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Abstract 

The incidence of massive Aspergillus sydowii marine “fungal slicks” along the east coast of 

Australia between Brisbane and Sydney in the wake of the 2009 dust storm, covering an area 

25-times the surface of England, has raised concerns about marine ecosystem as well as

human health impacts. Our current knowledge on the impacts of fungi on marine organisms

and human health through seafood consumption is very limited. The present study aimed at:

i) Elucidation of pathogenicity of A. sydowii against the coral endosymbiont Symbiodinium as

a model to elucidate the cause of sea fan coral aspergillosis; ii) Impacts of emerging

mycotoxins on marine organisms using a fish gill cell line model (RT-gillW1); and iii)

Assessment of combined toxicity of mycotoxins and phycotoxins on human cell line models

(intestinal HT-29 and neuroblastoma SH-SY5Y).

Dust originated (ASBS), terrestrial (FRR5068) and sea fan coral pathogenic (FK1) A. sydowii 

fungal strains all produced the same set of known A. sydowii metabolites, including 

sydowinin A, sydowinin B, sydowinol, sydonic acid, hydroxysydonic acid and sydonol, but 

minor metabolites differed between strains. Sydowic acid, sydowinol and sydowinin A 

adversely affected photophysiological performance (Fv/Fm) of the coral reef dinoflagellate 

endosymbiont Symbiodinium. Moreover, different Symbiodinium clades exhibited varying 

sensitivities to these fungal metabolites, mimicking sensitivity to coral bleaching phenomena 

in sea fan coral aspergillosis. Re-evaluation of the 2009 dust storm silks confirmed the 

dominance of A. sydowii (73.7%), with varying metabolite profiles, but these all produced 

sydonic acid. Other minor fungal isolates newly found in this study included Cladosporium, 

Penicillium and other Aspergillus species, which suggests potential secondary colonisation of 

the 2009 dust storm rafts.  

Shellfish and 2009 dust storm associated mycotoxins (e.g. patulin, alamethicin, gliotoxin and 

major A. sydowii metabolites) exhibited significant cytotoxicity to the fish gill cell (RT-

gillW1) cell line with IC50 (inhibitory concentration 50%) values of 0.098 – 103.7 µM. 

Previously reported combined effect of alamethicin and domoic acid using a larval Diptera 

bioassay, was not observed when using RT-gillW1 cells. The current study also evaluated the 

cytotoxicity of shellfish and dust storm associated mycotoxins and algal toxin okadaic acid 



(responsible for the syndrome of Diarrhetic Shellfish Poisoning), either alone or in 

combination, when challenged against human intestinal (HT-29) and neuroblastoma (SH-

SY5Y) cell lines. Combinations of okadaic acid, sydowinin A, alamethicin, patulin, and 

gliotoxin exhibited shifts from antagonism to additive/synergistic interactions with increasing 

cytotoxicity, with okadaic acid–sydowinol displaying an antagonistic relationship against 

HT-29 cells. Furthermore, only the okadaic acid–sydowinin A combination showed 

synergism, while okadaic acid combined with sydowinol, alamethicin, patulin, or with 

gliotoxin demonstrated antagonism against SH-SY5Y. While Diarrhetic Shellfish Poisoning 

from okadaic acid and analogues in many parts of the world is considered to be a 

comparatively minor seafood toxin syndrome, our human cell model studies provide the first 

insights that synergisms with mycotoxin may aggravate human health impacts. These 

findings highlight the shortcomings of current regulatory approaches, which do not regulate 

for mycotoxins in shellfish and treat seafood toxins as if they occur as single toxins.   
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1 

 . Introduction 

The significance of fungi in marine environments is increasingly being recognised. 

They often have been isolated from marine substrata such as mangroves, sediments and 

marine organisms (Ein-Gil et al. 2009; Kohlmeyer 1969; Morrison-Gardiner 2002). Their 

roles in marine environments include as decomposer, parasites and pathogens (Hyde et al. 

1998). Furthermore, fungi infect a wide range of marine organisms such as coralline algae 

(Littler & Littler 1998), loggerhead sea turtles (Sarmiento-Ramírez et al. 2010), corals (Smith 

et al. 1996), marine fish and prawns (Hatai 2012). The recent emergence of fungal disease in 

marine ecosystems is arguably related to anthropogenic stressors such as eutrophication, land 

runoff, climate change and dust storms. These stressors either transport toxigenic fungal 

strains, or promote the growth of toxigenic fungi in marine environments, while suppressing 

host immunity (Gleason et al. 2017). Fungi also potentially contaminate shellfish and fish, 

thereby posing health risks to human consumers. However, despite increasing risks of fungal 

disease and seafood contaminations, our present knowledge on fungi in marine environments 

is very limited.   

1.1 Dust storms and pathogenic fungal species 

In marine ecosystems, dust deposition plays important roles in transferring nutrients 

and pathogens. Dust blows across large areas of the Atlantic, Pacific and Indian Oceans 

(Husar, Prospero & Stowe 1997), with soil borne nutrients being transported to marine 

environments which potentially can stimulate the primary production in some oceanic regions 

(Karl et al. 2002). For example, dust deposition during the severe 2002 dust storm in 

Australia increased standing stock levels of chlorophyll concentration in coastal waters by 



2 

1.5-2 times (Shaw, Gabric & McTainsh 2008). Furthermore, terrestrial species such as 

Aspergillus, Cladosporium and Penicillium species have been previously isolated from 

Caribbean and African dust events (Kellogg et al. 2004; Shinn et al. 2000; Weir-Brush et al. 

2004). Therefore, dust was also suggested as one of the major contributors to the outbreak in 

the Caribbean of sea fan aspergillosis disease associated with A. sydowii (Garrison et al. 

2003; Shinn et al. 2000). Moreover, significant masses of Aspergillus sydowii spores and 

mycelia (~150,000 spores/m3) in coastal waters were collected by the Continuous Plankton 

Recorder (CPR) after the 2009 Australian dust storm (Hallegraeff et al., 2014) (Figure 1.1).  

Future projections of dust emissions based on model studies are complex and 

uncertain (Tegen et al. 2004), however anthropogenically-induced changes in climate and 

vegetation have significant influences on future dust emissions (Prospero & Lamb 2003; 

Tegen et al. 2004). Expected increases in drought risk under climate change (Cook, Mankin 

& Anchukaitis 2018), and reduced vegetation would worsen the impact and increase the 

frequency of dust storms (Prospero & Lamb 2003; Speer 2013). Furthermore, airborne and 

potentially pathogenic species such as Aspergillus, Penicillium, Cladosporium, Fusarium and 

Alternaria exhibit high salinity, temperature and pH tolerance (Gleason et al. 2017). 

Penicillium exhibits high tolerance of salinity (10-22 %), temperature (4-37 oC ) and pH (1.5-

14) (Dhakar, Sharma & Pandey 2014). Elevated salinity increased mitochondria size, rate of

respiration and levels of respiratory enzymes of A. sydowii (Parekh & Chhatpar 1989).

Furthermore, temperature had a significant effects on the growth rate of pathogenic A.

sydowii with an optimum of 30 oC, while reducing host defences response (Alker, Smith &

Kim 2001). Therefore, increasing temperature and acidity under current climate change

scenarios might promote their survival and growth in marine environments (Gleason et al.

2017). However, these factors also have adverse effects on host immunity of marine animals

(Harvell et al. 2009; Mackenzie et al. 2014). Consequently, fungi related disease in marine

ecosystems is predicted to increase under climate change scenarios that increase translocation

of fungi and enhance fungal survival growth, and decrease host immunity. Furthermore, the

2009 A. sydowii fungal bloom raised the alarm for future marine ecosystem and emerging

human health impacts.
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Despite the fact that increasing marine ecosystem and human health risks, our current 

knowledge on fungi in marine environment is limited compared to those in terrestrial 

environments (Amend et al. 2019). There is a growing evidence which fungi are abundant 

and diverse in marine environments(Amend et al. 2019). Fungi have been isolated from the 

surface waters (Taylor & Cunliffe 2016), the deep sea (Orsi, Biddle & Edgcomb 2013), 

sediments (Orsi, Biddle & Edgcomb 2013), drift wood (Rämä et al. 2014), algae (Wainwright 

et al. 2017), invertebrates (Ein-Gil et al. 2009) and mammals (Higgins 2000). So far, studies 

of those fungi have been based on t phylogenetic analysis, and their conclusions of role of 

fungi in the marine environment remains speculative (Amend, Barshis & Oliver 2012; 

Gutiérrez, Jara & Pantoja 2016; Littman, Willis & Bourne 2011; Yarden et al. 2007) or 

unknown (Amend 2014; Amend et al. 2019). Fungal enzymes and metabolites have been well 

known to be involved in interactions with hosts in terrestrial environments (Meena et al. 

2015), and possibly in marine environments as well (Raghukumar & Ravindran 2012). 

However, current studies tend to focus on the pharmaceutical uses of those metabolites from 

the marine habitat (Deshmukh, Prakash & Ranjan 2018),but their ecological roles have 

remain unclear.  

  

  

 

 

 

Figure 1.1 Map of the progress of the intensive Australian dust storm in 2009 (from Wikipedia) (A) and 

photographs of CPR silks after 2009 dust storm (B). 

1.2 Sea fan coral aspergillosis  

Fungal diseases in marine environments have significant impacts on ecosystem 

functioning. A. sydowii was previously well known as causative agent of sea fan aspergillosis 

B. A. 
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disease causing declines in colony numbers by 50% loss between 1997 and 2003 (Kim & 

Harvell 2004) and 20 – 90 % mortalities in the Florida Keys (Bruno et al. 2011) (Figure 1.2). 

Detailed molecular study revealed that pathogenic A. sydowii isolates do not form distinct 

genetic clades with closely related isolates coming from different geographic locations. There 

was no observed genetic differences between non-pathogenic and pathogenic strains (Rypien, 

Andras & Harvell 2008). Furthermore, Alker, Smith and Kim (2001) observed no clear 

differences in temperature effects on growth rates and carbon utilisation patterns between 

pathogenic and non-pathogenic strains. These genetic and physiological studies supported 

Aspergillus species as opportunistic pathogens, and suggested the absence of a specific 

pathogenicity and hence indicating that any A. sydowii strain could cause aspergillosis. 

However, only pathogenic strains caused aspergillosis disease while non-pathogenic strains 

cause no disease symptoms (Geiser et al. 1998). It was observed metabolite profiles differed 

among pathogenic and non-pathogenic isolates (Malmstrøm et al. 2001). This suggests that 

fungal secondary metabolites might constitute the difference in A. sydowii pathogenicity.  

However, the roles of secondary metabolites in aspergillosis pathogenicity remain 

unexplored.  
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Figure 1.2 Sea fan aspergillosis on the sea fan, Gorgonia ventalina. Purple necrotic rings are typical symptoms 

of aspergillosis (Ein-Gil et al. 2009) (A) and micrograph of causative agent A. sydowii (B). 

Research into coral disease has mostly focused on etiology or ecological impacts 

because of their role in coral habitat loss (Correa et al. 2009). Therefore, previous studies on 

coral disease, including sea fan aspergillosis, lack in depth understanding of interactions that 

can occur between disease-causing taxa, coral species and the associated dinoflagellate 

endosymbiont (Correa et al. 2009). Coral dinoflagellate endosymbionts tend to be members 

of genus Symbiodinium, which plays an essential role to corals by providing up to 90% of 

fixed carbon for metabolism (Muscatine & Porter 1977). Impacts on Symbiodinium viability 

and/or activity therefore reflect coral host susceptibility to disease. For example, yellow band 

disease involves intracellular Symbiodinium infections by Vibrio spp. that cause their 

degradation and subsequent expulsion from coral (Ben-Haim, Zicherman-Keren & Rosenberg 

2003). Other coral diseases may also impair photophysiological properties (Fv/Fm) of 

Symbiodinium (Burns, Gregg & Takabayashi 2013). In contrast, the coral disease Acroporid 

white syndrome does not affect Symbiodinium, since infected coral tissues does not exhibit 

damage to Symbiodinium cells as well as no significant effects on symbiont density, mitotic 

index, or chlorophyll concentrations (Roff et al. 2008). Symbiodinium clade diversity is 

another factor which underpins the host suspectability to disease and disease pathogenicity. 

A. B. 
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To date, eight Symbiodinium genetic clades (A-H) have been characterised (Pochon et al. 

2006). These clades exhibit physiological differences (Warner et al. 2006) and could 

potentially reflect host resistance to temperature stress and colony distribution (Berkelmans 

& Van Oppen 2006; Iglesias-Prieto et al. 2004). Studies on Vibrio bacteria related coral 

disease and yellow band disease demonstrated that Symbiodinium clade A dominated in 

infected coral tissues while healthy corals harboured either only clade C or both clades A and 

D (Rouzé et al. 2016; Toller, Rowan & Knowlton 2001). Correa et al. (2009) also 

demonstrated that fewer diseased corals contained Symbiodinium clade D, however there was 

no association between specific Symbiodinium clade types and diseased corals. Similarly, 

Kirk, Ward and Coffroth (2005) reported that Symbiodinium clade B were isolated from both 

healthy and aspergillosis diseased corals hosts. These results suggests there is likely no 

difference in Symbiodinium clades between healthy and infected hosts. 

1.3 Mycotoxins as emerging toxins in aquaculture  

Fungi in marine environments are also increasingly recognised as aquaculture feed 

contaminants. Recently aquaculture feeds have been substituted with more economical and  

sustainable plant materials due to significant growth in aquaculture animal production (Food 

and Agriculture Organization of the United Nations 2016; Tacon, Hasan & Metian 2011). 

Typical plant based ingredients for aquaculture feeds include soybean, wheat, maize, corn, 

rapeseed/canola, cottonseed and rice bran (Gonçalves et al. 2017). These represent favourable 

growth substrates for numerous toxigenic fungi such as such as Aspergillus, Fusarium and 

Penicillium (Jayaraman & Kalyanasundaram 1990; Mills 1990; Murphy et al. 2006). Several 

studies confirmed that aquaculture feeds are often contaminated with toxigenic fungi and 

their mycotoxins (Barbosa et al. 2013; Gonçalves et al. 2017; Gonçalves, Naehrer & Santos 

2016; Pietsch et al. 2013). Adverse effects of these mycotoxins on fish include reduction of 

growth and feed efficiency, damage to organs, and neurotoxicity and even mortality (Anater 

et al. 2016). Impacts on aquatic animals have been investigated less compared to terrestrial 

livestock animals (Gonçalves, Naehrer & Santos 2016). Furthermore, information on 

toxicokinetics of mycotoxins in fish is limited to aflatoxin and Fusarium mycotoxins. El-

Sayed and Khalil (2009) demonstrated that feed borne aflatoxin (~5 µg/kg) accumulates in 
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the musculature of sea bass (Dicentrarchus labrax L.). Furthermore, Fusarium mycotoxins, 

enniatins and beauvericin accumulated in muscle, liver, head and viscera of commercially 

available sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) (Tolosa et al. 2014). 

Such carry-over of mycotoxins from fish represents potential health risks for fish consumers, 

highlighting the need for implementing mycotoxin monitoring and management in 

aquaculture.  

Mycotoxins have also been recognised as new shellfish toxins. The first possible 

event of mycotoxin causing shellfish toxicity was reported in the early 1990s on the French 

coast where mouse bioassays detected high levels of shellfish toxicity (Amzil, Marcaillou-Le 

Baut & Bohec 1996). However, chemical analysis detected no known algal toxins such as 

PSP (paralytic shellfish poisoning) or DSP (diarrheic shellfish poisoning) toxins, or other 

chemical pollutants (Amzil, Marcaillou-Le Baut & Bohec 1996). This led to the suggestion of 

possible involvement of mycotoxins, as toxigenic fungal species had been previously isolated 

from shellfish in Canada (Brewer, Greenwell & Taylor 1993). Follow up studies confirmed 

the presence of toxigenic fungal species such as Aspergillus, Penicillium, Trichoderma and 

Cladosporium from shellfish, sediment and seawater from the shellfish farming areas also in 

France (Sallenave-Namont et al. 2000). Some of those fungal isolates produced toxic 

metabolites including gliotoxin (Grovel, Pouchus & Verbist 2003), patulin (Vansteelandt et 

al. 2012), griseofulvin (Petit et al. 2004) and peptaibol (Poirier, Montagu, et al. 2007). 

Gliotoxin accumulated in shellfish up to 2.9 µg/mg under laboratory conditions (Grovel, 

Pouchus & Verbist 2003), and peptaibols were detected from shellfish and sediments from 

the shellfish farming areas up to 5 ng/g (Poirier, Amiard, et al. 2007; Poirier, Montagu, et al. 

2007). Further studies also revealed that shellfish derived fungal strains produced more toxic 

metabolites, and shellfish extracts enhanced mycotoxin production (Geiger et al. 2013). 

Using a Diptera larvae bioassay, it was demonstrated that shellfish associated peptaibol 

enhanced the toxicity of the algal toxin domoic acid by 34.5 times (Ruiz et al. 2010). In 

Canada, Trichoderma fungi are well known from the shellfish growing area of Prince Edward 

Island (Brewer, Greenwell & Taylor 1993), where an Amnesic Shellfish Poisoning event in 

1987 caused 107 cases of human poisoning and 3 deaths (Todd 1993). Shellfish extracts were 

more potent to neuronal cultures than could be explained from pure domoic acid alone 
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(Novelli et al., 1992). These studies supported the involvement of mycotoxin in the 

unexplained shellfish toxicities in 1990s in France, and suggested a possible adverse 

interaction with co-occurring algal toxins. This emergence of mycotoxin as shellfish toxins is 

especially concerning because fungal translocation, survival and growth in marine 

environments are predicted to increase under climate change scenarios.  

1.4 Co-occurrence of multiple marine biotoxins  

Multiple natural toxins such as algal toxins and mycotoxins often co-occur in 

aquaculture products and marine environments. Multiple harmful algal bloom (HAB) toxin 

classes have been reported to co-occur in shellfish and occasionally in mammals from various 

geographic locations, such as Europe (Campbell et al. 2014), Scotland (Stobo et al. 2008), 

Australia (Takahashi et al. 2007), New Zealand (MacKenzie et al. 2002), the United States 

(Peacock et al. 2018) and Chile (García et al. 2015; Zamorano et al. 2013) (Table 1.1). The 

diarrhetic shellfish poisoning (DSP) toxin okadaic acid often co-occur with other lipophilic 

toxins such as pectenotoxins and yessotoxins (Alarcan et al. 2018; Peacock et al. 2018). 

