such, it is the total standing biomass at 

time of sampling versus annual production that would be more likely to influence herbivore 

abundance.  Similarly, dead:live index was used instead of proportion of live biomass because 

it gives a better measure of the disparity between dead and live.  Crude protein was significantly 

correlated with dead:live index (p < 0.05) so live forage moisture (significantly correlated with 

crude protein of live biomass but not dead:live index) was used alternatively along with aNDF 

of live biomass to represent forage quality. Region was included, and in the case of bovine 

camera trap records, reflects the difference in species, as cattle occur only at North Kimberley 

sites and water buffalo only at Arnhem Land sites. The best-supported bovine abundance model 

was used to test for significant interactions between region (representing bovine species) and 

all other significant variables to determine if cattle and water buffalo had different relationships 

with forage attributes in the model. The same was done for the best supported macropod 

abundance models to determine if there were any behavioural differences present between 

regions that may be related to the difference in dominant feral herbivore. The log of camera 

trap days was used as an offset in zero-inflated Poisson models to account for camera traps that 

malfunctioned during the 20 days surrounding forage measurements.  

 

4.4 RESULTS 

 
4.4.1 Herbivory and forage attributes  

 

Dead, live and total standing herbaceous biomass and the proportion of live biomass were 

higher in protected than unprotected quadrats (Table 4.2; Fig. 4.4). Forage quality at the end of 

the dry season, as measured by forage moisture and fibre content of live and dead biomass, 

were best explained by the null model, showing no effect of herbivory. Mean estimates for 

aNDF content of live (71.0% ± 0.6 SE) and dead biomass (71.3% ± 0.5 SE) were high and 

almost identical by the end of the dry season while moisture contents of live (53.1% ± 1.2 SE) 
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was still much greater than dead biomass (6.3% ± 0.9 SE).  However, crude protein content of 

live biomass was higher in unprotected (7.4% ± 0.2 SE) than protected plots (7.0% ± 0.2 SE; 

Table 2; Fig. 4) while there was no effect of herbivory on crude protein content of dead biomass, 

which was much lower (3.0% ± 0.1 SE).  

Table 4.2 Model fit of linear models comparing measures of forage quantity and quality in 

paired plots, protected and unprotected from herbivory, from 2015-2017 in the Uunguu IPA, 

North Kimberley, Western Australia and near Kolorbidahdah, Arnhem Land, Northern 

Territory. Models including plot protection were compared to the null model and only those 

models where the saturated model was the best-supported are shown. 

Model ΔAICca 

Live herbaceous biomass ~ plot protection 105.8 
Dead herbaceous biomass ~ plot protection 30.2 
Total herbaceous biomass ~ plot protection 81.5 
Proportion of live biomass ~ plot protection 18.3 
Crude protein content of live biomass~ plot protection 14.5 
aAICc is the second order Akaike’s Information Criterion for large 
and small sample sizes; ΔAICc is the difference between the 
model’s AICc value and null model. 

4.4.2 Environment and forage attributes 

All measures of forage quantity and quality varied by fire season and savanna region with 

seasonality and site fertility occasionally associated (Table 4.3, Fig. 4.5). Burnt sites had the 

lowest annual production but the highest proportion of live biomass, with no distinction 

between early and late dry season fires (Table 4.3a, Fig. 4.5.a,e). Infertile sites in Arnhem Land 

had higher annual production than North Kimberley infertile sites, but fertile sites (all in the 

North Kimberley) had the highest overall annual production (Table 4.3a., Fig. 4.5b-c). 

Similarly, the proportion of live biomass was highest at Arnhem Land sites, and immediately 

following the wet season, declining throughout the dry season with changing climatic 

conditions (Table 4.3a, Fig. 4.5d,f). Fibre content of live biomass was lower in burnt and fertile 

sites than unburnt and infertile sites with no distinction between early and late dry season fires 

(Table 4.3b, Fig. 4.5g-h). However, sites with late dry season fires had the highest crude protein 

content of live biomass and unburnt sites had the lowest (Fig. 4.5j). The Arnhem Land sites 

were characterised by lower quality forage with higher fibre and lower crude protein content 

of live biomass than the North Kimberley sites (Fig. 4.5i,k).  
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Figure 4.4 Predicted dead, live and 

total herbaceous biomass (t ha-1), 

proportion of live biomass (%) and 

live crude protein content (%) ± 

standard error in quadrats protected 

(grey) and unprotected (white) from 

vertebrate herbivores across fertile 

and infertile savanna substrates in the 

Uunguu IPA, North Kimberley and 

Kolorbidahdah, Arnhem Land, 

Northern Territory.  
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Table 4.3 Model fit of liner models for forage and quality and generalized linear models for 

bovine and macropod abundance (wallaroo and agile wallaby) based on number of animals 

recorded by remote camera traps at 14 sites from 2015-2017 in the Uunguu IPA, North 

Kimberley, Western Australia and near Kolorbidahdah, Arnhem Land, Northern Territory. 

Independent variables that were significant (p < 0.05) in the best-supported model are denoted 

with bold text and only models < 4 ΔAICc from the best-supported model are shown. 

Model ΔAICc 

a) Forage quantity
Annual production  
Fire Season + Fertility + Region 0.00 
TSF+ Fire Season + Fertility + Region 0.35 
TSEWS + Fire Season + Fertility + Region 2.40 
TSF + TSEWS + Fire Season + Fertility + Region 2.76 
Proportion of live biomass 
TSEWS + Fire Season + Region 0.00 
TSEWS + Fire Season + Fertility + Region 0.72 
TSF + TSEWS + Fire Season + Region 1.59 
TSF + TSEWS + Fire Season + Fertility + Region 2.60 
b) Forage quality
aNeutral Detergent Fibre (aNDF) of live biomass 
Fire Season + Fertility + Region 0.00 
TSF + Fire Season + Fertility + Region 2.03 
TSEWS + Fire Season+ Fertility + Region 2.23 
Crude Protein of live biomass  
Fire Season + Region  0.00 
TSF + Fire Season + Region 1.36 
TSEWS + Fire Season + Region 1.93 
Fire Season + Fertility + Region 2.11 
Fire Season 2.56 
TSF + TSEWS + Fire Season + Region 2.75 
c) Herbivore abundance
Bovine camera count  
Live aNDF + Live moisture + Total standing biomass + Dead:live Index + 
Region 0.00 
Wallaroo camera count  
Live aNDF + Live moisture + Total standing biomass + Dead:live Index + 
Region 0.00 

Live aNDF + Live moisture + Total standing biomass + Region 2.27 
Live aNDF + Live moisture + Total standing biomass + Dead:live Index  3.06 
Agile wallaby camera count  
Live aNDF + Total standing biomass + Region 0.00 
Live aNDF + Live moisture + Total standing biomass + Region 3.13 
Live aNDF + Total standing biomass 3.20 
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Figure 4.5 Predicted relationships for environmental correlates affecting measures of forage 

quantity and quality including annual forage production, proportion of live biomass, percent 

amylase neutral detergent fibre (aNDF) and percent crude protein (CP) in live biomass for 

forage plots in the Uunguu IPA, North Kimberley and Kolorbidahdah, Arnhem Land, Northern 

Territory. Plots show mean prediction and 95% confidence bands (shaded grey). 
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4.4.3 Large herbivore abundance and forage attributes 

The influence of forage attributes on large herbivore abundance is complex, as indicated by the 

best-supported models for both bovine and wallaroo abundance including all predictor 

variables: fibre and moisture of live biomass; total standing biomass; dead:live index; and 

region (Table 4.3c, Fig. 4.6). The number of bovines (cattle at the North Kimberley sites and 

water buffalo at the Arnhem Land sites) was highest at sites with forage of low fibre content, 

low standing biomass and high forage moisture (correlated with crude protein), all attributes of 

forage burnt in the dry season (Fig. 4.6a-c).  There was also a positive relationship with 

dead:live index which could relate to patchily burnt areas with remaining dead forage or 

unburnt areas with bulk forage (Fig. 4.6d). Bovine abundance was higher at Arnhem Land sites 

(Fig. 4.6e). We introduced an interaction term to the best-supported model for bovine 

abundance between region (which represents the difference in bovine species) and all other 

predictor variables. None of the introduced interaction terms improved model fit or were 

significant in the model suggesting that water buffalo and cattle have similar relationships to 

the forage attributes tested. 

Similar to bovines although with weaker relationships, wallaroo abundance was higher in areas 

with low fibre, high moisture content of live biomass and at Arnhem Land sites but in contrast, 

wallaroos were associated with higher total standing biomass and negatively related to 

dead:live index (Table 4.3c, Fig. 4.6f-j). However, when interaction terms between region and 

all other variables in the best-supported model were introduced, an interaction between region 

and total standing biomass improved the model by 10.9 AIC units showing wallaroos at 

Arnhem Land sites to be more abundant in areas with low standing biomass and wallaroos at 

the North Kimberley sites more abundant in areas with high standing biomass (Fig. 4.7). Agile 

wallaby abundance was best described by a single variable, total standing biomass, with higher 

abundance at sites with greater total biomass, consistent with wallaroos at the North Kimberley 

sites. However, in contrast to both bovines and wallaroos, agile wallabies were more abundant 

at the North Kimberley sites. 
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Figure 6. Predicted relationships for forage attributes affecting abundance of bovines (cattle 

on the Uunguu IPA and water buffalo in Arnhem Land), wallaroos, and agile wallabies based 

on number of animals recorded by remote camera traps in the Uunguu IPA, North Kimberley 

and Kolorbidahdah, Arnhem Land, Northern Territory. Plots show predicted relationship (solid 

line) and 95% confidence interval generated by bootstrapping (dashed lines). 
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Figure 4.7 Predicted relationship between wallaroo abundance and total standing biomass in 

in the Uunguu IPA, North Kimberley (NK) and Kolorbidahdah, Arnhem Land, Northern 

Territory (AL). Plots show predicted relationship (solid line) and 95% confidence interval 

generated by bootstrapping (dashed lines). 

4.5 DISCUSSION 

Despite Australian savannas having relatively low herbivore biomass, large herbivores 

significantly impacted forage quantity (negatively) and quality (positively).  Fluctuations in 

forage quantity and quality were closely related to fire activity but forage attributes did not 

entirely account for herbivore abundance. Forage quality was higher on recently burnt areas, 

with post-burn regrowth being lower in fibre and higher in crude protein than unburnt sites. 

The highest crude protein content of live biomass was found at sites following late dry season 

fires. This highlights the importance of maintaining temporally heterogeneous fire regimes 

under appropriate moisture conditions to provide high-quality green pick throughout the dry 

season, most likely similar to pre-European fire regimes in Australian tropical savannas (Lewis, 

1985; Bowman et al., 2001).  Field sites in Arnhem Land had lower measures of overall forage 

quality (lower crude protein and higher fibre contents of live biomass) but supported more 
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introduced bovines and wallaroos than sites in the North Kimberley. One possible explanation 

is that water buffalo and feral cattle may exert different levels of competitive pressure on native 

herbivores. Our results suggest that pyricherbivory strongly influences the feeding behaviour 

of feral herbivores and some native herbivores in northern Australian savannas, like in 

savannas elsewhere in the tropics. 

 

Grazing by herbivores, even at low densities, significantly reduced herbaceous biomass and 

increased crude protein content of live biomass. Grazing of tropical tussock grasses by bovines 

during the early wet season reduces grass productivity, only partially compensating for plant 

tissue lost to herbivory (Ash and McIvor, 1998a). Hence, the differences detected at the end of 

dry season could be a residual effect of grazing earlier in the year as well as differential grazing 

pressure during the dry season relating to fire activity (Fuhlendorf and Engle, 2004). The crude 

protein content of live biomass was greater in grazed quadrats, consistent with other studies 

where nutrient uptake by roots in grazed grasses was higher (Chaneton et al., 1996; Mbatha 

and Ward, 2010), but fibre content was unaffected by herbivory.  