Multiple mycotoxins also co-exist in aquaculture. Several studies detected that aquaculture 

feeds are often contaminated and co-occurred with several fungal species and mycotoxins 

including aflatoxins (AF), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB) and 

ochratoxins (OTA) (Barbosa et al. 2013; Gonçalves et al. 2017; Gonçalves, Naehrer & Santos 

2016; Pietsch et al. 2013) (Table 1.2). Some 82% of fish feed samples contained both DON 

and ZEA (Pietsch et al. 2013), 50% of Brazilian samples contained both AFB1 and FB1 

(Barbosa et al. 2013), and 50-90 % of samples contained more than one mycotoxin in both 

European and Asian samples in 2014 and 2015 (Gonçalves et al. 2017). Furthermore, 

multiple toxigenic fungal species were often isolated from shellfish and the farming areas 

(Greco et al. 2018; Marrouchi et al. 2013; Zvereva & Vysotskaya 2005) (Table 1.2), 

suggesting the possibility of co-occurrence of  multiple mycotoxins in shellfish.  



 9 

 
Table 1.1 Summary of co-occurring major algal toxin groups in shellfish and marine mammals. Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and 

Amnesic Shellfish Poisoning (ASP).  

Co-occurring toxin groups  Location Species Reference 

PSP/DSP Chile  mussel (M.chilensis), clam (Venus antiqua), loco (Concholepas 
concholepas), top shell (Argobuccinum ranelliforme) García et al. (2015) 

PSP/ASP Scotland king scallop (Pecten maximus) Stobo et al. (2008) 
    
DSP/ASP United States  bottlenose dolphins (Tursiops truncatus) Fire et al. (2011) 
 Australia  oyster (Saccostrea glomerata,Grassotrea), mussel (Modiolus 

proclivis), pipis (Donax deltoides) Takahashi et al. (2007) 

PSP/DSP/ASP Europe  mussel (M.edulis), scallop  (P.maximus), oyster (Crassostrea Gigas) Campbell et al. (2014) 

PSP/DSP/brevetoxin United States  manatee (Trichechus manatus latirostris), green sea turtle (Chelonia 
mydas) 

Capper, Flewelling 
and Arthur (2013) 

    
    

PSP/DSP/yessotoxins  Scotland king scallop (P.maximus), mussel (M.edulis), queen scallop 
(Aequipecten opercularis) Stobo et al. (2008) 

   
 

ASP/DSP/yessotoxin Scotland  king scallop (P. maximus), queen scallops (A. opercularis) Stobo et al. (2008) 

  New Zealand  mussel (Perna canaliculus) MacKenzie et al. 
(2002) 

PSP/ASP/DSP/yessotoxin Scotland  king scallops (P.maximus)  Stobo et al. (2008) 

 
   

PSP/DSP/azaspiracid/yessotoxin Chile  mussel (M.chilensis), clam (V.antiqua), loco (C.concholepas), top shell 
(A.ranelliforme) Zamorano et al. (2013) 
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PSP/DSP/ASP/Microcystin 
toxins United States  mussel (M. californianus) Peacock et al. (2018) 
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Table 1.2 Summary of co-occurring mycotoxins or fungal species in fish feed, shellfish or shellfish farming areas. Underlined percentage represents co-occurring toxins. 

Percentage and concentrations in brackets indicate occurrence and the level (either average or range) of each mycotoxin in fish feeds, when available. Listed genera were the 

most commonly detected ones. aflatoxins (AF), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB) and ochratoxins (OTA) 

Co-occurring mycotoxin/fungal species Source Location Reference 
 50%: FB1(98%, 0.3-4.94 µg/g)/AFB1(55%) 
3.3%: FB1(98%, 0.3-4.94 µg/g)/AFB1(55%)/OTA(3.3%) 

fish feed  
Brazil  Barbosa et al. (2013) 

Cladosporium(85%)/Aspergillus(68%)/Penicillium(60%)    
    
82%:DON(82%, 289 µg/kg)/ZEA (100%, 76.2 µg/kg) fish feed  Europe Pietsch et al. (2013)  
    
50% (>1 mycotoxin): ZEA(67%, 118.01 µg/kg)/DON(67%, 165.61 
µg/kg)/ OTA(67%, 1.53 µg/kg)/FB(30%, 3,419.92 µg/kg)/AF(17%, 0.43 
µg/kg) 

fish feed  

Europe  
Gonçalves, Naehrer 
and Santos (2016) 

84% (>1 mycotoxin): AF(68%, 51.83 µg/kg)/ DON(68%, 160.86 
µg/kg)/ZEA(58%, 60.41 µg/kg)/ FB(58%, 172.63 µg/kg)/OTA(55%, 2.11 
µg/kg)  

 

Asia  
    
75% (>1 mycotoxin): AF/ZEA/DON/FB/OTA fish feed  Europe  Goncalves et al. (2017) 
    
90% (>1 mycotoxin): AF(58 µg/kg)/ZEA(53 µg/kg)/DON(29  
µg/kg)/FB(58 µg/kg) /OTA   Asia  
     

Penicillium/Aspergillus/Trichoderma/Cladosporium 

shellfish (Mytilus 
galloprovincialis), 
seawater,sediments  Algeria 

Matallah-Boutiba et al. 
(2012) 
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Aspergillus/Penicillium/Cladosporium/Chaetomium 

 
bivalve molluscs 
(Crenomytilus grayanus 
& Modiolus modiolus) Russia 

 
Zvereva and 
Vysotskaya (2005) 

Aspergillus/Penicillium/Fusarium/Trichoderma 

 
shellfish (M. 
galloprovincialis), 
sediments, seawater  Italy  Greco et al. (2018) 
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Despite the frequent co-occurrence of natural toxins, the combined effects of algal toxins and 

mycotoxins on human health and farmed fish via consumption are largely unknown. Human 

health impacts of co-occurrence of mycotoxin and algal toxins are even more limited with 

currently only one published study available (e.g., Ruiz et al. 2010). Broadly, multiple toxin 

exposure results in additive, synergistic or antagonistic effects (Grenier & Oswald 2011). 

Broad definitions of additive effects, synergisms and antagonism imply when the combined 

effects are equal to, greater or less than the sum of individual effects, respectively (Foucquier 

& Guedj 2015). Currently, a few studies addressed the possible impacts of co-exposure of 

algal toxins okadaic acid and other lipophilic toxins. In vivo mice bioassay studies suggested 

that co-exposure of okadaic acid and other lipophilic toxins had no combined effect on death 

rate and pathological changes (Aasen et al. 2011; Aune et al. 2012; Sosa et al. 2013) (Table 

1.3). However, in vitro study using human intestinal Caco-2 and HICE cells suggested that 

binary combinations of okadaic acid, yesstoxins and azaspiracid-1 could result in antagonism, 

additive effect and synergism, depending on the toxin ratio, toxin combination and 

concentrations (Alarcan et al. 2019; Ferron et al. 2016) (Table 1.3). Furthermore, okadaic 

acid with yessotoxin and dinophysistoxin 2 displayed enhanced effects, while okadaic acid 

with 13-desmethyl spirolide C had no combined effect on human neuroblastoma BE(2)-M17 

cells (Rodríguez et al. 2015) (Table 1.3). There exist more numerous studies on combined 

effects of mycotoxins which were comprehensively reviewed by Grenier and Oswald  (2011) 

and Smith et al. (2016). Table 1.4 summarised selected in vivo and in vitro studies where the 

combined effects were examined of binary mixtures previously reported in fish feeds (Table 

1.4). In vivo studies of combined effects have been largely tested on livestock and laboratory 

animals, and less on aquaculture animals (Gonçalves, Naehrer & Santos 2016) with a few 

exceptions. Carlson et al. (2001) and McKean et al. (2006) examined the combined effects of 

aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on fish. No liver tumour occurrence was 

observed in rainbow trout fed with only FB1 (3-104 ppm), however those fed with FB1 at 23 

and 104 ppm had an increased AFB1-initiated liver tumour incident rate (Carlson et al. 2001). 

McKean et al. (2006) observed a strong additive effect on mortality of mosquitofish. DON–

ZEN which was previously reported from fish feed (Pietsch et al. 2013) exhibited 

antagonistic effects on serum and liver tissue metabolic profile of mice (Ji et al. 2017), and 

delayed hypersensitivity of mice (Pestka et al. 1987). However, co-administration of DON–
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ZEN induced significant reduction in splenic resistance to Listeria monocytogenes in mice 

(Pestka et al. 1987) compared to the application of single toxin. In contrast, other reported 

mycotoxin combinations in fish feeds, the mixture of AFB1 and FB had synergistic effects on 

increased in aspartate transaminase, congestion and hemolysis in liver and enlarged thymus 

of mice, while they showed antagonistic effects on cholesterol, calcium, alkaline 

phosphatase, triglyceride levels and congestion and hemolysis in spleen (Casado et al. 2001). 

We currently have no information on carry-over of multiple mycotoxins from feeds to fish 

(Gonçalves, Naehrer & Santos 2016), however reported synergistic effects from mycotoxin 

co-exposures suggest possible food safety risks. 
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Table 1.3  Summary of combined effects of co-occurring HAB toxins. Tested concentration range and ratio are shown in bracket. yessotoxin (YTX), azaspiracid-1 (AZA1), 

okadaic acid (OA), 13-desmethyl spirolide C (SPX-1), dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), pectenotoxins-2 (PTX-2). 

Tested toxin 
mixture 

Tested concentration 
and/or ratio 

Tested 
animal/cell 
line 

Combined effect(s) Reference 

YTX/AZA1 YTX: 1 or 5 mg/kg Mice • no combined effects on toxin absorption, no combined clinical 
effect and no combined pathological effect in internal organs  

Aasen et al. 
(2011) 

  AZA1: 200 µg/kg       

OA/AZA1 OA: 780 or 880 
µg/kg Mice • no combined pathological effect except toxin mixture showed 

enhanced absorption in the gastrointestinal tract  
Aune et al. 
(2012) 

  AZA1:570 µg/kg       

YTX/OA YTX: 1 mg/kg Mice • no combined effects on mortality, signs of toxicity, diarrhoea 
and hematological changes 

Sosa et al. 
(2013) 

  OA: 0.185mg/kg       

AZA1/YTX AZA1: 1 
Human 
intestinal 
Caco-2 cell 

• additive/synergistic effects on cell viability  Ferron et al. 
(2016) 

  YTX: 0.8-3.6         

AZA1/OA AZA1: 1 
Human 
intestinal 
Caco-2 cell 

• antagonistic effect on cell viability Ferron et al. 
(2016) 

  OA: 8.2-51         

YTX/OA YTX: 1 
Human 
intestinal 
Caco-2 cell 

• antagonistic/additive effects on cell viability Ferron et al. 
(2016) 

  OA: 4.2-26.5       
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AZA1/YTX 

AZA1: 1 
Human 
intestinal 
HIEC cell   

• additive/synergistic effects on cell viability Ferron et al. 
(2016) 

  YTX: 0.8-3.6         

AZA1/OA AZA1: 1 
Human 
intestinal 
HIEC cell   

• additive/ antagonistic effects on cell viability Ferron et al. 
(2016) 

  OA: 8.2-51         

YTX/OA YTX: 1  
Human 
intestinal 
HIEC cell   

• additive/synergistic/antagonistic effects on cell viability Ferron et al. 
(2016) 

  OA: 2-26.5       

OA/SPX-1 OA: 1-200 nM 

Human 
neuroblastoma 
BE(2)-M17 
cell  

• no combined effect on cell viability                                                                           Rodríguez et 
al. (2015) 

  SPX-1: 50 nM         

OA/YTX OA: 1-500 nM 

Human 
neuroblastoma 
BE(2)-M17 
cell  

• mixture enhanced decrease in cell proliferation,  Rodríguez et 
al. (2015) 

  YTX: 500 nM   but no combined effect on cell viability 

OA/DTX2  OA: 1-200 nM 

Human 
neuroblastoma 
BE(2)-M17 
cell  

• mixture enhanced decrease in cell viability Rodríguez et 
al. (2015) 
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  DTX2: 100 nM         

OA/PTX-2 OA: 18.75-600 nM  
Human 
intestinal 
Caco-2 cell  

• additive/antagonistic/synergistic effects on cell viability Alarcan et al. 
(2019) 

 PTX-2: 6.25-200 nM  • additive/antagonistic effect on ROS (reactive oxygen species) 
production 

 OA:PTX-2 =3:1  
• antagonistic/additive effects on γ-H2AX phosphorylation 
• antagonistic/synergistic/additive effects on IL-8 (interleukin 8)  

release  
           

OA/SPX-1 OA: 18.75-600 nM  
Human 
intestinal 
Caco-2 cell  

• additive/synergistic effects on viability Alarcan et al. 
(2019) 

SPX-1: 2.1-66.7 nM     
  OA:SPX-1 = 8.92:1   • antagonisms/additivity on ROS production and γ-H2AX  

phosphorylation 

OA/YTX OA: 18.75-600 nM  

Human 
intestinal 
Caco-2 cell  

• additive/synergistic effect on viability Alarcan et al. 
(2019) 

 YTX: 6.25-200 nM 
 

• antagonisms/additivity on ROS measurement and γ-H2AX  
phosphorylation 

• antagonisms/synergism on IL-8 release 
  OA:YTX= 3:1         
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Table 1.4 Summary of combined effects of two reported co-occurring mycotoxins in fish feed, shellfish or shellfish farming areas. Combined effects of both in vivo and in 

vitro are presented when the information is available. Aflatoxin B1 (AFB1), zearalenone (ZEA), deoxynivalenol (DON), fumonisin B1 (FB1) and ochratoxins (OTA). 

Tested 
mycotoxin 
mixture  

Tested 
concentration 
and/or ratio 

Tested 
animal/cell line  Combined effect Reference 

AFB1/ZEA AFB1: 50µg/kg 
dry matter 

Laoshan dairy 
goats 

• no significant effects on dry matter intake, milk yield, body mass, 
average daily gain, hematological and serum biochemical 
parameters  

Huang et 
al. (2018) 

  ZEA: 500µg/kg 
dry matter       

AFB1/ZEA AFB1: 1 nM or 
100 nM 

Human breast 
cancer MCF-7 
cell 

• significant interactive effects on cell growth and cell cycle. AFB1 
reduced the cytotoxicity effect caused by ZEA.  

Yip et al. 
(2017) 

  ZEA: 10-12 to 
10-6 M       

AFB1/FB1 AFB1: 1.0 × 10-

2 mg/g Swiss mice 
• enhanced increases in the enzymatic activity of aspartate 

transaminase, congestion and haemolysis, enlarged thymus and 
intensified lesions, compared to the single dosed groups.  

Casado et 
al. (2001) 

  
FB: 1.0 × 10-5 
mg/g   • weakened decreases in serum cholesterol, triglyceride, alkaline 

phosphatase, calcium levels compared to the single dosed group.    

AFB1/FB1  AFB1: 0.13-
1.00 µM 

Human liver 
cancer HepG2 
cells 

• no congestion and haemolysis in spleen was observed while these 
were present in the group treated with FB1 only. 

Mckean et 
al. (2006)  

  
FB1: 49.9-399.2 
µM   • weak antagonism on cytotoxicity    
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DON/ZEA DON: 5 ppm  Female B6C3F1 
mice 

• no combined effects on weight gain, organ weight, histological, 
haematological profile, and serum immunoglobulin levels  

Forsell et 
al. (1986) 

  ZEA: 10 ppm       

DON/ZEA DON: 10 or 20 
µM 

Human intestinal 
Caco-2 cells 

• nearly additive effects on cell viability and inhibiting cellular 
protein synthesis 

Kouadio et 
al. (2007) 

  
ZEA: 10 or 20 
µM   • synergistic effects on lipid peroxidation   

AFB1/DON 

AFB1: 2.5 
mg/kg 
bodyweight 
(BW) 

weanling BALB/c 
female mice 

• synergistic effects on increase in activity of the alanine 
aminotransferase (ALT), the hepatic malondialdehyde (MDA) 
content, mRNA level of caspase-3 and decrease in mRNA level of 
B-cell lymphoma 2 (Bcl-2) 

Sun et al. 
(2014) 

  

DON: 5.0 
mg/kg 
bodyweight 
(BW) 

  

    

AFB1/DON AFB1: 0.01-
0.02 µg/ml  

Primary 
hepatocytes of 
carp (Cyprinus 
carpio) 

• enhanced inhibition of cell growth, cell structure destruction, and 
increase in activity of aspartate aminotransferase (AST), ALT and 
lactate dehydrogenase (LDH) compared to the single dose.  

He et al. 
(2010) 

  DON: 0.25-0.5 
µg/ml       

AFB1/OTA AFB1: 0.25 
mg/kg BW 

Young male F344 
rats 

• reduced decrease in the ALT level, the bone marrow micronucleus 
(MN) induction compared to the AFB1 single administration.  

Corcuera et 
al. (2015) 

  
OTA: 0.5 mg/kg 
BW   • significantly increase net formamidopyrimidine DNA glycosylase 

(FPG)-sensitive sites in kidney and liver    

AFB1/OTA AFB1: 5-50 or 
1-20 µM Monkey kidney 

vero cells 
• additive effects on cytotoxicity  

Golli-
Bennour 
(2010) 



 20 

 

  
OTA: 5-50 µM, 
or fixed 1µM 

 • enhanced increase in DNA fragmentation and P53 level, and 
downregulated bcl-2 expression, compared to single dose   

ZEA/FB1 ZEA: 15 g/day adult, male Wistar 
Crl:WI BR rats 

• no combined effect on liver, kidney and spleen weights, hepatic 
phospholid fatty acid composition   

Szabo et al. 
(2018) 

  
FB1: 150 
µg/day   • increased the reduced glutathione concentration (GSH)   

      
• synergisitic effect on lowering the unsaturation index (UI) in the 

hepatic phospholipid fatty acid profile   

      

• antagonistic effect on the stearic acid proportion and glutathione 
peroxidase activity 

•  
  

ZEA/FB1 ZEA: 5,10,20 
µM 

Human intestinal 
cell line Caco-2 • less than additive effect on cytotoxicity  Kouadio et 

al. (2007) 
  FB1: 10 µM   • more than additive effects on malonedialdehyde  (MDA) increases    

      • more effective in cellular protein inhibition while less effective on 
DNA synthesis inhibition, compared to the single dose   

ZEA/OTA ZEA: 1.12-
41.28 µM  

Human cancer 
cell line HepG2  

• additive effects on cell viability and antagonistic effect at lower 
concentration.  

• No significant additive effect on reactive oxygen species formation 

Li et al. 
(2014)  

  OTA: 6.61-
37.30 µM 

Cellosaurus cell 
line KK-1 

• synergistic effects at higher concentration on reactive oxygen 
species formation   

DON/FB1 DON: 30 
µg/day 

male Wistar 
Crl:WI BR rats  • no significant effect on liver weight Szabo et al. 