 

Recent fires reduced overall forage availability but improved the quality of forage (via 

resprouting). Resprouting grasses had lower fibre content, which is inversely related to forage 

intake (Freudenberger and Hume, 1992), and higher crude protein content, which is required 

daily for maintenance, lactation, growth and reproduction. These results represent the 

mechanism underpinning pyricherbivory and align with previous research showing the 

increased quality of forage post-fire (Murphy and Bowman, 2007b; Allred et al., 2011a; Powell 

et al., 2018). An undesirably high fibre content of live herbaceous biomass has been linked to 

the shift away from consumption of grasses, to forbs and/or browse, by both wallaroos and 

feral cattle (Reid et al., in press), highlighting the importance of fire in prolonging the 

availability of preferred forage for herbivores.  Desirable high-protein grass has been linked to 

high densities of the common wallaroo (Taylor, 1984) and crude protein content was found to 

be highest in regrowth following late dry season fires suggesting a disproportionate importance 

of late dry season fires for providing high-quality forage on an otherwise dry and cured 

vegetative landscape. However, late dry season fires represented a small portion of data in this 

study and post-fire regrowth after late season fires is highly dependent on moisture conditions 

at the time of and following the fire so there is a need for further investigation regarding late 

dry season post-fire regrowth. 
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Our results show that the abundance of introduced bovines (water buffalo and feral cattle) is 

associated with low forage quantity (i.e. grass biomass) but high forage quality (i.e. low fibre 

content, high moisture content (correlated with crude protein content). These attributes are 

characteristic of recently burnt areas. In contrast, macropods were generally associated with 

the opposite forage quantity attributes (i.e. high quantity) and similar forage quality attributes 

but with much weaker relationships. These findings support a recent landscape-scale analysis 

of the distribution of feral cattle and macropods in the North Kimberley, that showed that cattle 

are more abundant in recently burnt areas and large macropods are more abundant in unburnt 

areas (Reid et al., 2019a). These findings suggest that pyricherbivory applies to introduced 

bovines but not necessarily native macropods and aligns with previous research showing fire-

focused grazing by bovines (Archibald and Bond, 2004; Fuhlendorf and Engle, 2004; Allred 

et al., 2011a; Allred et al., 2011b)  and ungulates more broadly (Wilsey, 1996; Archibald et al., 

2005; Kimuyu et al., 2017) in North American and African savannas. However, our findings 

appear to run counter to previous research and traditional Aboriginal knowledge regarding 

macropods in the tropics which suggests that they exhibit focal grazing in recently burnt areas 

(Bowman et al., 2001; Bowman and Vigilante, 2001; Yibarbuk et al., 2001; Murphy and 

Bowman, 2007b; Telfer et al., 2008).  

Upon closer examination, we found that the positive relationship between wallaroos and 

standing biomass was limited to the North Kimberley field sites, and wallaroos at Arnhem Land 

field sites may be more abundant in areas with less standing biomass, characteristic of burnt 

sites. Reasons for the lower wallaroo abundance and unexpected relationship with standing 

biomass in the North Kimberley may be due to differences in the dominant feral herbivore and 

fire activity. While both cattle and water buffalo have greater dietary flexibility in response to 

low-quality forage than native herbivores, the mean proportion of grass in the diet of cattle is 

greater (Bowman et al., 2010b; Reid et al., in press). Alternatively, wallaroos are dependent on 

high-quality forage and at times consume exclusively grass (Ellis et al., 1977; Croft, 1987; 

Telfer and Bowman, 2006; Murphy et al., 2007; Reid et al., in press). Therefore, it is possible 

that wallaroos are experiencing greater competition for preferred resources in the North 

Kimberley against feral cattle than water buffalo in Arnhem Land.   

During this study, Arnhem Land field sites were characterised by a finer-scale fire mosaic and 

a more even distribution of fire throughout the dry season, with more fire in the late dry season 

than the North Kimberley field sites. A more even distribution of fire could be responsible for 
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providing a constant source of forage to wallaroos throughout the dry season.  Similarly, the 

agile wallaby was more abundant in the North Kimberley and its diet as a mixed feeder (Stirrat, 

2002; Reid et al., in press) aligns more closely with that of the water buffalo and thus 

potentially experiences more competition for food resources in Arnhem Land. The positive 

relationship between agile wallaby and standing biomass was independent of region and likely 

related to their association with wetter habitats (Menkhorst and Knight, 2001). Large macropod 

abundance is unlikely to be related to dingo abundance in this case, as it was similar at both 

sites and macropod abundance did not reflect an overall tendency favouring one region or the 

other (wallaroos were more abundant at Arnhem Land sites and agile wallaby more abundant 

at North Kimberley sites). 

 

Competition between introduced and native herbivores means that native macropods may be 

forced to rely, to a greater extent than in the past, upon sub-optimal food resources. Wallaroo 

abundance in relation to recent fire at field sites in the North Kimberley was found to be related 

to savanna substrate fertility with wallaroos more abundant on unburnt fertile sites and infertile 

burnt sites (Reid et al., 2019a) possibly reflecting the ability of small-mouthed, selective 

feeding macropods to better utilise the limited green pick on infertile savannas. In contrast, 

fertile sites with a greater flush of post-fire vegetation may be dominated by bulk-feeding 

bovines. Our results show that wallaroo abundance was highest when the proportion of live 

biomass was higher or equal to dead biomass, suggesting that live biomass must be present in 

a high proportion in the vegetation matrix even when the live biomass represents more mature 

live forage of lower quality than post-fire green pick. Alternatively, bovine abundance was 

high in burnt areas with a high proportion of dead to live biomass likely reflecting patchily 

burnt sites. Because cattle and water buffalo are large bulk feeders, they cannot survive on 

small amounts of green pick alone and would benefit from access to areas that have both highly 

nutritious green pick and bulk dry forage, reflective of the style of burning practised by 

Australian pastoralists who burn earlier in the dry season to achieve patchier fire mosaics 

(Lewis, 1985).  Similarly, Wilsey (1996) suggested that larger ungulate species in Africa try to 

maximize energy intake by feeding on both burned sites with low quantity but high-quality 

forage and unburned sites with high forage biomass but poor quality. 

 

Abundance of introduced bovines and large macropods, wallaroos specifically, is affected by 

a contrasting set of forage attributes characteristic of burnt areas for bovines and unburnt areas 

for macropods.  Competition for limited high-quality food resources may be altering feeding 
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behaviour of native herbivores, especially when introduced herbivores have similar food 

preferences. Fire activity that is spread throughout the dry season (rather than concentrated at 

the start) is be important for providing continual access to low-fibre, high-protein forage for 

macropods, and late dry season fires, under appropriate weather and moisture conditions, may 

be of greater relative importance.  These findings contribute to our understanding of the 

underlying ecological principles of traditional Aboriginal burning/patch mosaic burning, 

provide insights into whether fire management can sustain high-quality forage throughout the 

dry season and reflect upon the pyricherbivory conceptual models and its applicability to 

Australian savannas.  
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Chapter 5 

General discussion and conclusions 
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5.1 SYNTHESIS 

My research has filled a series of knowledge gaps regarding feral and native large herbivores 

in the tropical savannas of northern Australia. These include the drivers of the distribution and 

spatial interactions and dietary breadth of feral cattle and large macropods and drivers of key 

forage attributes in the Uunguu IPA (North Kimberley bioregion, Western Australia) and 

Arnhem Land (Northern Territory). Previous work has focused primarily on impacts of 

managed cattle herds (e.g. on pastoral land) on native species. There has been a notable lack of 

research on the impacts of unmanaged, feral populations of cattle. Similarly, there has been a 

lack of research on the impact of livestock on the larger macropods despite anecdotal evidence 

of declines in the northern savannas. My research adds important knowledge and raises 

questions to guide ongoing research regarding the interaction of introduced and native 

herbivores in the northern savannas.  

Feral species dominate the herbivore assemblages of northern Australia, with potential negative 

implications for native species. Biomass of feral cattle was much greater than biomass of large 

macropods across the Uunguu IPA (Ch 2), similar to the pattern found during earlier work in 

Arnhem Land by Koenig et al. (2003). During an aerial survey in 2000, they noted that 78% 

of herbivore sightings were of water buffalo with native large macropods making up less than 

8%. Additionally, feral herbivores were concentrated in recently burnt areas and along 

waterways, representing high quality foraging areas (Ch2;  Bayliss and Yeomans, 1989b; 

Koenig et al., 2003), while native macropods were unexpectedly associated with less fertile, 

unburnt areas (Ch 2 & 4). Native macropod concentration on poorer quality habitat and a 

negative association between large macropods and feral cattle, demonstrated by joint species 

distribution modelling and activity budget analyses (Ch2), suggests that both exploitation (the 

reduction of resources) and interference (exclusion from access to resources) competition may 

be occurring (Petren and Case, 1996; Amarasekare, 2002). When competing herbivores use the 

same resource (herbaceous forage), the inferior competitor may be forced to change activity 

patterns (Chesson, 2000), a form of interference competition, as seen by the contrasting periods 

of activity between feral cattle and wallaroos (Ch 2). Additionally, there may be little 'top-

down' control (i.e. due to predation) of the new dominant herbivores as dingoes avoided cattle 

(Ch 2). Hence, macropods may be experiencing competition for forage resources but the same 

level of predation because adult cattle are not an alternative prey source for dingoes. Although, 
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local pastoralists bait for dingoes, as they claim dingoes kill calves, this predation is likely 

limited to calving season.  

 

The dominance of feral herbivores across the landscape can be explained, in part, by higher 

dietary flexibility amid fluctuating forage conditions. Feral cattle had the greatest dietary 

breadth compared to large macropods (Ch 3), similar to water buffalo in Arnhem Land 

(Bowman et al., 2010b). Feral herbivores are thought to have a similar diet to extinct 

megaherbivores and may therefore be filling a vacant ecological niche (Bowman et al., 2010b) 

demonstrating that the ecosystem can sustain large-bodied mixed feeders. However, my results 

still suggest competition between native and introduced herbivores as grass may be the 

preferred food, especially for cattle, and a move to other resources was triggered in both cattle 

and wallaroos, to a lesser extent, by reduced forage quality, specifically high dietary fibre of 

live herbaceous biomass. Wallaroos appear to be more affected by lack of high-quality grass 

than agile wallabies, known to utilise a wider variety of food resources (Stirrat, 2002).  

 

Forage quantity and quality were largely influenced by fire activity, but pyricherbivory 

incompletely described herbivore abundance (Ch 4). Dry season fires reduced the overall 

quantity but greatly improved the quality of available forage by reducing fibre content 

(inversely related to intake) and increasing crude protein content (necessary for daily 

maintenance, growth and reproduction) in live biomass. The highest crude protein content was 

found in green pick emerging after late dry season fires, suggesting fires at this time of year 

might be necessary for maintaining body condition in obligate grazing species such as the 

antilopine wallaroo, especially given that grass other than post-fire regrowth would have lower 

crude protein content at this time of year. Forage quality was higher at sites in the North 

Kimberley on both fertile and infertile substrates, but abundance of feral herbivores and 

wallaroos was highest at Arnhem Land field sites.  Abundance data confirmed that feral bovine 

herbivores were associated with recently burnt areas that have forage attributes characterised 

by low biomass, high protein and low fibre while macropods were associated with areas of 

poorer quality forage (Ch 4).  Pyricherbivory explained the feeding behaviour of bovine 

herbivores but not large macropods in contrast to previous research and Traditional Ecological 

Knowledge (Lewis, 1989; Saint and Russell-Smith, 1997; Bowman et al., 2001; Yibarbuk et 

al., 2001; Murphy and Bowman, 2007b; Telfer et al., 2008). The unexpected association 

between wallaroo abundance and increased standing herbaceous biomass at North Kimberley 

but not Arnhem Land field sites led to a consideration of the major differences between the 
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regions, the dominant feral herbivore and fire regime. Browsers were more likely to go extinct 

amongst the suite of marsupial megafauna (Bowman et al., 2010b) suggesting that introduced 

herbivores that fill that niche might have lower competitive pressure on extant herbivores. 