(2018) 

  
FB1: 150 
µg/day   • additive effect on the proportion of arachidic acid.    

      
• significant increase in the proportion of myristic acid, compared to 

the control group.    
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• antagonistic effects on the glutathione peroxidase activity    

DON/FB1 DON: 4, 10 and 
20 µM 

Human epihelial 
cell Caco-2 

• more strongly reduced cell viability than either DON or FB1 toxin 
alone 

Kouadio et 
al. (2007) 

  FB1: 10 µM   • synergistic effects on increase MDA production   
      • additive effects on protein synthesis    
      • less than additive effects on DNA synthesis   

DON/OTA DON: 25µg/kg 
BW weaner pigs • significantly increased leukocytes counts compared to the control Muller et al 

(1999)  

  
OTA: 18ug/kg 
BW   • significantly increased phagocytosis and apoptosis, but not as 

much as the response to OTA alone   

      • radical formation was inhibited in a combination, but promoted 
with single OTA treatment   

      
• keyhole limpet haemocyanin (KLH) was significantly suppressed 

in only combination of DON and OTA   

DON/OTA DON: 0.5 – 30 
µM 

Human epithelial 
cell Caco-2 

• binary mixture at non-toxic concentrations (when toxins are 
treated individually) of 0.5 µM DON and 20 µM OTA caused a 
significant increase in cytotoxicity   

Cano-
Sancho et 
al. (2015)  

  OTA: 5 - 80 µM    • toxicity caused by DON was significantly increase by increasing 
doses of OTA (40 and 80 µM)    

OTA/FB1 OTA: 3 mg/kg 
of diet  Turkey Poults • binary mixture caused the lowest body weight gains compared to 

other treatment types including single dose and control.  
Kubena et 
al (1997) 

  
FB1: 300 mg/kg 
of diet   • only mixture caused increases in serum concentration of uric acid 

and creatinine, activity of alanine transferase.    
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OTA/FB1 OTA: 10 µM 
Rat brain glioma 
C6, Caco-2 and 
Vero cells  

• Synergistic effects on reduction of cell viability Creppy et 
al. (2004) 

  FB1: 5, 10, 25, 
50 µM       
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1.5 Analytical methods for assessing combined toxicity  

Characterization of combined effects of toxins and drugs have been a challenging 

problem which results in the development of several methodological models (Foucquier & 

Guedj 2015). The main approaches to assess the combined effects include effect-based 

approaches and dose-effect-based approaches (reviewed in Foucquier & Guedj 2015). 

Approaches deviated from effect-based strategy examined the effects from two drug 

treatments, compared to the effects from a single drug treatment (Foucquier & Guedj 2015). 

Conclusions fall into either positive, negative or no combined effects (Foucquier & Guedj 

2015). Typical approaches based on effect-based strategy are Combination Subthresholding, 

Highest Single Agent, Response Additivity and Bliss Independence models (Foucquier & 

Guedj 2015). Limitations of these effect-based strategies are, for example, that commonly 

used Bliss Independence model assume that two toxins act independently (Roell, Reif & 

Motsinger-Reif 2017). However, most cases of toxin interactions do not meet this assumption 

(Gessner 1988). In contrast, dose-effect-based approaches compare nonlinear dose-effect 

curves of single and combined treatments, include models such as Combination index and 

isobologram analysis (Berenbaum 1977; Foucquier & Guedj 2015). This approach is based 

on Loewe additivity models, and provide definite conclusions of synergistic, additive and 

antagonistic effects (Foucquier & Guedj 2015). Limitations of dose-effect-based approaches 

are that it requires accurate estimation of dose-effect curves  (Foucquier & Guedj 2015), and 

the constant potency ratio (Grabovsky & Tallarida 2004). These requirements result in 

expensive experiments and computations, constant potency is regarded as rare in practice and 

non-constant potency ratio leads to more technical analysis (Foucquier & Guedj 2015; 

Grabovsky & Tallarida 2004).  
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1.6 Shortcomings of current shellfish regulations 

Current shellfish safety regulations do not account for the risk management of co-

occurring toxins and emerging toxins. The current regulatory limits for algal toxins and 

mycotoxins are established based on individual toxicity by single compounds, and take no 

account of combined effects (Smith et al. 2016; Wekell, Jurst & Lefebvre 2004). Similarly, 

the regulatory limits for mycotoxins have been developed based on the individual toxicity. 

Table 1.5 summarises regulatory limits of major algal toxins and mycotoxin (Commission 

Regulation 2006; EFSA Panel on Contaminants in the Food Chain 2009). This current 

regulatory setting is problematic in view of limited knowledge on combined effects of natural 

toxins. Furthermore, the majority of the current shellfish monitoring depend on chemical 

analytical methods such as high performance liquid chromatography (HPLC) and liquid 

chromatography mass spectrometry (LCMS) as alternative methods to mouse bioassays 

(Campbell et al. 2011). Analytical methods detect only the target toxins and are unable to 

detect emerging toxins such as mycotoxins, nor provide estimates of total toxicity as provided 

by mouse bioassays (Botana et al. 2016). Furthermore, the combined effects of co-occurring 

toxins often cannot be predicted from the mode of action of individual toxins (Chou 2006). 

The current regulatory approaches could fail when there are increasing risks of emerging 

mycotoxins and occurrence of multiple toxins. This emphasizes the importance of studies 

assessing effects of multiple toxin exposure to incorporate the combined effects into 

regulatory limits in conjunction with chemical detection methods.  
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Table 1.5 Summary of regulatory limits for algal toxins and mycotoxins set by the European Commission (EC).  

Toxin Group 
Limits in shellfish 

meat/foodstuffs 
Algal toxins  

Okadaic acid (OA) and 
analogues1 160 µg OA equivalents/kg 

Azaspiracid (AZA) 160 µg AZA equivalents/kg2 
Pectenotoxins (PTX) 160 µg OA equivalents/kg3 
Yessotoxin (YTX) 1 mg YTX equivalents/kg4 
Saxitoxin (STX) 800 µg PSP/kg 

Domoic acid (DA) 20 mg DA/kg 
  

Mycotoxins  
Aflatoxin B1 0.1-12 µg/kg 
Zearalenone 20-400 µg/kg 

Deoxynivalenol 200-1,750 µg/kg 
Fumonisin B1 and B2 200-4,000 µg/kg 

Ochratoxin A 0.5-80 µg/kg 
1Analogues include dinophysistoxins and PTX; 2AZA equivalents refer to AZA1, AZA2 and AZA3; 3 

Pectenotoxins shares the same limits for OA equivalents; 4YTX equivalents include YTX, 1a-homoYTX, 45-

hydroxyYTX and 45-hydroxy-1a-homoYTX.  

1.7 Research objectives 

Fungi are emerging pathogens to marine organisms and as contaminants in seafood. 

Their impacts on marine ecosystems and seafood are predicted to increase due to climate 

change. Especially in Australia, dust storms are predicted to increase, and the dust storm 

associated A. sydowii bloom in 2009 in coastal areas raised the alarm about possible marine 

ecosystem and human health impacts (Hallegraeff et al. 2014). However, our current 

knowledge on fungi in marine environments is limited, compared to terrestrial fungi. Their 

broad impacts on marine animals remain largely unknown. A. sydowii has previously caused 

significant mortality loss in the Caribbean, however previous studies have not fully explored 

the role of A. sydowii secondary metabolites in sea fan aspergillosis disease, and disease 

impacts on the coral endosymbiont Symbiodinium. Additionally, the impacts of mycotoxins 
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on human health through contaminated seafood consumption especially with co-occurring 

algal toxins in shellfish, has remained unclear.  

 

To achieve those objectives, the following broad aims were addressed.   

i) Elucidation of pathogenicity of A. sydowii as the cause of sea fan coral 

aspergillosis, focusing on differences in metabolite profiles between pathogenic 

and non-pathogenic strains, and their impacts on the coral endosymbiont 

Symbiodinium [Chapter 2]. 

ii) Assessment of broader impacts of emerging mycotoxins on marine organisms 

using a fish gill cell line model [Chapter 3]. 

iii) Assessment of combined toxicity of mycotoxins and phycotoxins on human cell 

line models [Chapter 4]. 
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 . Aspergillus sydowii marine fungal 

bloom in Australian coastal waters, its 

metabolites and potential impact on 

Symbiodinium dinoflagellates* 

Abstract  

Dust has been widely recognised as an important source of nutrients in the marine 

environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the 

wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous 

Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) 

forming a floating raft that covered a coastal area equivalent to 25 times the surface of 

England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced 

sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains 

share major metabolites and display comparable metabolic diversity to Australian terrestrial 

strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by 

other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species 

with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed 

that the dust-derived marine fungal extracts and known A. sydowii metabolites such as 

sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance 

(Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium 

                                                 

 

* Chapter 2 was previously published as: Hayashi, A., Crombie, A., Lacey, E., Richardson, A.J., Vuong, D., 
Piggott, A.M. and Hallegraeff, G., 2016. Aspergillus sydowii marine fungal bloom in Australian coastal waters, 
its metabolites and potential impact on Symbiodinium dinoflagellates. Marine drugs, 14(3), p.59. Some minor 
modifications from the published article appeared in this thesis chapter.   



 28 

 

clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. 

The detection of such large amounts of A. sydowii following this dust storm event has 

potential implications for the health of coral environments such as the Great Barrier Reef. 

2.1 Introduction 

In a previous publication (Hallegraeff et al. 2014), we reported an extensive 

Aspergillus sydowii marine fungal bloom in the wake of an Australian dust storm event in 

2009. The Continuous Plankton Recorder (CPR) collected masses of fungal spores and 

mycelia, estimated to be up to 150,000 spores per m3, between Brisbane and Sydney, an area 

equivalent to 25 times the surface of England. Fungal spores and mycelia were identified as 

Aspergillus sydowii using molecular sequencing of three different genes (large-subunit rRNA 

gene, internal transcribed spacer and beta tubulin) with 99%–100% match. A. sydowii has 

been widely claimed to cause aspergillosis in Caribbean gorgonian corals. 

Aspergillus species are pathogenic to a wide range of organisms (Burge et al. 2013). 

In marine environments, A. sydowii is characterised as a causative agent of aspergillosis of 

sea fan corals, based on morphological, physiological and nucleotide sequence analysis, and 

Koch’s postulate (Kim & Harvell 2004; Smith et al. 1996). A. sydowii is essentially a 

terrestrial organism, unable to sporulate and complete its life cycle in seawater (Smith et al. 

1996). Symptoms of aspergillosis include small lesions of necrotic tissue with purple halos 

(Smith et al. 1996), resembling the pathology of coral bleaching and hence suggesting an 

impact on Symbiodinium dinoflagellate symbionts. This fungal species is known to infect 

several species of octocorals (Smith & Weil 2004), and has caused 20%–90% sea fan 

mortality in the Florida Keys (Bruno et al. 2011). Due to the significant mortality and 

subsequent changes in the coral community structure, research focus needs to shift from the 

etiology of the disease to greater understanding of the interactions among causal pathogen, 

coral and their endosymbionts Symbiodinium (Correa et al. 2009). 

A putative virulence factor was initially proposed for A. sydowii strains isolated from 

diseased sea fan corals, although molecular genetic analysis reveals no clear differences 

between pathogenic and non-pathogenic strains (Geiser et al. 1998; Rypien, Andras & 
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Harvell 2008). Furthermore, there were no clear differences in temperature tolerance, 

susceptibility of coral host crude extract and carbon source utilization patterns (Alker, Smith 

& Kim 2001). However, Geiser et al. (1998) found that when sea fans were inoculated with 

virulent isolates from affected sea fans, all showed typical symptoms of aspergillosis at the 

point of inoculation, whereas sea fans with avirulent isolates showed no symptoms. 

The role of secondary metabolites in pathogenesis has been largely unexplored (Smith 

& Weil 2004). While over thirty metabolites from A. sydowii have been reported in the 

literature, most exhibit chemistry related to sydonic acid and sydowinin (Hamasaki, 

Nagayama & Hatsuda 1978; Hamasaki, Sato & Hatsuda 1975a; Li et al. 2015; Liu et al. 

2013; Trisuwan et al. 2011). Comparative HPLC analysis of marine pathogenic and non-

pathogenic A. sydowii strains demonstrate overlapping metabolite profiles, but none were 

attributable to specific A. sydowii metabolites (Malmstrøm et al. 2001). Therefore, the 

composition of the metabolite profiles and their relationship to pathogenesis remain unclear. 

The aim of this study was to examine metabolic profiles of new fungal isolates from 

the 2009 Australian dust storm plankton silks and compare their metabolic profiles with those 

from other sources including terrestrial habitats and diseased Caribbean sea fan corals. We 

also re-evaluate the fungal diversity in the 2009 plankton rafts, and assess the impacts of A. 

sydowii metabolites on various strains of the dinoflagellate coral endosymbiont, 

Symbiodinium. 

2.2 Materials and methods 

 Fungal isolation from the Continuous Plankton Recorder silks and A. 

sydowii strains 

Fungi were isolated from the formalin-preserved Continuous Plankton Recorder 

(CPR) silks by scraping spores from the silks and inoculating them on MEA, or producing 

aqueous spore suspensions as follows. Approximately 5 × 5 cm of the CPR silk samples were 

added to 2 mL of autoclaved sterile Milli-Q water and vortexed for 20 s to remove embedded 

spores and mycelium from the plankton silk. The suspension was centrifuged at 10,000× g 
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for 5 min. Supernatants were removed and the pellet re-suspended in 2 mL of Milli-Q water. 

Spore suspensions or spores floating on top of Milli-Q water were inoculated on either full 

strength, or half strength MEA with tetracycline (40 µg/mL) using a 10-µL disposal-

inoculating loop. Morphologically different fungal colonies were selected and their 

metabolite profiles analyzed by HPLC. 

A. sydowii strains from non-marine environments were supplied by Dr. John Pitt and 

Dr. Ailsa Hocking, Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

Food Research North Ryde (FRR) Culture Collection (Appendix, Table A.1). Two A. sydowii 

strains isolated from diseased sea fan corals (FK1) were supplied by Prof. Drew Harvell, 

Cornell University, USA. 

 HPLC analysis on fungal secondary metabolites  

Fungal cultures from the CPR silk after the dust storm in 2009 and five strains from 

CSIRO were grown in a wide range of solid media. The agars, Czapek-dox agar (CZA; 30 g 

Sucrose, 3 g Sodium nitrate, 1 g Di-potassium phosphate, 0.5 g Magnesium sulphate, 0.5 g 

Potassium chloride, 0.01 g iron(II) Sulphate heptahydrate, 15 g Agar, 1L distilled water), 

malt extract agar (MEA; 20 g Malt extract, 20 g Glucose, 1 g Peptone, 20 g Agar, 1 L 

distilled water), yeast extract and sucrose agar (YES; 20 g Yeast extract, 150 g Sucrose, 20 g 

Agar, 1 L distilled water), and glycerol casein agar (GCA; 10 g Glycerol, 0.3 g Casein, 0.3 g 

Potassium nitrate, 2 g Sodium chloride, 2 g Dipotassium phosphate, 0.05 g Magnesum sulfate 

heptahydrate, 0.02 g Calcium carbonate, 0.01 g Iron(II) sulphate heptahydrate, 18 g agar, 1 L 

distilled water) were prepared. The grains, barley, rice (jasmine and basmati) and cracked 

wheat were prepared by hydration (~30 g with 30 mL water in a 250 mL flask) during 

sterilisation (120 °C for 40 min.). The agar and grains were inoculated with a suspension of 

fungal spores and incubated at 24 °C and sampled at seven and 14 days. Subsamples (1 g) of 

the cultures were extracted with methanol (2 mL) for a minimum of 1 h on a wrist shaker, 

centrifuged (15,700 × g for 3 min., Eppendorf) and analysed by HPLC. Small sections of silk 

material (locations 2 and 3) were also directly extracted with methanol and processed by 

HPLC. 
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Analytical HPLC was performed on a gradient Shimadzu HPLC system comprising 

an LC-10AT VP gradient chromatograph, SPD-M10A VP diode array detector and SCL-10A 

VP system controller. The column used was an Alltima C18 rocket format column (100 Å, 53 

× 7 mm, 3 µm; Grace Discovery, Deerfield, IL, USA) eluted with a 3 mL/min gradient of 

10%–100% MeCN/H2O (+0.01% TFA) over 7 min. The HPLC traces were accessioned into 

our in-house database, COMET (Lacey & Tennant 2003) and the major metabolites were 

analysed by retention time and UV-Vis spectrum fit against a library of known metabolites 

(>25,000 spectra) and type species library (>25,000 spectra from 2000 fungal species). 

HPLC-DAD-ESI(±)MS was performed on an Agilent 1260 UHPLC coupled to an 

Agilent 6130B single quadrupole mass spectrometer. The column was an Agilent Zorbax 

Rapid Resolution HT Eclipse Plus C18 (50 × 2.1 mm, 1.8 µm) eluted with a 0.5 mL/min 

gradient of 10%–100% MeCN/H2O (+0.025% formic acid) over 10 min. 

 Symbiodinium dinoflagellate strains  

Strains of the endosymbiotic dinoflagellate Symbiodinium were obtained from the 

Australian National Algal Culture Collection (ANACC) in Hobart. Strains CS73, CS156 and 

CS163 were selected based on genetic clades, growth rate and geographic origin (Table 2.1). 

Strains were grown in f2 media (Guillard & Ryther 1962) and maintained at 25 °C under 

12/12 h light/dark cycle. Algal cell counts were undertaken using a haemocytometer. 

Table 2.1 Symbiodinium dinoflagellate strains/clades used in the bioassay. 

CS-No. Clade Source Location 

CS-73 Clade A Heron Is., Great Barrier Reef, Queensland, Australia 

CS-156 Clade C Hawaii, USA 

CS-163 Clade A1 Palau 
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 Crude extracts and typical A. sydowii secondary metabolites  

Four typical A. sydowii metabolite standards sydowinol, sydowinin A, sydowinin B 

and sydowic acid were provided by Professor Hiromitsu Nakajima, Tottori University, Japan. 

Crystallized metabolites were dissolved in ≥99.9% acetone and diluted to 70% with autoclaved 

sterile Milli-Q water. Known weights of methanol evaporated crude extracts of day 7 

optimisation of FRR 5152 and ASBS were dissolved in 2.6% methanol and sonicated to 

maximize solubility of metabolites. Crude extracts were then filter-sterilized (Millex GP 0.22 

µm). 