Although water buffalo and cattle are both considered bulk-feeding grazers, water buffalo 

consume a lower overall proportion of grasses (Fig 3.8) likely leading to reduced competition 

with large macropods for green pick. Additionally, the high density of feral herbivores on the 

landscape compared to the extinct megafauna may increase the level of competition. 

In recent times, Arnhem Land, and Korlobidahdah in particular, has experienced a continuity 

of stewardship by Traditional Owners unseen in the majority of the North Kimberley. As it 

relates to this project, that means smaller-scale fires lit with a more even distribution across the 

dry season. More mid- and late dry season fires in Arnhem Land result in a higher proportion 

of the landscape with available green pick towards the end of the dry season when high-quality 

forage is otherwise most scare (Fig. 5.1). However, when fires are temporally constrained to 

the early dry season, as is common in areas participating in carbon credit programs that provide 

an economic incentive to burn early in the dry season thus minimising carbon emissions, a less 

constant supply of green pick is produced.  Importantly, traditional patch burning isn’t 

ubiquitously applied across Arnhem Land, most of central and western Arnhem Land is 

unoccupied and unmanaged (Yibarbuk et al., 2001) and contemporary savanna burning 

methodology originated in western Arnhem Land due to concerns from Traditional Owners 

regarding devastating fires in inaccessible areas, which is analogous to the situation in the 

North Kimberley where people were displaced from more distant country.   

A fire regime dominated by early dry season fires produces green pick for the first portion of 

the dry season but then does not provide any additional resources towards the end of the dry 

season. Currently, carbon credit programs use the date of 1 August to distinguish between early 

dry season and late dry season fires providing economic incentive to have an early dry season 

dominated fire regime. It is important to differentiate between mid- and late dry season fires 

set under appropriate moisture conditions that will produce green pick and large uncontrolled, 

high-severity wildfires that may not. While carbon credit programs have had an overall benefit 

to areas that in pre-program years were dominated by late dry season wildfires, an arbitrary 

date that does not incorporate natural variability may have led to unforeseen negative impacts. 

Fine-grained mosaics have been linked to large macropod abundance in more arid systems 

(Codding et al., 2014) but it is important to recognize that there are many constraints including 
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monetary and time constraints to setting small-scale mosaic fires when Traditional Owners live 

off-country (e.g. in the North Kimberley) versus living on-country in outstations (e.g. in 

Arnhem Land), where burning is part of day to day life.  Additionally, government policy and 

legislation limit the ability to burn in the mid- and late dry season. Obtaining permits to burn 

under the Bush Fires Act 1954 (WA), for example, becomes increasingly difficult after June 

and fire weather warnings become more prevalent once 100% curing of herbaceous biomass 

occurs. Aboriginal people with Native Title and customary rights to burn must still comply 

with local government oversight.  Lastly, there are issues of insurance and liability if fires 

impact neighbours or other interest holders. Groups that are more remote are less affected by 

some of these factors, but Traditional Owners in Arnhem Land must still contend with some 

of these constraints including the Bushfires Management Act 2016 (NT). Results from this 

study suggest that pyrodiversity may be positively influencing large macropod abundance but 

the role of a spatially and temporally heterogenous fire regime in mitigating competition 

between introduced and native herbivores warrants further investigation.  

 

Savanna systems are inherently dynamic on both an intra- and interannual basis and because 

some of the processes that maintain savannas, fire and herbivory, are unevenly applied across 

the landscape it limits the conclusions that can be definitively drawn after a short-term study. 

However, the Kimberley and Arnhem Land provide important regional ‘replication’ of pattern 

and process as they are similar but not the identical, especially with respect to climate and fire. 

This provides some confidence in any broad inference from a short-term study. Additionally, 

using both traditional methods (aerial and road transects) and new methods (remote camera 

trapping) emergent patterns were evident, though ongoing data collection to incorporate more 

natural variation is important.  It was also determined during this study that methods of aerial 

and road surveys that have been used to estimate macropod populations in the past, may no 

longer be ideal once densities are low, making it important to utilise a suite of methods over 

multiple scales.  The use of camera traps, though time-consuming to process the data, provided 

a much finer-scale resolution of both herbivore activity and relative abundance. Lastly, the 

complexity of relationships addressed in this project between introduced and native herbivores, 

forage and fire and to a much lesser degree, predator-prey interactions, are nearly impossible 

to tease apart in a large-scale natural experiment. This is especially true when there have been 

recent changes to the historical fire regime, suite of herbivores and predators and a changing 

climate. It is within these constraints, that I developed a conceptual model of relationships 
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between native and introduced large herbivores, fire and forage (Fig. 5.1) to guide future 

targeted research. 

Figure 5.1 Simplified conceptual model of hypothesized relationships between fire, forage and 

large introduced and native herbivores in the tropical savannas of northern Australia.  

5.2 TRADITIONAL ECOLOGICAL KNOWLEDGE 

Traditional Ecological Knowledge (TEK) was relied on heavily throughout this study to 

provide baseline information about habitat and wildlife abundance on traditional lands. 

Specifically, Traditional Owners were first to notice declines of native herbivore species and 

provided knowledge regarding areas of past macropod abundance which aided in locating 

appropriate areas to monitor the target species. Additionally, concerns from Traditional Owners 

in the Kimberley relating to feral cattle impacts, fire management and native species 

(Wunambal Gaambera Aboriginal Corporation, 2010) played a large role in initiating this 

project to answer key questions and fill information gaps. This project represents some of the 
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first research on feral cattle in Australian tropical savannas. Traditional Owners have played a 

major role in past research aimed at understanding the nexus between fire and macropods as 

well (Bowman et al., 2001; Telfer et al., 2008). Indigenous ranger groups and Traditional 

Owners provide an immeasurable resource when it comes to knowledge of local flora, fauna 

and ecosystem processes such as fire, including recent changes.  In fact, in remote areas with 

limited basic or long-term ecological information, a local community with a long history of 

resource utilization may be the only source of information on changing environmental 

conditions (Johannes et al., 2000). Lewis (1989) summarises prior research regarding 

Aboriginal fire management in the northern savannas as “derived from understandings of how 

fires influence the distribution and relative abundance of plant and animal resources.”  This is 

the fundamental basis of pyroherbivory and pyrodiversity and it is important to credit such 

knowledge and understanding appropriately. Though TEK has not always been fully utilised 

in the past, there is growing recognition of its importance and the need to incorporate it into 

official natural resource management policy (Horstman and Wightman, 2001). Using TEK in 

concert with scientific methodology to provide both the ecological context and data is essential 

for contemporary research. To better integrate TEK and western science, the first step of all 

future research projects should be consultation with the relevant Traditional Owners.   

5.3 FUTURE RESEARCH 

As with all research, my study culminates with more questions than answers. Though it has 

provided critical information about the nexus between forage, fire and herbivory in the tropical 

savannas of northern Australia, particularly the relationship between introduced and native 

herbivores, it also highlights several avenues of future research. The apparent importance of 

mid- to late dry season fires, under appropriate conditions, needs to be further investigated as 

there were few late dry season fires included in this study. Further, the implications of current 

carbon credit programs with rigid cut-off dates distinguishing early and late dry season fires, 

applied across all of northern Australia's monsoon tropics, need to be explored. Though these 

programs as a whole have been beneficial to the North Kimberley by reducing high-intensity 

late dry season wildfires (Vigilante, 2001; Legge et al., 2015), in areas such as Arnhem Land 

with a more diverse fire regime, the program encourages an early dry season dominated fire 

regime, and thus may reduce heterogeneity of the fire regime. New models utilising fire 

severity, as indicated by relative scorch height, are currently being developed and will replace 
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the use of 1 August differentiating early and late dry season fire (Andrew Edwards, pers. 

comm.). This would allow for the application of low-severity fires in the late dry season when 

conditions permit. A suite of constraints currently limit the ability to apply a full range of fire 

to the landscape including economic, time, government oversight and insurance even though 

traditional fire regimes were quite diverse (Vigilante, 2001; Yibarbuk et al., 2001), reinforcing 

the need for further research on managed late dry season fires. 

My research only tangentially touched on predation of herbivores with the use of joint species 

distribution modelling which suggested that adult cattle were not an alternate prey source for 

dingoes during the dry season (Ch 2). Instead, dingoes were most closely associated with the 

agile wallaby, the smallest species and likely the most common prey out of the macropods 

studied.  The wallaroo group (antilopine and common) was uncorrelated with dingo abundance, 

yet these two species may have different predation risk. The common wallaroo may escape 

predation due to their superior ability to move across rocky terrain (Croft, 1987) while the 

antilopine wallaroo, similar to the agile wallaby, is more dependent on water, where predators 

focus hunting, thus incurring a higher predation risk. There is a need to undertake more specific 

research on predation risk on each macropod species as well as investigation of whether 

predation accounts, in part, for the higher abundance of macropods at sites in Arnhem Land 

than the North Kimberley, though similar regional dingo abundance estimates from camera 

traps found in my study suggest it does not.  

Large macropods living in more rugged habitats may have a lower predation risk and may also 

incur a lesser likelihood of competition with introduced herbivores. Landscape-scale macropod 

distribution on the Uunguu IPA was skewed towards the western block, containing large 

amounts of rugged terrain, where cattle are unlikely to inhabit (Ch 2). It is due to this 

ruggedness that this study was unable to incorporate ground-based methods (road surveys and 

remote camera traps) to confirm a higher site-scale macropod abundance.  The further study of 

macropod abundance in more rugged terrain is necessary as it may be acting as a refuge against 

predation and competition for species such as the common wallaroo and a barrier to migration 

of large feral herbivores.  

The potential causes of population decline are especially relevant to one species, the antilopine 

wallaroo. It was definitively recorded only once during either the road surveys or remote-

camera trapping. This species is possibly the most sensitive to environmental changes related 
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to introduced herbivores, increased predation and lack of late dry season fire. The antilopine 

wallaroo inhabits plains and hills, not rocky areas like the common wallaroo (Menkhorst and 

Knight, 2001), putting them in direct competition for grassy forage with introduced herbivores. 

Habitats near rocky escarpments are also higher in plant species richness and productivity, 

providing greater food resources for the common wallaroo than habitats of the antilopine 

wallaroo (Freeland et al., 1988). The antilopine wallaroo is also more water-dependent, putting 

it at a higher risk of predation by dingoes. Lastly, the antilopine wallaroo is the most dependent 

of all the large macropods on grass (Croft, 1987; Murphy et al., 2007) and a lack of late dry 

season fire may eliminate an important nutrient influx during the end of the dry season. This 

study was unable to separate the abundance and distribution patterns of antilopine and common 

wallaroos, as the two species were indistinguishable in black and white night-time photographs, 

therefore any further research on this species done with camera trapping should utilise white-

flash remote cameras that allow for night-time colour photography. Results from this study 

have triggered targeted monitoring of this species on the Uunguu IPA to better evaluate its 

abundance and distribution (Tom Vigilante, pers. comm.). Previous research (Ritchie, 2007) 

and accounts from Traditional Owners (White et al., 2009) have called attention to likely 

declines of the antilopine wallaroo and this study supports this assertion with a further 

recommendation to evaluate the abundance and distribution of this species across its range to 

confirm the status and bring attention to the native herbivores that have largely gone unstudied 

in relation to contemporary changes in fire regimes and introduced feral species.   
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Appendix A 

The diversity, basal area (BA) and canopy cover of tree layer at these sites was described adapting the point-centred quarter method of Cottam and Curtis (1956).  We sampled 6 points spaced 30 m apart on a 180m transects 

where we recorded the distance to the closest tree ≥ 4cm diameter at breast height (DBH) in each of 4 quadrants, DBH, species identity, tree canopy cover length and width, and height. Vegetation structure was classified 

according to Specht (1970) by converting canopy area to leaf projected area by 50% (Walker and Hopkins 1990). 