 Symbiodinium photophysiology assays 

Either 0.01 mg or 0.1 mg of standard A. sydowii metabolites, or 0.1 mg or 0.3 mg of 

FRR5152 or ASBS extracts were added to 24 well microplates (Greiner Bio-one, 

Frickenhausen, Germany). Solvents were completely evaporated in sterile conditions prior to 

the addition of 1.0 × 105 cells/mL exponential growth stage Symbiodinium dinoflagellate cell 

culture. The maximum quantum yield (Fv/Fm) of Symbiodinium was measured from the 

bottom of each well using an underwater pulse amplitude modulated fluorometer (Diving-

PAM, Walz, Effeltrich, Germany). Algal cultures were dark adapted for 30 to 60 min at 25 

°C before each measurement. Instrument gains were adjusted between 1 and 12, and F0 

(background chlorophyll fluorescence) set to the range of 200 to 400. This assay was 

conducted in triplicate, and average values of three measurements of each replicate were 

taken. Samples were dark adapted again for second/third measurements. Day 0 indicates 

before adding the fungal metabolites. This assay was conducted for 8 days, and 

measurements were taken every second day to follow the impact of fungal metabolites on the 

dinoflagellate photosynthetic performance. 

 Statistical analysis  

Statistical analyses were performed using R (R Core Team, 2017). One-way analysis 

of variance (ANOVA) was conducted to test significant differences in maximum quantum 

yield among treatments each day. When the main effect was significant, Tukey’s honestly 
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significant difference (HSD) post hoc tests were conducted. Box–Cox transformation was 

applied to determine appropriate transformation to improve normality and homogeneity of 

variance. A significance level of 0.05 was applied. 

2.3 Results 

 Australian terrestrial A. sydowii strains 

The metabolite consensus for A. sydowii was developed by examining seven strains 

held in the Food Research North Ryde (FRR) Fungal Culture Collection. Five of the strains 

were sourced from Australian terrestrial locations and two from Indonesian terrestrial 

locations. Cultivation of the strains in liquid and on agar gave low levels of secondary 

metabolites, with yeast extract and sucrose (YES) agar consistently superior in promoting 

abundance and diversity, consistent with previous reports (Malmstrøm et al. 2001). Further 

increases in production (5- to 10-fold) were achieved by cultivation on grains, in particular, rice. 

Strains showed some variation, but overall gave a consistent profile of major metabolites 

(Appendix, Figure A.1). Strain FRR5068 was considered representative of A. sydowii and the 

co-metabolite profile of this species in sensu. Metabolites from A. sydowii (FRR5068) grown 

on rice for 14 days and extracted with methanol were separated by gradient HPLC using 

diode array detection (DAD) and mass spectrometry (MS) (Figure 2.1A). Assessment of the 

co-metabolite diversity was undertaken using UV detection at 210 nm, with 78 discrete 

secondary metabolites being responsible for 99.5% of the total area under metabolite peaks 

(AUC) from 0.5 to 10.5 min. Analysis of the percent abundance of the metabolites revealed a 

hyper-dispersed distribution, with most metabolites present in trace amounts (Appendix, 

Table A.2) and only 25 metabolites responsible for 90% of total metabolite AUC. The 

metabolite distribution can be described in terms of the metabolite’s polarity on reverse phase 

(C18) HPLC. Four unidentified polar metabolites eluting 0.5–1.0 min accounted for 8.9% of 

the total metabolite AUC. These compounds exhibited simple UV-Vis spectra (λmax 200–210 

nm), but did not ionize in the mass spectrometer, precluding identification. The intermediate-

eluting peaks from three to seven minutes contained a complex series of metabolites 

dominated by variants of three distinct UV-Vis spectral classes (Figure 2.2). Comparison of 



 34 

 

the retention times, UV-Vis spectra and MS data of a mixture of known A. sydowii 

metabolites (Figure 2.1, Standards) identified five of the six major metabolites as sydowinol 

(tR 3.44 min, 0.51%; λmax 212, 268, 301, 343 nm; ESIMS m/z [M − H]− 317, [M + H]+ 319), 

hydroxysydonic acid (tR 3.85 min, 16.3%; λmax 213, 248, 303 nm; ESIMS m/z [M − H]− 281, [M 

+ Na]+ 305), sydowinin B (tR 4.27 min, 6.9%; λmax 237, 265, 297, 390 nm; ESIMS m/z [M − 

H]− 315, [M + H]+ 317), sydowinin A (tR 5.16 min, 10.8%; λmax 206, 234, 258, 300, 370 nm; 

ESIMS m/z [M − H]− 299, [M + H]+ 301), sydonol (tR 6.15 min, 1.6%; λmax 202, 219, 280 nm; 

ESIMS m/z [M − H]− 251) and sydonic acid (tR 6.33 min, 16.0%; λmax 215, 248, 304 nm; 

ESIMS m/z [M − H]− 265, [M + Na]+ 289). The sixth metabolite, eluting at 4.01 min and 

constituting 9.1% of the metabolite AUC, exhibited a sydonic acid UV-Vis spectrum and 

molecular weight 282 amu, and is tentatively considered an isomer of hydroxysydonic acid. 

The known metabolites constitute 50.4% of the total metabolite AUC. The remaining eight 

major metabolites could be identified by their respective UV-Vis spectra as analogues of 

sydonic acid, sydowinin or sydonol, while six metabolites could not be assigned to a specific 

chemical based on their UV-Vis spectra. The non-polar region from 7 to 10.5 min contained 

two metabolites, a sydowinin analogue (7.30 min, 1.22%) and a sydonol analogue (9.17 min, 

0.88%), with the final metabolite, a fatty acid (λmax < 200 nm) hydrolysed from grain oils 

(10.30 min, 4.04%). 

 Australian marine A. sydowii ASBS strain  

The A. sydowii ASBS strain was isolated by towing a Continuous Plankton Recorder 

(CPR) instrument through a microbial raft located at 28.424°S, 153.811°E off the Australian 

mainland after the 2009 dust storm (Hallegraeff et al. 2014). Genetic sequences of spores 

from the CPR silks indicated the strain to be a 99%–100% match to A. sydowii (Hallegraeff et 

al. 2014). The metabolite profile of A. sydowii ASBS grown on rice for 14 days and extracted 

with methanol is presented in Figure 1B. Visual inspection of Figure 2.1A, B show a strong 

overlap in the both the polar and intermediate polar regions of the HPLC traces. Assessment 

of the co-metabolite diversity revealed 63 metabolites were responsible for 99.5% of the total 

metabolite AUC of the HPLC trace from 0.5 to 10.5 min. Like FRR5068, the metabolite 

distribution was hyper-dispersed, with most metabolites present in trace amounts and only 13 
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metabolites responsible for 90% of the total metabolite AUC (Appendix, Table A.3). More 

than half (57.3%) of the co-metabolite distribution comprised five of the known A. sydowii 

metabolites: hydroxysydonic acid (3.85 min, 13.8%), sydowinin B (4.27 min, 11.6%), 

sydowinin A (5.16 min, 8.0%), sydonol (6.15 min, 1.1%) and sydonic acid (6.32 min, 

24.0%). Retention times and UV-Vis spectra of each metabolite were consistent with the 

authentic standards. 

 US marine A. sydowii FK1 strain 

The A. sydowii FK1 strain was identified as the causal pathogen of Gorgonia 

ventalina from Key West, Florida, USA. The metabolite profile of A. sydowii FK1 grown on 

rice for 14 days and extracted with methanol exhibited less metabolic diversity than the 

Australian A. sydowii cultures (Figure 2.1C), with only 48 metabolites being responsible for 

99.5% of the total metabolite AUC and 17 metabolites responsible for 90% of the AUC 

(Appendix, Table A.4). The HPLC was nonetheless dominated by the known metabolites 

with sydowinol (3.44 min, 8.5%), hydroxysydonic acid (3.86 min, 6.1%), sydowinin B (4.27 

min, 18.6%), sydowinin A (5.16 min, 1.1%), sydonol (6.15 min, 0.92%) and sydonic acid (6.32 

min, 20.8%) constituting 55% of the metabolite AUC. The relative abundance of the known 

metabolites is different from the Australian strains, with increased levels of sydowinol and 

sydowinin B at the expense of hydroxysydonic acid and sydowinin A. The strain also 

displays high abundance of unidentified metabolites not observed in the Australian strains, 

eluting from 2.95 to 3.73 min. The six metabolites constitute nearly 17% of the co-metabolite 

profile and their respective retention times (λmax and m/z) are a chlorinated acidic metabolite 

eluting at 2.95 min (λmax 198, 210 s, 268, 300 s nm, ESIMS m/z [M − H]− 377/379) together 

with a dichloro analogue eluting at 3.62 min (λmax 198, 220 s, 270, 330 s nm, ESIMS m/z [M 

− H]− 411/413), three polar neutral metabolites eluting at 3.08 min (λmax 198, 220, 265 nm, 

ESIMS m/z [M − H]− 230, [M + H]+ 232), 3.28 min (λmax 212, 226 s, 242 s, 298 s, 313 s, 331 

nm, ESIMS m/z [M − H]− 235, [M + H]+ 237) and 3.36 min (λmax 192, 225 s, 240, 258 s, 328 

nm, ESIMS m/z [M − H]− 235, [M + H]+ 237). A final metabolite eluting as a broad peak at 

3.73 min failed to provide useable MS ionisation, but possessed a highly characteristic UV 

spectrum (λmax 230, 254, 278 s, 333 nm). The metabolites appear unique among A. sydowii 
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strains. Further, the λmax values are inconsistent with those for the A. sydowii co-metabolites 

described in the literature. The list of the A. sydowii metabolites described in the literature is 

provided in Table 2.2   

 

Figure 2.1 Comparison of HPLC traces (210 nm) of secondary metabolites of methanolic extracts from selected 

strains of A. sydowii grown on rice: (A) Terrestrial strain FRR5068; (B) Marine strain ASBS; (C) US Marine 

pathogenic strain FK1; Standards: metabolites isolated from A. sydowii and maintained in MST’s metabolite 

library. The HPLC trace has been truncated from 0.5 to 10.5 min to remove polar endogenous and primary 

metabolites (<0.5 min) in the solvent front and non-polar grain oils (>10.5 min.). 
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Figure 2.2 The structures and UV-Vis spectra of A. sydowii metabolite standards.  

 

Table 2.2 Metabolites previously isolated from A. sydowii.  

A. sydowii metabolites  
Molecular 
formula  Reference  

Sydowinol C16H14O7 Hamasaki, Sato & Hatsuda (1975b) 
Sydowinin A  C16H12O6 Hamasaki, Sato & Hatsuda (1975b) 
Sydowinin B  C16H12O7 Hamasaki, Sato & Hatsuda (1975b) 
Sydonol C15H24O3 Kudo et al. (2009) 
Hydroxysydonic acid C15H22O5 Hamasaki, Nagayama & Hatsuda (1978) 
Sydonic acid C15H22O4 Hamasaki, Nagayama & Hatsuda (1978) 
Sydowic acid  C15H20O4 Hamasaki, Sato & Hatsuda (1975a) 
Ergosta-7,22-dien-3β-ol C28H46O Ripperger & Budzikiewicz (1975); Wang 

et al. (2018) 
Ergosterol C28H44O Venditti et al. (2017); Wang et al. (2018) 
2-acetylaminobenzamide C9H10N2O2 Baker & Almaula (1962); Wang et al. 

(2018) 
Questin C16H12O5 Kimura et al. (1983); Wang et al. (2018) 
β-Sitosterol C29H50O Ahmad, Ali & Alam (2010); Wang et al. 

(2018) 
WIN 64821 C40H36N6O4 Barrow et al. (1993); Wang et al. (2018) 
AGI-B4 C16H14O7 Kim et al. (2002); Wang et al. (2018) 
Pinselin  C16H12O6 Healy et al. (2004); Wang et al. (2018) 
Sydowin A  C18H14Cl2O7 Teuscher et al. (2006) 
Sydowin B C18H14Cl2O6 Teuscher et al. (2006) 
Azaspirofurans A C22H21NO7 Ren et al. (2010) 
Azaspirofurans B C22H19NO7 Ren et al. (2010) 
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(+)-dehydrosydonic acid  C15H21O4 Lu et al. (2010); Wang et al. (2018) 
Aspergillusene A C15H22O2 Trisuwan et al. (2011) 
Aspergillusene B C15H18O3 Trisuwan et al. (2011) 
(+)-(7S)-7-O-Methylsydonic acid  C16H24O4 Trisuwan et al. (2011) 
Aspergillusone A C16H14O6 Trisuwan et al. (2011) 
Aspergillusone B  C16H16O8 Trisuwan et al. (2011) 
(Z)-5-(Hydroxymenthyl)-2-(6')- 
methylhept-2'-en-2'-yl)-phenol 

C15H21O2 Li et al. (2012); Wang et al. (2014) 

Emodin C15H10O5 Hawas, El-Beih & El-Halawany (2012); 
Zhou et al. (2018) 

Disydonol B C30H46O5 Sun et al. (2012); Wang et al. (2018) 
(7S)-(+)-7-O-methylsydonol C16H26O3 Chung et al. (2013) 
(7S,11S)-(+)-12-hydroxysydonic  
acid    

C15H22O5 Chung et al. (2013) 

7-deoxy-7,14-didehydrosydonol   C15H22O3 Chung et al. (2013) 
Yicathin C  C17H14O6 Sun et al. (2013); Wang et al. (2018) 
13-O-acetylsydowinin B C18H14O8 Song et al. (2013) 
Sydoxanthone A C18H16O7 Song et al. (2013) 
Sydoxanthone B C18H14O8 Song et al. (2013) 
Wentiquinone C  C16H13O7 Li et al. (2014); Wang et al. (2018) 
Aspergillusene C C15H20O4  Wang et al. (2014) 
Anhydrowaraterpol C15H20O3 Henne et al. (1993); Wang et al. (2014) 
cyclo-Waraterpol A C15H22O3 Henne et al. (1993); Wang et al. (2014) 
(S)-(+)-dehydrosydonic acid C15H20O4 Lu et al. (2010); Wang et al. (2014) 
(7S,11S)-(+)-12-acetoxysydonic 
acid 

C17H24O6 Lu et al. (2010); Wang et al. (2014) 

Diorcinol C14H14O3 Fremlin et al. (2009); Wang et al. (2014) 
Cordyol C C14H14O4 Bunyapaiboonsri et al. (2007); Wang et 

al. (2014) 
Cyclo-(L-Trp-L-Phe)  C20H19N3O2 Kimura et al. (1996); Wang et al. (2014) 
Ergosterol peroxide C28H44O3 Cantrell et al. (1999); Wang et al. (2018) 
12-O-acetyl-AGI-B4 C18H16O8 Elnaggar et al. (2016); Wang et al. (2018) 
4-hydroxybenzaldehyde C7H6O2 Liu et al. (2018); Wang et al. (2018) 
2-hydroxy-6-formyl-
vertixanthone  

C16H10O7 Wang et al. (2018) 

12-O-acetyl-sydowinin A  C18H14O7 Wang et al. (2018) 
13-O-acetylsydowinin B C18H14O8 Song et al. (2013) 
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 Fungal strains from the 2009 CPR silks, and metabolites in CPR silk 

materials  

Further investigation of the 2009 CPR silks supported the dominance of A. sydowii, 

but also detected a few minor species: 73.7% A. sydowii; 10.5% unknown species (based on 

HPLC analysis); 7.9% Aspergillus sp.; 5.3% Penicillium sp. (Table 2.3 and Figure 2.3). 

These strains were isolated using half strength malt extract agar (MEA) and tetracycline, and 

included Cladosporium sp. (from location 4) and Penicillium sp. (from location 3). 

The isolated Penicillium strains produced both known metabolites, such as rugulosin 

and previously unencountered co-metabolite profiles, the latter suggesting a novel species.  

Additional unidentified species producing unknown metabolites were also encountered from 

locations 1 and 4. Further genetic and metabolic characterisation of those unknown species is in 

progress. Additionally, Aspergillus sp. producing sterigmatocystin was detected. HPLC 

analyses of isolated A. sydowii indicated varying metabolite profiles and some produced 

unknown metabolites on MEA; however, all isolates produced sydonic acid. Their metabolite 

profiles exhibited some degree of overlap with some, but not all, terrestrial A. sydowii strains. 

Direct extraction of CPR silk materials provided a different perspective on the 

dominance of A. sydowii. The chromatographs of silks from 32.238–32.319°S, 152.884–

152.842°E (location 2) and 32.701°S, 152.579°E (location 3) exclusively detected 

Pseudomonas phenazine metabolites, tubermycin (λmax 248, 344 s, 370 nm) and 

oxychlorophine (λmax 248, 344 s, 370 nm), while A. sydowii metabolites were present in only 

trace amounts (Appendix Figure A.2). 
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Table 2.3 Fungal strains isolated from the 2009 dust storm and secondary metabolites found by HPLC analysis 

of methanol extracts grown on malt extract agar (MEA). Numbers in brackets indicates the number of each 

species. 

Location Species Metabolite(s) % Isolates 

1 A. sydowii sydonic acid 5.3 (2) 

  sydonic acid, sydonol 15.8 (6) 

  sydonic acid, unknown 

metabolites1 
7.9 (3) 

 Penicilllium sp. rugulosin 2.6 (1) 

 Unknown 1 no detectable metabolites 5.3 (2) 
    

2 A. sydowii  sydonic acid 7.9 (3) 

  sydonic acid, sydowinin B 2.6 (1) 

  sydonic acid, unknown 

metabolites1 
10.5 (4) 

 Aspergillus sp. sterigmatocystin 2.6 (1) 
    

3 Penicillium sp. rugulosin 2.6 (1) 
    

4 A. sydowii sydonic acid 21.1 (8) 

  sydonic acid, sydonol 2.6 (1) 

 Aspergillus sp. sterigmatocystin 5.3 (2) 

 Cladosporium 

sp. 
no detectable metabolites 2.6 (1) 

 Unknown 2 unknown metabolite2 5.3 (2) 
    
     Total 38 isolates 

1 λmax 230, 279, 288, 320 and 365 nm; 2 λmax 216 nm. 
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Figure 2.3 The distribution of fungal species in the 2009 dust storm. Latitude and longitude of each location 

(circled number from 1 to 4) are following: 30.617–30.703°S, 153.425–153.401°E (location 1), 32.238–

32.319°S, 152.884–152.842°E (location 2), 32.701°S, 152.579°E (location 3), 32.917–32.989°S, 152.393–

152.331°E (location 4). 

 Effect of Terrestrial and Marine A. Sydowii Crude Extracts on 

Symbiodinium Photo-Physiological State 

Application of two concentrations (0.1 and 0.3 mg) of crude extracts of terrestrial 

(FRR5152) and 2009 dust storm originated (ASBS) A. sydowii had a minor effect on 

maximum quantum yield (Fv/Fm) of CS156 Symbiodinium (clade C) at day 2 (F(4,10) = 27.2, 

p < 0.001), exhibiting a significantly reduced Fv/Fm by 0.025 to 0.056, respectively, compared 

to the control (Figure 2.4). Fv/Fm is a measure of the maximum efficiency of photosystem II, 

used as an index of plant photosynthetic performance (Maxwell & Johnson 2000). At day 4, 

0.1 mg FRR5152 and ASBS crude extracts exhibited significantly higher Fv/Fm of CS156 

with increases of 0.051-0.054, whereas 0.3 mg FRR5152 and ASBS crude extracts continued 

to exhibit significantly lower Fv/Fm at day 4, with declines of 0.029-0.039 compared to 
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control values (F(4,10) = 50.2, p < 0.001). At days 6 and 8, there was no significant 

difference in Fv/Fm between treatment and control. However, there was a trend that Fv/Fm at 

0.3 mg ASBS crude exhibited lowest values throughout the experiment period. There was no 

significant effect of crude extracts on the more resilient strain CS163 Symbiodinium (clade 

A1) Fv/Fm throughout the 8-day experimental period (results not shown). 

 

Figure 2.4 Effect of terrestrial (FRR5152) and 2009 dust originated A. sydowii (ASBS) crude extracts on CS156 

Symbiodinium maximum fluorescent yield (Fv/Fm) during an 8-day period. Error bars represent sample standard 

deviation from triplicate measurements. (.1) and (.3) indicate 0.1 and 0.3 mg dosage respectively. 

 Effect of Known A. sydowii Metabolites on Symbiodinium Photo-

Physiological State 

Known A. sydowii metabolites had significant effects on Fv/Fm of CS156 (clade C) and 

CS73 (clade A), however caused no effect on CS163 (clade A1) (Figure 2.5). Treatment with 

0.1 mg doses of typical metabolites significantly reduced Fv/Fm of CS156, whereas 0.01 mg 

dosage had no or minor effect on Fv/Fm on CS156 (from day 2–8, F(8,18) = 65.58 p < 0.001, 

at day 2 F(8,18) = 254.6, p < 0.001 at day 4, F(8,18) = 1060.0, p < 0.001 at day 6 and F(8,18) 

= 253.9, p < 0.001 at day 8). Fv/Fm of CS156 at 0.1 mg sydowinin A exhibited a gradual 

decline and lowest Fv/Fm of 0.370 ± 0.0256 at day 8. Application of 0.1 mg of sydowic acid 

also significantly decreased Fv/Fm to 0.455 ± 0.0061 at day 6. There was an increase at day 8 
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to 0.532 ± 0.0053. Application of 0.1 mg of sydowinin B caused a significant reduction in 

Fv/Fm to between 0.507 ± 0.0009 and 0.549 ± 0.0018, and application of sydowinol caused a 

reduction between 0.516 ± 0.0077 and 0.573 ± 0.016. Application of 0.01 mg of those 

metabolites caused a minor reduction in Fv/Fm of CS156 by 0.028 to 0.048 compared to the 

control. On the other hand, 0.1 mg of all typical A. sydowii metabolites except sydowinin B 

caused a significant effect on Fv/Fm of CS73, whereas 0.01 mg of metabolites had no 

significant effect from day 2 to day 8, F(8,18) = 16.8, p < 0.001, F(8,18) = 45.5, p < 0.001, 

F(8,18) = 19.54, p < 0.001 and F(8,18) = 24.14, p < 0.001). At day 2, only 0.1 mg sydowinin 

A caused a significant decline in Fv/Fm of CS73. After day 2 application of 0.1 mg of 

sydowinin A, sydowinol and sydowic acid significantly decreased Fv/Fm of CS73 to 0.517 ± 

0.0031 (day 4), 0.458 ± 0.0157 (day 8) and 0.470 ± 0.0056 (day 8) respectively. 

There was no significant effect from standard metabolites on CS163 Symbiodinium 

Fv/Fm throughout the eight-day experimental period (results not shown), except that at day 4. 

Fv/Fm of CS163 at 0.1 mg sydowinol caused significantly lower values than those at other 

treatments with a reduction of 0.041 compared to the control. 
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Figure 2.5 Effect of typical A. sydowii metabolites on CS156 (a) and CS73 (b) Symbiodinium maximum 

fluorescent yield (Fv/Fm) during an eight-day study period. Error bars are sample standard deviation from 

triplicate measurements. SydwA, SydwB, Sydwinol, and Sydwacid are sydowinin A, sydowinin B, sydowinol 

and sydowic acid, respectively. (0.01) and (0.1) indicate 0.01 and 0.1 mg dosage applied in this study. 

2.4 Discussion  

We show that the Australian marine A. sydowii strains share major metabolites and 

display comparable metabolic diversity to Australian terrestrial strains and to strains 

pathogenic to Caribbean coral. We also find secondary colonisation of the rafts by other 

Aspergillus species and fungal strains of Cladosporium and Penicillium. Our bioassays reveal 

that the dust-derived marine fungal extracts adversely affect photophysiological performance 

of the important coral reef dinoflagellate endosymbiont Symbiodinium. Different 

Symbiodinium clades exhibit varying sensitivities, mimicking sensitivity to coral bleaching 

phenomena. 

 Dust Generated Microbial Raft Ecosystem 

Dust has been widely recognised as an important source of nutrient input into the 

marine environment and a vector for transporting pathogenic microorganisms (Garrison et al. 

2003). The dust storm in 2009 covered a large area of the Australian coast, and created a 

distinctive marine raft micro-environment. 
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It is probable that the dust layer was sufficiently hydrophobic to remain un-wetted on 

the ocean surface for a considerable time, during which spores of many genera of saprophytic 

species germinated. The levels of fungal spores on dust should reflect typical levels and 

diversity of soil fungi and have a density of 104 to 106 spores per gram (colony forming units) 

with considerable species diversity >>100 (Tedersoo et al. 2014). Surface culture of fungi is 

itself not new; forming a raft on liquid media dates to the discovery of penicillin and is a 

fundamental technique in fungal cultivation. Most, but not all, saprophytic fungi form rafts on 

stationary liquid culture and these surfaces are profoundly water repellent. In cultivation 

studies using cellophane rafts on agar media, it was noted that many fungi grown on 

concentrated media (hypertonic, hyperosmotic, high nutrient) simply did not produce 

secondary metabolites, however, interceding with a thin cellophane membrane led to massive 

increases in the abundance and diversity of secondary metabolites (Fremlin et al. 2009). 

Based on viable spores recovered from trawling silks of the raft masses, A. sydowii 

was the dominant species, with additional species of Aspergillus, Penicillium and 

Cladosporium accumulated as secondary colonisers. These fungi are well known as terrestrial 

species, but are also occasionally isolated from marine environments (Jones 2011; Morrison-

Gardiner 2002). Two previous studies have reported the commonly observed taxa, 

Aspergillus spp., Cladosporium spp. and Penicillium spp., in the Australian marine 

environment from sources such as sediment, algae and invertebrates (Andreakis et al. 2015; 

Morrison-Gardiner 2002). Furthermore, Toledo-Hernández et al. isolated Penicillium spp. 

from both healthy and unhealthy coral Gorgonia ventalina, which is one of the most 

abundant species in Puerto Rico (Toledo-Hernández et al. 2008). These authors similarly 

reported that both Penicillium and Aspergillus were the most abundant fungal species in the 

corals sampled. Fungal communities are a normal feature of healthy reefs, but the occurrence 

of massive dust-induced fungal rafts may lead to an infection event. 

 Secondary Metabolites Associated with Pathogenic and Non-

Pathogenic Strains of A. sydowii 

While the HPLC traces of terrestrial and marine A. sydowii show some differences in 

their co-metabolite profiles, the major known metabolites, constituting >50% of the total co-
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metabolite AUC, are shared. Importantly, the metabolites reflect our general understanding of A. 

sydowii chemistry. Most obvious are the highly characteristic UV spectra of the sydonic acids, 

sydowinin and sydonols. These metabolites are the chemical framework of every strain 

investigated in this study and while the strains all share this profile, they are not identical. A. 

sydowii is capable of producing large numbers of secondary metabolites, but most are 

detectable in only trace levels. Currently, >30 metabolites from A. sydowii strains have been 

published in the literature, however the role and bioactivity of these are largely undescribed. 

The Australian marine strain displayed a more streamlined metabolite distribution, which 

suggests intensive strain selection on marine adaptation. A similar trend has been reported by 

Malmstrøm et al. who detected similar co-metabolite profiles between pathogenic and non-

pathogenic strains (Malmstrøm et al. 2001). 

 Effect of Fungal Crude Extracts and A. sydowii Typical Metabolites 

on Symbiodinium Photophysiology 

Fv/Fm is an indicator of the efficiency of photosystem II charge separation, which 

determines photophysiological performance of algal species (Maxwell & Johnson 2000). A 

decrease in Fv/Fm implies stress to photochemical efficiency (Burns, Gregg & Takabayashi 

2013; Maxwell & Johnson 2000). Declines in Symbiodinium Fv/Fm might be significant to the 

coral host, as endosymbiont photosynthesis supports coral metabolism and provides a source 

for carbon (Dubinsky & Berman-Frank 2001). Our result is consistent with a study that 

compared in situ Fv/Fm of Symbiodinium from growth anomaly diseased and healthy coral 

individuals with a reduction of 1.5 in Fv/Fm (Burns, Gregg & Takabayashi 2013). Similarly, 

other coral disease studies revealed that Vibrio bacteria, a pathogen of yellow band disease, 

caused significantly decreased Symbiodinium chlorophyll a and c2, and increased occurrence 

of lysed cells of Symbiodinium (Ben-Haim, Zicherman-Keren & Rosenberg 2003; Cervino et 

al. 2004). In addition, aspergillosis-infected coral tissue harboured fewer Symbiodinium cells 

compared to healthy coral tissues (Kirk, Ward & Coffroth 2005). These findings add support 

to our conclusion that Symbiodinium coral endosymbionts are negatively impacted by typical 

A. sydowii fungal metabolites. 
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The bioassay results showed that typical A. sydowii metabolites, including sydowinin 

A, sydowinin B, sydowinol and sydowic acid, significantly reduced Fv/Fm of Symbiodinium 

dinoflagellates. Sydowinin A (impacting on CS156 clade C) and sydowinol and sydowic acid 

(impacting on C73 clade A) were the most active. Previously, A. sydowii from the marine 

sponge Spongia obscura has infected the Gorgonia ventalina, and this strain produced typical 

metabolites such as sydonic acid and sydowic acids, 6-O-methylsydonic acid, 6-O-methyl-

13-hydroxysydonic acid and diorcinol (Ein-Gil et al. 2009). This suggests that pathogenicity 

could be determined by secondary metabolites. The crude extract bioassays exhibited less 

clear effects on Symbiodinium Fv/Fm, which might be due to the presence of different 

interacting compounds. However, there was a trend that marine-originated A. sydowii (ASBS) 

had more impact on Symbiodinium than the terrestrial strain. 

Symbiodinium is known to be extremely diverse genetically; eight distinct genetic 

clades (A–H) have been characterised (Pochon et al. 2006). This genetic variation plays key 

functional roles in behavioural, biochemical and physiological variation of coral hosts (Stat, 

Morris & Gates 2008; Yamashita et al. 2011). Our study revealed a difference in responses 

between Symbiodinium clades. Strains CS156 clade C and CS73 clade A exhibited high and 

moderate sensitivities, respectively, whereas CS163 clade A1 showed low sensitivity. 

Similarly, Symbiodinium stress-tolerant clade A and E dominated the bleached tissues of 

yellow blotch diseased corals whereas narrowly adapted specialists clade B and C dominated 

healthy tissues of corals (Toller, Rowan & Knowlton 2001). In contrast, growth anomaly 

coral disease and sea fan aspergillosis harboured consistent Symbiodinium clade types 

regardless of disease infection status (Burns, Gregg & Takabayashi 2013; Kirk, Ward & 

Coffroth 2005). Caribbean octocorals harbour mostly Symbiodinium clade B and rarely clade 

C, whereas those from the Australian Great Barrier Reef (GBR) harbour predominantly 

clades C and D with clades A, B, G much less abundant (Van Oppen et al. 2005). Clade B 

might be as sensitive as clade C towards typical A. sydowii metabolites since they are closely 

related genetically and have been defined as narrowly adapted specialists causing yellow blotch 

disease. Furthermore, clade C was the most sensitive Symbiodinium clade in this study. The 

fact that the Great Barrier Reef has not experienced significant fungal coral disease events to 
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date (Willis 2015) suggest that the high diversity of octocoral communities reflects a less 

impacted coral reef community compared to the Caribbean. 

 Conclusion 

The marine strain of A. sydowii isolated after a 2009 dust storm on the eastern 

Australian seaboard represents a streamlined secondary metabolite profile that shares the 

same major co-metabolites of its terrestrial parent. These major co-metabolites significantly 

reduced Symbiodinium photo-physiological state. This effect may constitute a key mechanism 

for the effect of sea fan aspergillosis on the coral host. However, there is also evidence that 

the marine A. sydowii is more toxic to Symbiodinium than the terrestrial strain, suggesting 

important roles for other co-metabolites in the A. sydowii repertoire. Furthermore, there was a 

clade-dependent degree of sensitivity of Symbiodinium to A. sydowii metabolites and crude 

extract which mimics the sensitivity of corals and their symbionts to coral bleaching. Work in 

progress aims to characterise novel strain-specific A. sydowii metabolites and examine their 

role in driving differing virulence by terrestrial and marine, Australian and Caribbean fungal 

strains. 
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 . Assessment of possible impact of 

mycotoxin on marine animals using fish gill 

cells as a model  

Abstract 

Fungal pathogens are increasingly recognised as an emerging threat to marine ecosystems. 

Our current knowledge of their impacts is limited compared to terrestrial ecosystems. The 

current chapter assessed the impact of dust storm and shellfish associated mycotoxins on the 

fish gill cell line (RTgill-W1), and their possible synergisms with algal toxins. Based on 

calculated IC50 (inhibitory concentration 50%) values, mycotoxins exhibited increasing 

cytotoxicity in the order of sydowinin A << sydowic acid < patulin < sydowinol < 

alamethicin <<gliotoxin. The mycotoxins sydowinin B and sterigmatocystin, and the algal 

toxins saxitoxin and domoic acid exhibited no cytotoxicity. Furthermore, the previously 

reported domoic acid and peptaibol synergism, using a Diptera bioassay (Ruiz et al. 2009), 

was not observed in the current bioassay using the fish gill cell line. The current fish gill cell 

model studies suggest the potential of fish mortality from marine mycotoxins. This could 

occur under conditions where aqueous phase mycotoxins come into close contact with 

sensitive gill cells.  
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3.1 Introduction  

Fungi are often isolated from the marine habitat such as mangroves (Kohlmeyer 

1969), sediments (Morrison-Gardiner 2002; Zhang et al. 2015), and marine organisms such 

as corals (Barrero-Canosa, Dueñas & Sánchez 2013), sponges (Ein-Gil et al. 2009) and algae 

(Morrison-Gardiner 2002). Despite their frequent occurrence in marine habitats, our 

understanding of fungi in marine environments is scarce. Currently 530 isolates have been 

derived from marine environments (Rateb & Ebel 2011) which implies that only ~0.6 % of 

total studied fungi have been isolated from marine environments (Richards et al. 2012). 

Furthermore, our current understanding of fungal ecology and evolutionary complexity is 

largely based on the studies of isolates from terrestrial environments (Richards et al. 2012).  

 Similar to fungi in terrestrial environments, those in marine environments are known 

to play diverse ecological roles including decomposers, parasites and pathogens (Hyde et al. 

1998). Fungal infections often cause fatal damage to the organisms, and they are often 

difficult to treat (Noga 1990). For example, sea fan coral aspergillosis is an epizootic disease 

of sea fan corals, Gorgonia spp. associated with the fungal pathogen Aspergillus sydowii 

(Kim & Harvell 2004). This fungal disease caused decline in coral coverage by 

approximately 50 % in Mexico (Kim & Harvell 2004), and caused 20 to 90 % of sea fan 

mortalities in Florida Keys (Bruno et al. 2011). Other than sea fan corals, fungi have been 

identified as pathogens to other marine organisms such as coralline algae (Littler & Littler 

1998), coral (Smith et al. 1996), sea turtles (Sarmiento-Ramírez et al. 2010), fish and prawns 

(Hatai 2012). The majority of research on fungal disease in marine environment has 

extensively focused on economically valuable aquaculture (Noga 1990) or their etiology 

(Correa et al. 2009), however less on their ecological roles or nature of interaction with hosts 

(Amend et al. 2019). A few recent studies explored broader ecological aspects of marine 

fungi such as species composition in response to the environmental stress (Amend, Barshis & 

Oliver 2012), species diversity in plankton, wetland sediment, intertidal sand and sediment 

core (Picard 2017). Nevertheless, their roles in the marine environment and detailed 

interaction with hosts have remained unclear.  
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Marine fungal infections are often described as opportunistic (Mohamed et al. 2017; 

Mydlarz et al. 2008; Sarmiento-Ramírez et al. 2014) which indicates that fungi mainly infect 

immunocompromised hosts (Radentz 1989). Human activity and climate change are major 

factors that affect host immunity in marine environments. The current warming trend could 

compromise environmental health and productivity while human disturbance often induces 

pollutant and habitat degradation (Harvell et al. 1999). Therefore, in the marine environment, 

fungal disease is predicted to increase due to climate change and human disturbances. 

Furthermore, aquaculture feeds are new vectors of introducing mycotoxins to the marine 

environment. Due to the recent increased use of plant derived proteins for aquaculture feeds 

(Francis, Makkar & Becker 2001), they are often contaminated (>51 %) with fungi and their 

mycotoxins including aflatoxins (AF), zearalenone (ZEA), deoxynivalenol (DON), 

fumonisins (FB) and ochratoxins (OTA) (Barbosa et al. 2013; Gonçalves et al. 2017; 

Gonçalves, Naehrer & Santos 2016; Pietsch et al. 2013). Typical effects of these mycotoxins 

on fish include feed efficiency, damage to organs, neurotoxicity and mortality (Anater et al. 

2016). For example, DON has been reported to decrease growth performance such as feed 

intake, weight gain, growth rate and feed efficiency, cause subcapsular hemorrahage of the 

liver, and affects body protein content on rainbow trout (Oncorhynchus mykiss) (Hooft et al. 

2011). 