Site ID  Geologya Fertility Vegetation 
classb 

Specht 
classificationc 

Tree 
density 
(stems 
ha-1) 

% 
Eucalyptus 

stems 

Total 
BA (m2 

ha-1) 

% 
Eucalyptus 

BA 

Species 
count 

Eucalyptus 
species 
count 

Mean 
tree 

height 
(m) 

% 
Foliage 
Cover  

Distance to 
perennial 

water (km)d 

Distance to 
non-perennial 
water (km)d 

Yalgi 1-5 Carson Volcanics Fertile  EWMF low open-
woodland 147 29 2.5 46 7 4 7.3 6 2.8 0.8 

Yalgi 6-10 Carson Volcanics Fertile  EWMF low woodland 490 25 8.0 16 5 1 6.3 21 0.7 0.1 
Lone Dingo 1-5 Carson Volcanics Fertile  EWF low-open forest 280 79 7.6 84 4 2 9.1 41 1.9 0.1 
Lone Dingo 6-10 Carson Volcanics Fertile  EWF open-forest 245 96 5.0 98 6 5 11.3 46 3.2 0.3 
Monger 1-5 Carson Volcanics Fertile  EWF low woodland 192 75 4.9 73 4 2 9.0 18 0.9 0.1 

Monger 6-10 Carson Volcanics Fertile  EWF low open-
woodland 183 42 2.2 49 8 2 7.6 8 1.2 0.5 

Monger 11-15 Carson Volcanics Fertile  EWF low woodland 165 71 3.6 96 5 3 8.5 15 2.7 0.2 

Wobinbeyi 1-5 King Leopold 
Sandstone Infertile  EWMI low woodland 205 79 6.9 92 7 3 8.2 25 1.8 0.3 

Wobinbeyi 6-10 Colluvium/Alluvium Infertile  EWMI low woodland 356 29 2.3 26 7 2 7.4 18 1.2 0.3 
Pauline Creek 1-5 Colluvium/Alluvium Infertile  EWH woodland 144 88 4.1 97 5 2 10.5 20 2.9 0.7 

Pauline Creek 6-10 King Leopold 
Sandstone Infertile  EWH low woodland 204 71 5.5 91 8 4 9.0 24 5.3 0.5 

aDepartment of Mines and Petroleum 2010 
bAdapted from Carbon Credits (Carbon Farming Initiative—Emissions Abatement through Savanna Fire Management) 
Methodology Determination 2015 (Austl.).  
cSpecht 1970 
dDepartment of Land Administration, Western Australia 2003 
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Site descriptions 

 

Yalgi 1-5 

The site is on gently undulating basalt plains with 

laterite soils.  The vegetation was low (7.3m) 

open-woodland (6 % foliage cover).  The tree 

layer was dominated by Eucalyptus spp. (E. 

tectifica, E. tetrodonta, E. confertifolia), and 

Corymbia spp. (C. latifolia, Corymbia sp.) that 

combined accounted for 46% of the 2.5 m2 ha-1 

site basal area.  Fan palms (Livistona eastonii) 

and broadleaf tree species (Planchonia careya, Grevillea mimosoides) made up the remainder 

of the tree layer. The herbaceous layer was dominated by tall tropical perennial grasses 

Sorghum plumosum, Themeda australis and Sehima nervosa.  The site was burnt 3 times from 

2014-2017 in the early to mid-dry season (May-July). 

 

Yalgi 6-10 

The site is on basalt hills and lowlands with 

laterite soils near an ephemeral watercourse. The 

vegetation was low (6.3m) woodland (21% 

foliage cover) dominated by the fan palm L. 

eastonii and E. confertiflora, with subdominant 

broadleaf tree species (Erythrophleum 

chlorostachys, Terminalia canescens).  Although 

the site had a comparatively high total basal area 

(8.0 m2 ha-1) it had the lowest proportion of eucalypts (16%). The herbaceous layer was 

dominated by tall tropical perennial grasses S. plumosum, S. nervosa, Heteropogon contortus 

and Mnesithea rottboelliodes. The site partially burnt in 2014 and fully burnt every year from 

2015-2017 in the dry season (May-October). 
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Lone Dingo 1-5 

The site is on hilly basalt country near an 

ephemeral watercourse. The vegetation was low 

(9.1m) open-forest (41% foliage cover) 

dominated by Eucalyptus and Corymbia spp. (E. 

tectifica, E. tetrodonta, C. latifolia) accounting 

for 84% of total basal area (7.6 m2 ha-1), with 

subdominant broadleaf tree species (P. careya, 

Antidesma ghaesembilla).  The herbaceous layer 

was dominated by tall tropical perennial grasses T. australis, S. plumosum, S. nervosa and H. 

contortus. The site burnt 2 times from 2014-2017 in the mid- and late dry season (July-

November). 

 

Lone Dingo 6-10 

The site is on hilly basalt country with open-

forest (11.3m tall, 46% foliage cover) vegetation 

dominated by Eucalyptus and Corymbia spp. (E. 

miniata, E. confertiflora, E. tectifica, E. 

tetrodonta, C. latifolia, C. nesophila) accounting 

for 98% of the 5.0 m2 ha-1 basal area, with 

subdominant broadleaf tree species (P. careya). 

It has the highest foliage cover of all the sites. 

The herbaceous layer was dominated by tall tropical perennial grasses H. contortus, T. australis, 

S. plumosum, S. nervosa and M. rottboelliodes. The site burnt 2 times from 2014-2017 in the 

early to mid-dry season (May-July). 
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Monger Creek 1-5 

The site is on hilly basalt country with low 

(9.0m) woodland (18% foliage cover) vegetation 

dominated by Eucalyptus and Corymbia spp. (E. 

tectifica, C. latifolia) accounting for 73% of total 

basal area (4.9 m2 ha-1), with subdominant 

broadleaf tree species (T. canescens, Gardenia 

sp.)  The herbaceous layer was dominated by tall 

tropical perennial grasses S. plumosum and S. 

nervosa. The site burnt 3 times from 2014-2017 in the early dry season (May-June). 