RTgill-W1 gill cell line has been suggested as a suitable model of assessing aquatic 

toxicology to in vivo whole fish (Lee et al. 2009). First, this RTgill-W1 cell line was 

originated from rainbow trout (O. mykiss) (Bols et al. 1994). Rainbow trout has both a marine 

and freshwater life cycle, hence the RTgill-W1 cell line can be a suitable model for assessing 

both freshwater and marine toxicology. Secondly, the gills of aquatic animals serve multiple 

important processes such as gas exchange, osmoregulation, pH regulation and nitrogen 

balance (Evans 2005). These functions are critical for their survival, and serve as the primary 

target sites for water-born contaminants to fish (Tanneberger et al. 2013). Hence, damage to 

the gill could reflect their death (Lee et al. 2009). This is further supported by studies by 

Tanneberger et al. (2012) and Mooney et al. (2011). Tanneberger et al. (2012) demonstrated 

an overall good agreement between in vivo fathead minnow and in vitro RTgill-W1 toxicity. 

Furthermore, Mooney et al. (2011) reported higher sensitivity of RTgill-W1 to fatty acid 
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produced by phytoplankton compared to sheepshead minnow fish larvae. Lastly, fish gill cell 

line models are also advantageous over in vivo models in terms of easy maintenance, 

experimental flexibility and high reproducibility (Lee et al. 2008). This advantages could 

represent their wide applicability in toxicological studies. RT-gillW1 have been successfully 

used for the assessment of ichthyotoxity of harmful algae (Dorantes-Aranda et al. 2011; 

Mardones et al. 2015; Seger et al. 2015), emerging mycotoxins in aquaculture (Mayer et al. 

2017), heavy metal (Bopp, Abicht & Knauer 2008), and infectious salmon anemia virus (Falk 

et al. 1997).  

There are increasing risks of impacts from fungi in marine environments due to 

climate change, human disturbances and aquaculture feeds. The 2009 dust storm associated 

A. sydowii “bloom” and other co-occurring fungi raised the alarm of  possible risks. 

Moreover, the knowledge gap in the impacts of fungi on marine organisms would be crucial 

under such scenarios. The present study aimed to assess the impact of dust storm associated 

A. sydowii metabolites, dust storm and farmed tiger shrimp associated mycotoxin 

sterigmatocystin (See Chapter 3 for details; Fernand et al. 2017) and shellfish associated 

mycotoxins such as gliotoxin (Grovel, Pouchus & Verbist 2003), alamethicin (Poirier, 

Montagu, et al. 2007) and patulin (Vansteelandt et al. 2012) on the fish gill RTgill-W1 cell as 

a model. Their basic characteristics such as  mode of actions, toxicities and chemical 

structures are summarised in Table 3.1 and Figure 3.1. Previously reported mycotoxin and 

phycotoxin interactions using a Diptera larvae bioassay (Ruiz et al. 2010) were also assessed 

against the RTgill-W1 cells.   
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Table 3.1 Algal toxin, dust storm and shellfish associated mycotoxins tested in this study.  

Toxin  
LD501 in mouse 

(mg/kg) 

IC50
2 cytotoxicity 

(mammalian cell) 
Mode of action 

    

Algal toxin     

Saxitoxin  
0.01 (Wiberg & 

Stephenson 1960) 

1.01 nM - no effect on 

Neuro-2a (Cañete & 

Diogène 2008; Melegari 

et al. 2015)  

Saxitoin binds to voltage-gated sodium channels on nerves and muscles 

preventing nerve impulse (Wood, Longley-Wood & Reenstra 2016). 

    

Domoic acid  
3.6 (Grimmelt et al. 

1990) 

~8 µM on primary 

cultures of cerebellar 

granule cells (Antonello 

Novelli et al. 1992).  

Domoic acid activates glutamate receptors in the postsynaptic membrane, 

triggering Ca2+ influx into neurons (Pulido 2008) 

 

 
 

   

    

Mycotoxin    
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Patulin  
7.6 (Hayes et al. 

1979) 
 

2.9 µM  on CHO-K1 

cells (Zouaoui et al. 

2016) 

Patulin causes oxidation of sulfhydryl group in cell membranes. This 

decreases intracellular potassium and causes unbalance of ion 

concentrations across the cell membrane (Riley & Showker 1991) 

    

Gliotoxin 
32 (Larin et al. 

1965) 
0.3 µM on A549 cell  

(Kreja & Seidel 2002) 

Gliotoxin selectively binds to cytoplasmic membrane thiol groups. This 

alters membrane protein orientation could result in increased membrane 

permeability (Jones & Hancock 1988) 

    

Sterigmatocystin 800 (Davis 1981) 
25 µM on CHO-K1 cells. 

(Zouaoui et al. 2016) 

Sterigmatocystin uncouples the oxidative phosphorylation process (Kawai 

et al. 1984). It also inhibits acyl-CoA:cholesterol acyltransferase (ACAT) 

which maintains cellular cholesterol levels (Chang et al. 2009). 

    

Alamethicin 

(Peptaibol)  

80 (Meyer & 

Reusser 1967) 

16 µM on human 

erythrocytes (Brückner, 

Graf & Bokel 1984) 

Alamethicin forms pores in membrane  (Mueller & Rudin 1968), increasing 

membrane permeability. It also forms voltage-gated ion channels in 

membranes under certain conditions (Tamm & Tatulian 1997). 
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sydowinin A, 

sydowinin B, 

sydowic acid 

and sydowinol 

N/A N/A No reported mechanism of action  

1LD50 indicate lethal dose 50%. 2IC50 indicate inhibitory concentration 50%.   
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Figure 3.1 Chemical structures of typical algal toxins (saxitoxin, domoic acid), dust storm related mycotoxins 

(major A. sydowii metabolites) and dust storm and farmed fish associated mycotoxins (sterigmatocystin) and 

shellfish related mycotoxins (patulin, alamethicin, gliotoxin). 

3.2 Materials and methods 

 Fish gill cell culture  

Alamethicin Gliotoxin Patulin Sterigmatocystin 

Sydowinin A Sydowinin B Sydowinol Sydowic acid 

Saxitoxin Domoic acid 
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RTgill-W1, the rainbow trout Oncorhynchus mykiss gill cell line, was acquired from 

the American Type Culture Collection. The cells were maintained at 20oC in the dark with 

Leibovitz’s medium (L1518, Sigma-Aldrich) supplemented with 10% foetal bovine serum 

(v/v) and an antibiotic-antimycotic solution (A5955, Sigma-Aldrich) with penicillin (10,000 

units/ml), streptomycin (10 mg/ml) and amphotericin B (25mg/ml). Gill cells were routinely 

sub-cultured at a ratio of 1:3 and medium change occurred every 3 d.  

 Mycotoxin and algal toxin  

Four typical A. sydowii metabolite standards sydowinol, sydowinin A, sydowinin B, 

sydowic acid were provided by Professor Hiromitsu Nakajima, Tottori University, Japan. 

These compounds were isolated from A. sydowii IFO 4284 and IFO 7531 strains. Details of 

UV, IR and NMR spectra, chemical structures and molecular weights were described in 

Hamasaki, Sato & Hatsuda (1975a, 1975b). These crystallised metabolites were dissolved in 

acetone. Among the other mycotoxins tested, gliotoxin (G9893, Sigma-Aldrich) was 

dissolved in ethanol, alamethicin (A4665, Sigma-Aldrich) was dissolved in DMSO, and 

sterigmatocystin (S3255, Sigma-Aldrich) and patulin (P1639, Sigma-Aldrich) were dissolved 

in acetonitrile. All the mycotoxins purchased from Sigma-Aldrich were above 98% purity 

level. Phycotoxin standards, saxitoxin calibration solution (CRM-STX-f) was purchased from 

National Research Council Canada, and domoic acid (D6152, Sigma) was purchased from 

Sigma, and dissolved in sterile Milli-Q water. Saxitoxin used in this study was calibration 

standard, and purity level of domoic acid was above 90%.    

 Cytotoxicity bioassays  

Exposure experiments followed the protocol developed by Dorantes-Aranda et al. 

(2011). Briefly, cells were seeded at the concentration of 2 ×105 cells/ml in a 96 well plate 

and incubated for 48 h prior to the toxin exposure. Dissolved toxins were added to a modified 

L-15 medium (L-15/ex) (Schirmer et al. 1997). Gill cells were washed with phosphate buffer 

saline (PBS) and exposed to L-15/ex containing toxins for 2 h. Tested concentration ranges 

were 3.83 × 10-6 to 642 µM for individual toxicity and 5.1 × 10-4 to 25.5 µM for combined 

toxicity. The control included solvents only, and concentrations used in the assay were 
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preliminary tested to have no significant effect on the cell viability compared those treated 

basal L-15/ex without solvents (data not shown). The toxin-containing medium was 

discarded, and gill cells were rinsed once with PBS to remove all the remaining toxins and 

media. 5% resazurin solution (v/v) in L-15/ex were added to each wells after PBS washing. 

Following additional 2 h incubation in the dark, fluorescence was measured by a microplate 

reader (FLUOstar OPTIMA, BMG Labtech, 413–3350), using excitation and emission filters 

of 540 and 590 nm. A 2 h exposure time was chosen to be comparable with other toxicities of 

a wide range of algal toxins determined by Dorantes-Aranda et al. (2015). A 2 h exposure 

time has previously been proven to be sensitive enough to demonstrate the effects of toxic 

algal live cultures of Chattonella marina, Karlodinium veneficum and Prymnesium parvumo 

on RTgill-W1 cells (Dorantes-Aranda et al. 2011; Seger et al. 2015). Viability of gill cells 

was calculated as percentage of mean fluorescence relative to the control cells (% of control).  

 Statistical analysis of cytotoxicity of mycotoxin and algal toxin 

Dose response curves were fitted with the four-parameter logistic model (4PL), and 

95% asymptotic confidence intervals were calculated using GraphPad Prism 7. The half-

maximal inhibitory concentration (IC50) indicating the concentration that caused a half-

maximal viability was calculated for each toxin. One-way analysis of variance (ANOVA) 

was used to examine the statistical difference between control and treatments followed by 

Tukey’s honestly significant difference (HSD) post hoc tests. Box–Cox transformation was 

applied to determine appropriate transformation to improve normality and homogeneity of 

variance. The extra sum-of-squares F test was performed to evaluate the statistical difference 

in IC50 values between treatments. A significance level of 0.05 was applied in this study.  

3.3 Results 

 Individual cytotoxicity of algal toxin and mycotoxin 

Cytotoxicity of individual mycotoxin and phycotoxins was tested against the fish gill 

cell line RTgill-W1 using resazurin cell viability reagent. Tested mycotoxins except 
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sydowinin B and sterigmatocystin displayed a dose-dependent effect with an IC50 of 0.098- 

103.7 µM (Figures 3.2A, B). The tested concentration of sydowinin B and sterigmatocystin 

had no significant effect on the viability (sydowinin B: F(5,18) = 2.089, p = 0.114, 

sterigmatocystin:  F(4,15) = 1.727, p = 0.196). Similarly, tested concentration range of the 

algal toxins, saxitoxin and domoic acid had no significant effect on the viability of fish gill 

cells (saxitoxin: F(7,24) =1.217, p =0.332, domoic acid: F(10,33) = 2.171, p = 0.0461) 

(Figures 3.2C and 3.3). The HSD result indicated no significant difference between domoic 

acid treatments and control. Based on the calculated IC50 values, tested mycotoxins and algal 

toxins could be ranked in increasing order of sydowinin A << sydowic acid < patulin < 

sydowinol < alamethicin <<gliotoxin in gill RTgill-W1 cells. Toxicities of the tested algal 

toxins and mycotoxins in the present study are summarised in Table 3.2.  
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Figure 3.2 (A) Major A. sydowii metabolites, sydowinin A, sydowinin B, sydowinol and sydowic acid (B) 

mycotoxins, patulin, alamethicin, sterigmatocystin and gliotoxin (C) algal toxin saxitoxin dose-responses 

for cytotoxicity against fish gill RTgill-W1 cells. Toxin concentration was log transformed. Data are 

mean ± SD of four biological replicates.  

A. 

B. 

C. 
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Table 3.2 Summary of cytotoxicity of typical A. sydowii metabolites, other mycotoxins, and algal 

toxin,saxitoxin and domoic acid on fish gill RTgill-W1 cells after 2h exposure. IC50 values and 95% Confidence 

Intervals (CI) were calculated from four biological replicates using 4PL model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1NE indicates toxins had no significant effect within the tested concentration range. Numbers in brackets 

indicate the maximum applicable concentration tested. 

 

 

Toxin IC50 (µM) 95% CI  

Typical A. sydowii metabolites    

Sydowinin A 103.7 99.51-108.00  

Sydowinin B NE (142.3)1 -  

Sydowinol 19.19 18.45-19.97  

Sydowic acid 32.67 27.08-39.42  

    

Dust storm/shellfish mycotoxins    

Sterigmatocystin NE (61.7)1 -  

Patulin 22.31 19.66-25.32  

Alamethicin 7.13 5.90-8.60  

Gliotoxin 0.098 0.062-0.153  

    

Algal toxins    

Saxitoxin NE (8.35)1 -  

Domoic acid NE (642)1 -  
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 Alamethicin toxicity was not enhanced by domoic acid 

 Serial concentrations of alamethicin ranging from 5.1 × 10-4 to 25.5 µM and a 

constant concentration of domoic acid (6.4 µM) were together to test whether the mixture 

have the combined effects on gill cell viability (Figure 3.3). The differences between 

calculated IC50 values for domoic acid alone and the values for combined domoic acid and 

alamethicin were not significant (F(DFn, DFd) = F(1, 60) = 0.0207, p=0.886). The data 

indicated that there is no alterations in the inherent toxicity of alamethicin in combination 

with domoic acid on fish gill. 

 

 

 

 

 

 

 

Figure 3.3 Alamethicin, domoic acid and combined alamethicin and constant dose of domoic acid (6.4 µM) dose 

responses for cytotoxicity against fish gill RTgill-W1. Toxin concentration was log transformed. Data are mean 

± SD of four biological replicates. 

3.4 Discussion 

In the current study, dust storm and shellfish associated mycotoxins exhibited 

cytotoxicity to fish gill RTgill-W1 cells. The rank order, from highest to lowest, of individual 

mycotoxin cytotoxicity was gliotoxin, alamethicin, sydowinol, patulin, sydowic acid and 

sydowinin A. Tested concentration ranges of sterigmatocystin, sydowinin B, saxitoxin and 

domoic acid had no significant impact on viability of RTgill-W1 cells. Furthermore, 

potentiation of domoic acid and alamethicin was not observed in this study.  
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 Marine mycotoxin cytotoxicity on fish gill RTgill-W1 

Due to the recent increase in plant protein use in fish feeds, impacts of frequently 

occurring mycotoxins in crop (e.g. AF, ZEA, DON, FB) have been reported and assessed in 

laboratory settings (Matejova et al. 2017). However, impacts of emerging mycotoxins tested 

in the current chapter on marine organisms have been assessed to very limited extent. The 

present results exhibited an IC50 ranging from 0.098 to 103.7 µM. These are in agreement 

with previously reported cytotoxicity of other mycotoxins on RTgill-W1 cells. Gliotoxin, 

DON and ZEN exhibited IC50 of 0.28, ~40 and >62.8 µM, respectively (Dayeh et al. 2005; 

Mayer et al. 2017; Pietsch et al. 2014). Similarly, AFB1, DON, and ZEN displayed IC50 of 

11.1, 15.6 and 170.24 µM, respectively on fish caudal BF-2 cell line after 48 h exposure time 

(Zhou et al. 2017). The cytotoxicity rank order of shellfish and dust storm associated 

mycotoxins in the present study also corroborated mouse intraperitoneal LD50 values and 

other mammalian IC50 values except that fish gill cells were more sensitive to gliotoxin than 

the mouse bioassay. Although we lack toxicity information of the tested mycotoxins on 

whole fish, the present experimental data suggest the potential of fish mortality by 

mycotoxins especially if they reach sufficiently high aqueous concentrations. We currently 

lack knowledge of mycotoxin concentration in natural marine environments, except for a 

single report of 5ng/g in sediment samples (Poirier, Amiard, et al. 2007).  

 The major A. sydowii metabolite, sydowinol, sydowic acid and sydowinin A exhibited 

cytotoxicity against the fish gill RTgill-W1. Similarly, some A. sydowii metabolites displayed 

cytotoxicity against several human cell lines such as A549 (lung cancer cell), HeLa (cervical 

carcinoma cell), MDA-MB-435 (melanoma cell), HT-29 (colon cancer cell), KB (cervix 

carcinoma cell), HepG2 (liver cancer cell) and HCT116 (colon cancer cell). Some of these 

metabolites also exhibited toxicity towards brine shrimp larvae (Liu et al. 2017), and damage 

the photosynthetic property of Symbiodinium dinoflagellates (Chapter 2). Other reported 

biological properties of some A. sydowii metabolites include immunosuppressive activities 

(Liu et al. 2016; Song et al. 2013), antimicrobial and antiviral activities (Wang et al. 2014), 

inhibitory activity against Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) 

(Liu et al. 2013) and antioxidant activity (Trisuwan et al. 2011). Inactivity of sydowinin B on 

gill cells is in accordance with the previous chapter where sydowinin B was the only 



 64 

 

metabolite that exhibited less effects on the dinoflagellate Symbiodinium photo-physiological 

state (Fv/Fm) (Chapter 2). Sydowinin B also exhibited weaker immunosuppressive activity 

compared to sydowinin A (Liu et al. 2016). Sydowinin A and B share similar chemical 

structures, however they differ in the presence of  a hydroxyl group which might contribute to 

the observed difference in cytotoxicity (current study), effects on photophysiological states 

(Chapter 2) and immunosuppressive activity (Liu et al. 2016). We conclude that A. sydowii 

metabolites display a wide range of biological activities and cytotoxicity on various cell lines, 

however we lack knowledge on detailed mechanisms on how these metabolites impact cells, 

and the environmental conditions that trigger their production. This is concerning as A. 

sydowii can be readily isolated from marine environments including sandy beach soil 

(Latiffah Zakaria et al. 2011), deep seas (Wang et al. 2019), and animals such as corals 

(Soler-Hurtado et al. 2016) and sponges (Ein-Gil et al. 2009), and have previously caused 

significant mass mortality of sea fan corals.  