 

Monger Creek 6-10 

The site is on hilly basalt country near an 

ephemeral watercourse. The vegetation was low 

(7.6m) open-woodland (8% foliage cover) 

dominated by Eucalyptus and Corymbia spp. (E. 

tectifica, C. latifolia) accounting for 49% of total 

basal area (2.2 m2 ha-1), with subdominant 

broadleaf tree species (G. mimosoides, 

Chochlospermum fraseri, T. canescens, E. 

chlorostachys, Gardenia sp., Acacia sp.). The herbaceous layer was dominated by tall tropical 

perennial grasses S. nervosa, S. plumosum, Chrysopogon fallax and H. contortus. The site burnt 

once from 2014-2017 in May.  

 

Monger Creek 11-15 

The site is on hilly basalt country with low 

(8.5m) woodland (15% foliage cover) vegetation 

dominated by Eucalyptus and Corymbia spp. (E. 

tectifica, Eucalyptus sp.,C. latifolia) accounting 

for 96% of total basal area (3.6 m2 ha-1), with 

subdominant broadleaf tree species (G. 

mimosoides, T. canescens). The herbaceous layer 

was dominated by tall tropical perennial grasses 



  Appendices 

 

135 
 

S. nervosa, S. plumosum and H. contortus.  The site burnt twice from 2014-2017 in the mid- to 

late dry season (August-November). 

 

Wobinbeyi 1-5 

The site is on gently undulating sandstone 

country with rock outcrops in close proximity to 

an ephemeral watercourse. The vegetation was 

low (8.2m) woodland (25% foliage cover) 

dominated by Eucalytpus spp. (E. miniata, E. 

tetrodonta) with subdominant broadleaf tree 

species (C. latifolia, Buchanania obovata, 

Syzygium eucalyptoides, Terminalia 

cunninghammi, Acacia platycarpa). The total basal area of 6.9 m2 ha-1  was 92% eucalypts. 

The herbaceous layer was dominated by tropical perennial grasses Eriachne sulcata, S. 

plumosum, S. stipodium, Triodia sp., C. fallax, Chrysopogon sp. and graminoid Xyris 

complanata. The site burnt twice from 2014-2017 in the mid- to late dry season (July-

November). 

 

 

Wobinbeyi 6-10 

The site is on gently undulating sandstone 

country with rock outcrops in close proximity to 

an ephemeral watercourse. The vegetation was 

low (7.4m) woodland (18% foliage cover) 

dominated by Eucalyptus spp. (E. tetrodonta, 

Eucalyptus sp.), Grevillea pteridifolia, and A. 

platycarpa, with subdominant broadleaf tree 

species (Persoonia falcata, S. eucalyptoides, 

Verticordia cuninghamii). Total basal area was 2.3 m2 ha-1  with eucalypts accounting for 26%. 

The herbaceous layer was dominated by tall tropical perennial grasses E. sulcata, Sorghum 

stipodium, C. fallax, Chrysopogon sp., hummock grasses Triodia sp., and graminoid X. 

complanata. The site burnt twice from 2014-2017 in the early dry season (April-May). 
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Pauline Creek 1-5 

The site is on gently undulating sandstone 

country with rock outcrops.  The vegetation was 

woodland (10.5m tall, 20% foliage cover) 

dominated by Eucalyptus spp. (E. miniata, E. 

tetrodonta) accounting for 98% of total basal 

area (4.1 m2 ha-1), with subdominant broadleaf 

tree species (Acacia retinervis, Petalostigma 

pubescens, Grevillea sp.). The herbaceous layer 

was dominated by tall tropical perennial grasses E. sulcata, S. plumosum, S. stipodium, 

Eriachne sp. and hummock grasses Triodia sp. The site burnt twice from 2014-2017 in the dry 

season (June-November). 

 

Pauline Creek 6-10  

The site is on gently undulating sandstone 

country with rock outcrops.  The vegetation was 

low (9.0m) woodland (24% foliage cover) 

dominated by Eucalyptus and Corymbia spp. (E. 

tetrodonta, E. miniata, C. latifolia, Corymbia 

polycarpa) accounting for 91% of total basal area 

(5.5 m2 ha-1), with subdominant broadleaf tree 

species (P. falcata, T. cuninghamii, G. 

pteridifolia, A. platycarpa). The herbaceous layer was dominated by tall tropical perennial 

grasses S. stipodium, hummock grasses Triodia sp., and graminiods Lomandra tropica, and 

Xyris complanata. The site burnt 3 times from 2014-2017 in the early dry season (April-June). 
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Appendix B 

Results of generalized linear mixed models for total animals detected for agile wallabies, 

wallaroos, cattle and dingos from camera traps established at 11 sites from 2015-2017 in 

Uunguu IPA, north Kimberley, Western Australia. Significant p-values of the predictor 

variables are bolded. Refer to Table 2 for model selection results. 

Response variable Predictor variables Estimate SE p-value 
Total agile wallaby Site fertility 1.50 1.38 0.28 

 Time since fire  0.49 0.16 0.00 
 Dingo abundance 0.34 0.17 0.04 
 Seasonal dryness 0.30 0.12 0.01 
 Site fertility*Time since fire -0.18 0.37 0.63 

Total wallaroos Site fertility 0.25 2.09 0.91 
 Time since fire  0.86 0.36 0.02 
 Dingo abundance 0.47 0.29 0.11 
 Seasonal dryness 0.40 0.20 0.04 
 Site fertility*Time since fire -1.50 0.74 0.04 

Total cattle  Site fertility 0.21 0.41 0.61 
 Time since fire  -0.33 0.09 0.00 
 Dingo abundance 0.13 0.06 0.03 
 Seasonal dryness 0.13 0.07 0.04 
 Site fertility*Time since fire 0.08 0.20 0.67 

Total dingo Site fertility -0.20 0.47 0.67 
 Time since fire  -0.09 0.16 0.56 
 Seasonal dryness 0.39 0.12 0.00 
  Site fertility*Time since fire -0.18 0.39 0.64 
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