 Effects of algal toxins and their specific modes of action 

The tested algal toxins, saxitoxin and domoic acid exhibited no effect on gill cell 

viability. This insignificant impact of saxitoxin on RTgill-W1 is in accordance with studies 

by Mardones et al. (2015, 2018) that showed minor effect on the viability and ion fluxes of 

RTgill-W1 cells. Both saxitoxin and domoic acid are categorised as neurotoxins which 

specifically target ion channels and receptors in brain and muscle. Saxitoxin binds voltage-

gated sodium channel in nerves and muscle which eventually leads to respiratory paralysis 

and death in the worst case scenario (reviewed in Evans, 1972). Domoic acid selectively 

activates glutamate receptors (GluRs) in brain synapses and triggers excessive release of 

endogenous glutamate which results in cell and tissue injury (reviewed in Pulido, 2008). The 

neurotoxic symptoms and lethal toxicities of saxitoxin and domoic acid to fish were also 

observed under experimental conditions (Lefebvre, Trainer & Scholz 2004; Nogueira et al. 

2010). While both saxitoxin and domoic acid have specific neurotoxic effects which could 

lead to fish death, they cannot significantly damage gill cells. Similarly, other neurotoxins 

such as permethrin (190-fold), lindane (63-fold) and caffeine (18-fold) also have exhibited 

less effects on RTgill-W1 compared to overall acute fish toxicity (Tanneberger et al. 2013) 
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while other toxicants showed a good agreement between in vivo and in vitro test results. 

Tanneberger et al. (2012) argued that lack of neurotransmitter target sites on gill cells, as 

opposed to sodium or chloride channels in brain tissues contributed to less sensitivity in in 

vitro fish gill cell bioassays.  

Enhanced toxicity of domoic acid and alamethicin mixture was not observed in this 

study using  an in vitro fish cell model. This is distinct from the in vivo Diptera larvae 

bioassay result by Ruiz et al. (2010). In contrast, Zhou et al. (2017) demonstrated consistent 

combined effects of mycotoxins AFB1, DON and ZEN using in vitro fish cell model (BF-2) 

and in vivo zebra fish larvae. Their study revealed that binary combination of AFB1 and 

DON, AF and ZEN resulted in synergism, DON and ZEN exhibited antagonism, and tertiary 

mixtures of AFB1, DON and ZEN showed synergism to moderate antagonism depending on 

the concentration used (Zhou et al. 2017). Comparisons of the insignificant enhancement of 

domoic acid and alamethicin in the current study to the Diptera larvae results (Ruiz et al. 

2010) can be tentative only, as different targets (in vivo vs in vitro), endpoints and exposure 

periods were used. The fact that domoic acid did not increase the alamethicin toxicity could 

also reflect the target specificity of the neurotoxin domoic acid.  

 Conclusion 

The current study demonstrated that the tested mycotoxins exhibited cytotoxicity 

towards RTgill-W1 cells. This fish gill bioassay model suggest the potential of fish mortality 

from the marine mycotoxins, but only under conditions that release them in aqueous solution 

and bring them in contact with sensitive fish gills. The actual mycotoxin concentration in 

marine environments deserves further investigation. Significant cytotoxicity of major A. 

sydowii metabolites is especially concerning, as A. sydowii is often isolated from marine 

organisms and has previously caused sea fan coral mass mortality. The algal neurotoxins, 

saxitoxin and domoic acid, had no effect on fish gill cell viability. This is likely due to their 

specific modes of actions which target receptors in muscles and brains, but appear inactive in 

fish gill cells.   



 66 

 

 . Combined cytotoxicity of the 

phycotoxin okadaic acid and mycotoxins on 

intestinal and neuroblastoma human cell 

models* 

Abstract 

Mycotoxins are emerging toxins in the marine environment, which can co-occur with algal 

toxins to exert synergistic or antagonistic effects for human seafood consumption. The 

current study assesses the cytotoxicity of the algal toxin okadaic acid, shellfish, and dust 

storm-associated mycotoxins alone or in combination on human intestinal (HT-29) and 

neuroblastoma (SH-SY5Y) cell lines. Based on calculated IC50 (inhibitory concentration 

50%) values, mycotoxins and the algal toxin on their own exhibited increased cytotoxicity in 

the order of sydowinin A < sydowinin B << patulin < alamethicin < sydowinol << gliotoxin ≈ 

okadaic acid against the HT-29 cell line, and sydowinin B < sydowinin A << alamethicin ≈ 

sydowinol < patulin, << gliotoxin < okadaic acid against the SH-SY5Y cell line. 

Combinations of okadaic acid–sydowinin A, –alamethicin, –patulin, and –gliotoxin exhibited 

antagonistic effects at low-moderate cytotoxicity, but became synergistic at high cytotoxicity, 

while okadaic acid–sydowinol displayed an antagonistic relationship against HT-29 cells. 

Furthermore, only okadaic acid–sydowinin A showed synergism, while okadaic acid–

                                                 

 

*Chapter 4 was previously published as: Hayashi, A., Dorantes-Aranda,J.J., Bowman, J. P. and Hallegraeff, G., 
2018. Combined cytotoxicity of the phycotoxin okadaic acid and mycotoxins on intestinal and neuroblastoma 
human cell models. Toxins, 10(12), p.526 with the exception that table 1 in the published article is excluded in 
this thesis chapter, figures 4.3, 4.4 & 4.5 appear in only the thesis chapter, and a few minor modifications in the 
main text.  
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sydowinol, –alamethicin, –patulin, and –gliotoxin combinations demonstrated antagonism 

against SH-SY5Y. While diarrhetic shellfish poisoning (DSP) from okadaic acid and 

analogues in many parts of the world is considered to be a comparatively minor seafood toxin 

syndrome, our human cell model studies suggest that synergisms with certain mycotoxins 

may aggravate human health impacts, depending on the concentrations. These findings 

highlight the issues of the shortcomings of current regulatory approaches, which do not 

regulate for mycotoxins in shellfish and treat seafood toxins as if they occur as single toxins. 

4.1 Introduction 

The importance of fungi in the marine environment has been increasingly recognised 

in recent years. They are capable of infecting a wide range of marine animals, including sea 

turtles (Sarmiento-Ramírez et al. 2010) and sea fan corals (Smith et al. 1996), and threatening 

human health through mycotoxin accumulation in seafood (Grovel, Pouchus & Verbist 

2003). The majority of infectious fungi in the marine environment are considered to be of 

terrestrial origin (Pang et al. 2016), but atmospheric dust deposition and terrestrial runoff can 

facilitate the growth of fungi already residing in the marine environment and/or introduce 

them from terrestrial into marine environments. For example, an Aspergillus sydowii “bloom” 

(150,000 spores/m2) along the east coast of Australia was observed after an extensive dust 

storm in 2009 (Hallegraeff et al. 2014). Similarly, increased dust deposition and nutrient 

input from terrestrial runoff is thought to have contributed to an outbreak of the fungal 

disease sea fan coral aspergillosis in the Caribbean (Harvell et al. 1999). 

Fungal contaminants in seafood can also pose a significant human health risk. Several 

studies have shown that toxigenic fungal species can reside within the shellfish itself, 

seawater, and sediments from aquaculture farming areas. Penicillium, Aspergillus, 

Trichoderma, and Cladosporium have been isolated from such samples in France (Sallenave-

Namont et al. 2000), Canada (Brewer, Greenwell & Taylor 1993), Algeria (Matallah-Boutiba 

et al. 2012), Russia (Zvereva & Vysotskaya 2005), Brazil (Santos et al. 2017), Italy (Greco et 

al. 2018), and Tunisia (Marrouchi et al. 2013). These genera of fungi are capable of 

producing toxic metabolites (mycotoxins), including aflatoxins (AF), zearalenone (ZEA), 
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deoxynivalenol (DON), fumonisins (FB), and ochratoxins (OTA) (Gonçalves, Naehrer & 

Santos 2016). These compounds exhibit a wide range of biological activities, including 

hepatocarcinogenic, genotoxic, carcinogenic, oestrogenic, nephrotoxic, and 

nephrocarcinogenic effects (Zain 2011). Evidence exists that some shellfish-associated fungal 

isolates were capable of producing highly toxic mycotoxins, such as gliotoxin by Aspergillus 

fumigatus (Grovel, Pouchus & Verbist 2003), patulin by Penicillium sp. (Vansteelandt et al. 

2012), peptaibol by Trichoderma sp. (Poirier, Montagu, et al. 2007), and griseofulvin by P. 

waksmanii (Petit et al. 2004). These mycotoxins have been demonstrated to bio-accumulate 

in shellfish under both laboratory and natural conditions. A filtrate of marine-derived T. 

koningii, gliotoxin accumulated in shellfish (up to 2.9 µg/mg), and peptaibols were detected 

in shellfish and sediments (up to 5 ng/g from sediments) from aquaculture environments 

(Grovel, Pouchus & Verbist 2003; Poirier, Amiard, et al. 2007; Sallenave et al. 1999). C17-

sphinganine analogue mycotoxin (C17-SAMT) was claimed to be solely responsible for high 

shellfish toxicity in Tunisia in 2006 (Marrouchi et al. 2013). Mycotoxins are now widely 

viewed as new emerging toxins in shellfish. 

Mycotoxins on their own can pose a significant health risk for humans through 

shellfish consumption, but an even greater concern arises from their possible synergistic 

effects with co-occurring algal toxins. However, mycotoxins in shellfish are currently not 

monitored and information on the combined effects of algal toxins and mycotoxins is sparse. 

So far, an in vivo Diptera larval bioassay by Ruiz et al. has been the only study to assess the 

combined effects of the algal toxin domoic acid and mycotoxin. Their study revealed 

increased toxicity by up to 34.5 times (the synergism factor) when domoic acid and 

longibranchi-A-I were injected together into Diptera larvae (Ruiz et al. 2010). The proposed 

mechanism of this synergism was enhanced by an increase in Ca2+ influx into the cells by 

both domoic acid and novel peptaibol longibranchi-A-I (Ruiz et al. 2010). 

The management of seafood safety is important for public health, market access, and 

public confidence. For example, a single incident of failure of detecting unacceptable levels 

of paralytic shellfish toxins (PST) in exported mussels resulted in AUD$24 million dollar 

economic loss to the Tasmanian seafood industry (Campbell et al. 2013). Current approaches 

to seafood safety management do not regulate for mycotoxins, and take no account of 
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combined effects of co-occurring seafood toxins and treat them as if they were to occur as 

individual compounds (Gonçalves et al. 2017; Stobo et al. 2008). In the worst-case scenario, 

we could experience unexpected fatal toxicity from enhanced effects from unregulated 

mycotoxins and algal toxins occurring below the regulatory limits. Therefore, the aim of this 

study was to identify the toxic interactions of major algal toxins (e.g., saxitoxin, domoic acid 

and okadaic acid) and shellfish-associated (e.g., gliotoxins, patulin and peptaibol) and dust-

originated (A. sydowii metabolites and sterigmatocystin, see Chapter 2) mycotoxins (see 

Figure 3.1 and Table 3.1 in Chapter 3 for details of chemical structure and toxicological 

information) using human intestinal HT-29 and neuroblastoma SH-SY5Y cell line models. 

HT-29 and SH-SY5Y were chosen for assessing gastrointestinal and neurological effects, 

respectively, from saxitoxin (Gessner & Middaugh 1995), domoic acid (Teitelbaum et al. 

1990) and okadaic acid (Valdiglesias et al. 2013). Toxin interactions such as synergisms, 

antagonism, and additive were quantitatively evaluated with the combination index (CI) 

method (Chou & Talalay 1984). 

4.2 Materials and Methods 

 Cell line cultures  

Human neuroblastoma SH-SY5Y was kindly provided by Ms Yilan Zhen and Dr. 

Kaylene Young (Menzies Institute for Medical Research, University of Tasmania, Australia). 

Human colorectal adenocarcinoma cells HT-29 were kindly provided by Dr. Anthony Baker 

(Tasmanian Institute of Agriculture, University of Tasmania and School of Land and Food, 

Australia). Both cell lines were routinely maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM, D0819, Sigma-Aldrich, Sydney, Australia) supplemented with 10% foetal 

bovine serum (FBS, Bovogen Biologicals, Melbourne, Australia), and 100 U/mL penicillin 

and 100 mg/mL streptomycin solution in a humidified incubator (5% CO2, 37 °C). SH-SY5Y 

cells were routinely subcultured at a ratio of 1:30–1:50, and medium changeover occurred 

approximately every 5 d. HT-29 cells were routinely subcultured at a ratio of 1:3–1:8, and 

medium changeover occurred approximately every 4 d. 
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 Mycotoxin and phycotoxin toxins 

Four typical Aspergillus sydowii metabolite standards, sydowinin A, sydowinin B, 

sydowinol, and sydowic acid were kindly provided by Professor Hiromitsu Nakajima, Tottori 

University, Japan. These compounds were isolated from A. sydowii IFO 4284 and IFO 7531 

strains. Full descriptions of UV, IR, and NMR spectra, chemical structures, and molecular 

weights of these metabolites were previously provided by Hamasaki, Sato & Hatsuda (1975a) 

& (1975b). The crystallised A. sydowii metabolites were weighted on a microbalance and 

dissolved in small volumes of acetone (>0.5 mL). Among the other fungal toxins tested, 

gliotoxin (G9893, Sigma-Aldrich) was dissolved in ethanol, alamethicin (A4665, Sigma-

Aldrich) was dissolved in DMSO, and sterigmatocystin (S3255, Sigma-Aldrich) and patulin 

(P1639, Sigma-Aldrich) were dissolved in acetonitrile. Phycotoxin standards, saxitoxin 

(CRM-STX-f), domoic acid (CRM-DA-g), and okadaic acid (CRM-OA-d) were purchased 

from the National Research Council Canada. Concentrations used are expressed as µM. 

  Cytotoxicity bioassays 

When cells reached >70% confluency, they were detached using a trypsin–EDTA 

solution. Detached cells were centrifuged 300 g for 5 min and resuspended. Cells were 

seeded to a 96-well plate at 1.0 × 104 cells/well for HT-29 and 3.0 × 104 cells/well for SH-

SY5Y and allowed to attach for 24 h prior to toxin exposure. Each well contained 100 µL of 

cells suspension, and 0.5–3% (v/v) of algal toxin and mycotoxins stocks were added to the 

basal DMEM, which contained no supplemented FBS nor antibiotics. Concentration ranges 

of tested individual toxicity of algal toxins and mycotoxins were 1.33 × 10−9–123.3 µM for 

SH-SY5Y, and 3.12 × 10−8–235.6 µM for HT-29. For the combined cytotoxicity bioassay, 

the ranges were 0.019–214.9 µM for HT-29 and 0.016–169.6 µM for SH-SY5Y. Cells were 

rinsed once with DPBS (Dulbecco’s phosphate-buffered saline, 0.9 mM CaCl2; 0.50 mM 

MgCl2·6H2O; 2.7 mM KCl; 1.5 mM KH2PO4; 137.9 mM NaCl; 8.1 mM Na2HPO4·7H2O). 

Toxin-containing DMEM was added to each well and incubated further for 24 h. Controls 

received only solvents, and the solvent concentration used in the assay was preliminary tested 

to have no significant effect on the cell viability compared to those received basal DMEM 

without solvents (data not shown). After toxin exposure, the cells were washed once again 
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with DPBS and 100 µL of the same basal media (without phenol red) containing 5% 

resazurin solution (O’Brien et al. 2000) were added to each well. Following additional 2 h 

incubation in the dark, the plate was read with a BMG FLUOstar OMEGA plate reader using 

excitation of 540 nm and emission of 590 nm. Cell viability was expressed as the percentage 

of fluorescence reading compared to the control (% of control). Four biological replicates 

(four wells) were prepared for each treatment. 

  Statistical analysis of cytotoxicity of individual mycotoxin and algal 

toxin 

Data analysis was conducted with the decision tree proposed by Sérandour et al. 

(2012), except that in this experiment, the controls were preliminary tested to have no effect 

on cell viability and no further calculation was conducted when there was no bottom 

asymptote. Briefly, the dose response curves were fitted with the four-parameter logistic 

model (4PL), and 95% asymptotic confidence intervals were calculated using GraphPad 

Prism 7. The half-maximal inhibitory concentration (IC50) indicating the concentration that 

caused a half-maximal viability was calculated for each toxin. IC50 was accepted if the fitting 

dose–response curve had R2 > 0.85 and standard of error of log IC50 was <40%. One-way 

analysis of variance (ANOVA) was used to evaluate statistical differences between control 

and treatments. Tukey’s honestly significant different (HSD) post hoc tests were performed 

when the main effect was significant. Appropriate data transformation was determined using 

Box–Cox transformation. ANOVA and follow-up statistical analyses were performed with 

the statistical software R (R Development Core Team, version 3.4.3). A significance level of 

0.05 was applied in this study. 

 Median effect and combination index analysis of mycotoxin and algal 

toxin mixture 

The cytotoxicity of mycotoxin and algal toxin mixture was analysed based on the 

Chou–Talalay method (Chou & Talalay 1984). The combination of mycotoxin and algal 

toxin were at an equipotency ratio (e.g., (IC50)1/(IC50)2 ratio) based on the calculated IC50 

values using the graphpad prism 4PL model; therefore, each toxin roughly affects the cell 
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viability equally (Chou 2006). After determining the individual cytotoxicity, the binary 

mixture and individual toxin were tested against the cells in parallel. The dose–responses for 

individual toxins and their mixture were modelled using the median effect equation of the 

mass action law: 

𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

= �
𝐷𝐷
𝐷𝐷𝑚𝑚

�
𝑚𝑚

 

where D is the dose of the toxin, Dm is the median effect dose (e.g., IC50), fa is the fraction 

affected by dose (D) (e.g., fractions of cell viability affected), fu represents the fraction 

unaffected, and m indicates the shape of the slope (m = 1, >1, and <1 indicate hyperbolic, 

sigmoidal, and flat sigmoidal curves, respectively). Toxin interactions were only analysed 

when the linear correlation coefficient (r) of the median effect plot was greater than 0.92. 

The mycotoxin and algal toxins interaction was analysed by the combination index 

(CI) method derived from the median effect equation of the mass action law. The 

combination index was calculated using the following equation below (Chou 2006): 

(𝐶𝐶𝐶𝐶)𝑥𝑥𝑛𝑛 =  �
(𝐷𝐷)𝑗𝑗
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where (𝐶𝐶𝐶𝐶)𝑥𝑥𝑛𝑛  is the combination index for 𝑛𝑛 mycotoxins and algal toxins that inhibits 𝑥𝑥 

percent of a system (e.g., viability), (𝐷𝐷)𝑗𝑗 are the doses that mixture of 𝑛𝑛 phyco- and 

mycotoxins that inhibits 𝑥𝑥 percent of a system, and (𝐷𝐷𝑥𝑥)𝑗𝑗 are the doses that each phyco- and 

mycotoxin itself inhibits 𝑥𝑥 percent of a system. CI < 1, = 1, and >1 indicate synergism, 

additive effect, or antagonism, respectively. CI values were calculated over a range of fa = 

0.05 to 0.97 (5–97% toxicity). A confidence interval of 95% (95% CI) for CI was calculated 

based on sequential deletion analysis (SDA). The dose reduction index (DRI) values were 

determined for the combination that exhibited a synergistic relationship at IC25, IC50, IC75 and 

IC90. DRI indicates the magnitude of how the dose of each drug in a mixture can be reduced 

at the given effect level compared to the doses of each drug alone. The dose–response 

analyses of toxin mixtures, CI, and DRI were performed with Compusyn software 

(ComboSyn Inc., Paramus, NJ, USA). 
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4.3  Results  

 Individual cytotoxicity of algal toxin and mycotoxin 

The cytotoxicity of individual mycotoxins and phycotoxins on the human intestinal cell line 

HT-29 and human neuroblastoma cell line SH-SY5Y was evaluated using resazurine cell 

viability reagent. The tested mycotoxins, except sydowic acid, exhibited a dose-dependent 

effect with a range of inhibitory concentration 50% (IC50) from 65 nM to 124 µM for HT-29, 

and from 45 nM to 144 µM for SH-SY5Y (Table 4.1, Figures 4.1 and 4.2). Micrographs of 

cells exposed to toxins displayed disoriented and smaller shapes with cell fragments, and loss 

of neurites (Figure 4.3).The tested concentration ranges of sydowic acid (HT-29: 0.028–

283.75 µM, SH-SY5Y: 0.567–567.49 µM) showed no significant effect on viability for both 

HT-29 and SH-SY5Y (HT-29: F(8,27) = 0.095, p = 0.999, SH-SY5Y: F(4,15) = 1.516, p = 

0.248). Sterigmatocystin reduced the viability of both HT-29 and SH-SY5Y in a dose-

dependent manner with an incomplete sigmoid curve. The highest applicable concentration of 

62 and 123 µM sterigmatocystin lowered the viability of HT-29 to 60%, and that of SH-

SY5Y to 43%, respectively. Therefore, the IC50 of sterigmatocystin was not calculated. 

Okadaic acid displayed a dose-dependent effect on HT-29, with IC50 of 65 nM, and SH-

SY5Y viability, with IC50 of 27 nM, whereas the other tested algal toxin, saxitoxin, and 

domoic acid had either no effect or minor effects on the viability of HT-29 and SH-SY5Y 

(maximum tested concentrations were 16.6–1.33 µM) (Figures 4.1 and 4.2). For the overall 

cytotoxicity ranking, based on the calculated IC50 values, the tested mycotoxin and algal 

toxin were found to be in the increasing order of sydowinin A < sydowinin B << patulin < 

alamethicin < sydowinol << gliotoxin ≈ okadaic acid in HT-29, and sydowinin B < 

sydowinin A << alamethicin ≈ sydowinol < patulin, <<gliotoxin < okadaic acid in SH-SY5Y. 
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Table 4.1 Summary of cytotoxicity of typical A. sydowii metabolites, dust storm/shellfish associated 

mycotoxins, okadaic acid, saxitoxin and domoic acid algal toxins on HT-29 and SH-SY5Y cells after 24h 

exposure. Inhibitory concentration 50% (IC50) values and 95% confidence interval (CI) were calculated from 

four biological replicates using 4PL model. 

Toxin HT-29 95% CI SH-SY5Y 95% CI IC50 (µM) IC50 (µM) 
Typical A. sydowii 

metabolites 
    

Sydowinin A 124.30 113.60–136.00 117.80 105.60–131.40 
Sydowinin B 93.06 82.20–105.40 143.8 116.00–178.20 
Sydowinol 2.50 2.21–2.82 5.14 5.06–5.23 

Sydowic acid NE (283.75) 1 - NE (283.75) 1 - 
Dust storm/shellfish 

mycotoxins 
    

Sterigmatocystin >61.67 2 - ~123.35 2 - 
Patulin 17.46 10.79–28.28 2.23 2.15–2.32 

Alamethicin 4.92 4.57–5.29 5.43 5.29–5.67 
Gliotoxin 0.062 0.052–0.075 0.045 0.039–0.053 

Algal toxins     
Okadaic acid 0.065 0.056–0.075 0.027 0.026–0.029 

Saxitoxin  NE(3.32)1 - NE (1.33)1  
Domoic acid NE(16.60)1 - >6.643  

1NE indicates toxins had no significant effect within the tested concentration range. Numbers in brackets 

indicate the maximum applicable concentration tested. 2The maximum applicable concentration of 61.67 µM 

and 123.35 µM sterigmatocystin lowered the viability to 59.54% on HT-29 and 42.88% on SH-SY5Y, 

respectively. 3The maximum applicable concentration of 6.64 µM of domoic acid lowered the viability of SH-

SY5Y to 78.8%.  
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A. 

B. 

C. 

Figure 4.1 Dose-response curves of (A) major A. sydowii metabolites, (B) dust storm/shellfish associated 

mycotoxins (C) algal toxins on human intestinal HT-29 cells. Data are mean ± SD of four biological replicates. 
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A. 

B. 

C. 

Figure 4.2 Dose-response curves of (A) major A. sydowii metabolites, (B) dust storm/shellfish associated 

mycotoxins (C) algal toxins on human neuroblastoma SH-SY5Y cells. Data are mean ± SD of four biological 

replicates. 
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HT-29 

SH-SY5Y 

Figure 4.3 Micrographs of HT-29 (A,B,C,D) and SH-SY5Y (E,F,G,H) cells. Control cells exposed to basal 

medium (A,E) with normal spherical structures of HT-29, and with epithelial and fibroblastic structures. HT-29 

cells exposed to (B) 0.13µM okadaic acid (C) 49 µM sydowinin A, (D) 69 µM patulin. Cells challenged with these 

toxins (B) –(D) exhibited disoriented and smaller shapes with cell fragments.  SH-SY5Y cells exposed to (F) 

0.047 µM okadaic acid (G) 88 µM sydowinin A (H) 3.2 µM patulin. Cells challenged with these toxins (F) – (H) 

exhibited loss of neurites, structure disorientation and cell fragments. Scale bars: 40 µM   
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 Combined cytotoxicity of mycotoxins and algal toxin 

Since okadaic acid was the only algal toxin which exhibited cytotoxicity on both HT-

29 and SH-SY5Y cells, the effects of combined okadaic acid and mycotoxin sydowinin A, 

sydowinol, patulin, alamethicin, and gliotoxin on cell viability of HT-29 and SH-SY5Y were 

examined. Sydowinin B, sydowic acid, and sterigmatocystin were eliminated from the 

combined cytotoxicity assay because of their low cytotoxicity and limited solubility. 

Furthermore, the combination ratios were chosen to have an equipotent toxicity of each toxin 

(e.g., (IC50)1/(IC50)2 ratio) (Table 4.2), as there were no data available on the concentration of 

mycotoxins in shellfish under the natural settings, and this was recommended by Chou for an 

early stage study (Chou 2006). The combination index (CI) values were calculated from a 

fraction of cell viability affected (fa) values of 0.05 (corresponding to IC05) to 0.97 

(corresponding to IC97), and the dose reduction index (DRI) was calculated when synergistic 

interactions were detected. All the binary mixtures of toxins showed a dose-dependent effect 

on HT-29 and SH-SY5Y cells (Figures 4.4 and 4.5). 

Table 4.2 Molar combination ratio of okadaic acid and mycotoxin mixtures in the assay.  

Toxin Mixture Molar Combination Ratio 
HT-29 SH-SY5Y 

Okadaic acid:Sydowinin A 1:1925.0 1:14366.2 
Okadaic acid:Sydowinol 1:38.7 1:190.7 

Okadaic acid:Alamethicin 1:76.6 1:201.1 
Okadaic acid:Patulin 1:270.4 1:82.6 

Okadaic acid:Gliotoxin 1:1.04 1:1.68 
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Figure 4.4 Okadaic acid (OA), sydowinol (SYD), sydowinin A (SYDA), alamethicin (ALA), patulin (PAT) and 

gliotoxin (GLI) and their binary mixture dose-responses for cytotoxicity against human intestine HT-29 cell 

line. 1Concentrations in combinations were expressed as the sum of the concentrations of two toxins. Data are 

mean ± SD of four biological replicates. 
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Figure 4.5 Okadaic acid (OA), sydowinol (SYD), sydowinin A (SYDA), alamethicin (ALA), patulin 

(PAT) and gliotoxin (GLI) and their binary mixture dose-responses for cytotoxicity against human 

neuroblastoma SH-SY5Y cell line. 1Concentrations in combinations were expressed as the sum of the 

concentrations of two toxins. Data are mean ± SD of four biological replicates. 
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 Okadaic acid and mycotoxins on human intestinal HT-29 cells  

Okadaic acid–sydowinin A, –alamethicin, –patulin, and –gliotoxin binary mixtures 

displayed variations of the interaction types on human intestinal HT-29 cells dependent upon 

the effect levels (Figure 4.6). At low to moderate effect levels (fa < 0.65), these combinations 

exhibited antagonistic to additive effects, while they presented synergistic relationships at 

higher effect levels (fa > 0.65). In contrast to these okadaic acid–mycotoxin mixtures, 

okadaic acid–sydowinol mixtures displayed antagonistic effects at fa > 0.95 and a nearly 

additive interaction at fa < 0.95 (Figure 4.6). The DRI values for okadaic acid and 

mycotoxins varied from 1.8 to 12.5 and 1.8 to 12.2, respectively (Table 4.3). The greatest 

synergistic effect at fa = 0.9 was noted for the binary mixture of okadaic acid and gliotoxin, 

with a CI value of 0.41. For this combination, at the effect level of 0.9, the okadaic acid and 

gliotoxin mixture was 12.4 times more potent than okadaic acid alone, and 3 times more 

effective than gliotoxin alone. 
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Figure 4.6 Combination index (CI)–fraction affected (fa, indicating fraction of cell viability affected.  

fa = 0.05–0.97 corresponds to 5–97% toxicity) curves for binary mixtures of okadaic acid and sydowinol, 

sydowinin A, alamethicin, patulin, and gliotoxin against human intestinal HT-29 cells. CI < 1, CI = 1, and CI > 1 

indicate synergistic (orange rectangle), additive (red line), and antagonistic (blue rectangle) effects of binary 

mixtures, respectively. The error bar indicates 95% confidence intervals calculated using sequential deletion 

analysis (SDA). 
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Table 4.3 Combination index (CI) and dose reduction index (DRI) values for okadaic acid and mycotoxin 

combinations in HT-29 and SH-SY5Y cells at various effect levels (IC25, IC50, IC75 and IC90). DRI values were 

only calculated when synergistic effects were detected. DRI implies fold of dose reduction for a given effect in a 

combination of toxins compared with the dose of each toxin alone. 

Toxin Mixture CI at  DRI at  
IC25 IC50  IC75 IC90 IC25 IC50  IC75 IC90 

HT-29         
Okadaic acid 1.67 1.24 0.93 0.69 - - 2.72 3.61 
Sydowinin A     - - 1.80 2.43 
Okadaic acid  1.47 1.34 1.23 1.13 - - - - 
Sydowinol      - - - - 

Okadaic acid 1.06 0.88 0.78 0.72 - 2.41 2.18 1.98 
Alamethicin      - 2.14 3.14 4.61 
Okadaic acid 1.53 1.01 0.75 0.53 - - 1.76 1.95 

Patulin     - - 5.63 12.23 
Okadaic acid 2.84 1.42 0.75 0.41 - - 4.80 12.45 

Gliotoxin     - - 1.85 3.02 
SH-SY5Y         

Okadaic acid 0.72 0.69 0.67 0.65 2.98 3.09 3.20 3.32 
Sydowinin A     2.65 2.72 2.79 2.86 
Okadaic acid  1.34 1.33 1.34 1.34 - - - - 
Sydowinol      - - - - 

Okadaic acid 1.30 1.33 1.36 1.41 - - - - 
Alamethicin      - - - - 
Okadaic acid 1.29 1.30 1.32 1.34 - - - - 

Patulin     - - - - 
Okadaic acid 1.30 1.48 1.68 1.91 - - - - 

Gliotoxin     - - - - 
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 Okadaic acid and mycotoxins on human neuroblastoma SH-SY5Y 

cells 

Okadaic acid–sydowinol, –alamethicin, –patulin, and –gliotoxin mixtures on human 

neuroblastoma SH-SY5Y cells showed an antagonistic interaction type at all effect levels, 

except that at fa = 0.05; gliotoxin and okadaic acid exhibited an additive interaction type 

(Figure 4.7). The calculated CI values for these combinations varied from 1.15 to 2.21 

(Figure 4.7). By contrast, okadaic acid–sydowinin A mixtures exhibited synergisms at all 

effect levels, with a CI of 0.65 at fa = 0.9. For this combination, at the effect level of 0.9, the 

okadaic acid and sydowinin A mixture was 3.3 times more effective than okadaic acid alone 

and 2.9 times more effective than sydowinin A alone (Table 4.3). 
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Figure 4.7 Combination index (CI)–fraction affected (fa, indicating fraction of cell viability affected.  

fa = 0.05–0.97 corresponds to 5–97% toxicity) curves for binary mixtures of okadaic acid and 

sydowinol, sydowinin A, alamethicin, patulin, and gliotoxin against human neuroblastoma SH-SY5Y 

cells. CI < 1, CI = 1, and CI > 1 indicate synergistic (orange rectangle), additive (red line), and 

antagonistic (blue rectangle) effects of binary mixtures, respectively. The error bar indicates 95% 

confidence intervals calculated using sequential deletion analysis (SDA). 
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4.4 Discussion 

We demonstrated in this study that binary mixtures of the phycotoxin okadaic acid, 

and dust- and shellfish-associated mycotoxins exhibited cell line- and concentration-

dependent antagonistic or synergistic interactions. Combinations of okadaic acid–sydowinin 

A, –alamethicin, –patulin, and –gliotoxin exhibited synergisms at higher effect levels and 

antagonisms at lower effect levels on HT-29. Interestingly, only okadaic acid–sydowinin A 

displayed synergism, whereas antagonism was noted for other combinations on SH-SY5Y at 

all effect levels. DRI values indicated that toxin doses can be theoretically reduced by up to 

1.8 to 12-fold for the combination to have the same effect as that induced by each toxin on its 

own. These findings suggested that ingestion of a regulatory safe level of the algal toxin 

okadaic acid (0.16 mg OA equivalent/kg) could result in a health impact due to synergism 

with mycotoxin. 

 Synergisms between okadaic acid and mycotoxins  

We speculate that synergistic effects of okadaic acid and the tested mycotoxins on 

HT-29 could be the result of the impairment of cell structure. Okadaic acid is the main 

lipophilic marine biotoxin produced by Dinophysis and Prorocentrum dinoflagellates and 

responsible for diarrhetic shellfish poisoning (DSP) in humans (Food and Agriculture 

Organization of the United Nations 2004). The reported concentration of okadaic acid in 

shellfish ranged from 0.007-0.267 mg OA equivalent/kg in the west coast of South Africa 

(Pitcher, Krock & Cembella 2011), 184-1,269 mg OA equivalent/kg in the western 

Mediterranean area (Bazzoni et al. 2018), 0.05-2.31 mg OA equivalent/kg in Portugal (Vale 

& Sampayo 2002). Okadaic acid is an inhibitor of serine/threonine protein phosphatases (PP), 

which affect various important cellular metabolic processes, leading to cytoskeleton and 

intestinal mucosa deterioration, digestive dysfunction, lipid metabolism disorders, oxidative 

stress, and cellular apoptosis (Wang et al. 2012). These series of events contribute to the gut 

barrier impairment and intestinal cell degeneration, which results in human diarrheic 

symptoms (Wang et al. 2012). The mycotoxin alamethicin, also known as peptaibol, forms 

pores in membranes, thereby increasing membrane permeability (Mueller & Rudin 1968). 
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Similarly, gliotoxin specifically binds to cytoplasmic membrane thiol groups, causing an 

increase in membrane permeability by affecting membrane protein orientation (Jones & 

Hancock 1988). Patulin also induces the depletion of nonprotein sulfhydryl groups and 

increases potassium efflux, which results in the loss of structural integrity of the plasma 

membrane (Riley & Showker 1991). While mycotoxins have different mechanisms of action, 

they all lead to a disruption of ion homeostasis and structural damage. This in turn potentially 

contributes downstream effects caused by okadaic acid in particular cytoskeleton 

deterioration, oxidative stress, and apoptosis. Furthermore, the observed shifts from 

antagonism to additive/synergism with increasing concentrations in the current study have 

also been reported in the similar study, where the interaction types of lipophilic phycotoxins 

(e.g., okadaic acid, pectenetoxin-2, yessotoxin, spirolide-1) were examined (Fessard et al. 

2018). 

Okadaic acid and sydowinin A exhibited synergistic effects on both the HT-29 and 

SH-SY5Y cell lines. Currently, we lack knowledge of the details of the mode of action of the 

major Aspergillus sydowii metabolites sydowinin A and sydowinol. Sydowinin A has been 

reported to have more potent immunosuppressive effects on the Con A-induced and 

lipopolysaccharide-induced proliferations of mouse splenic lymphocytes compared to other 

A. sydowii metabolites (Liu et al. 2016). The current study and other studies supported 

evidence of that the okadaic acid-induced PP inhibition also induces various neurotoxic 

effects (Arias et al. 1993; Tapia, Peña & Arias 1999). However, no major human neurotoxic 

symptoms from ingesting okadaic acid-contaminated seafood have been reported so far, 

probably due to the levels of okadaic acid accumulating more slowly in the brain compared to 

the stomach and gastrointestinal tract tissues (Matias, Traore & Creppy 1999). Synergistic 

relationships between okadaic acid and sydowinin A may have a basis in that cell injury 

caused by okadaic acid were further enhanced by the sydowinin A immune suppressive 

characteristics, but this requires investigation. The observed synergistic relationships with 

sydowinin A imply that even a low level of okadaic acid may cause significant neurotoxic 

effects in humans. 
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  Antagonisms between okadaic acid and mycotoxin on SH-SY5Y  

The combination of okadaic acid and the tested mycotoxins exhibited antagonistic 

relationships against SH-SY5Y neuroblastoma cells, whereas interactions were synergistic 

against HT-29 intestinal cell lines. Antagonistic interactions were also noted for HT-29 at the 

low effect level. The observed difference between two cell lines could be due to the different 

experimental conditions. These observed antagonisms could also be explained by multidrug 

resistance (MDR). MDR is regulated by P-glycoprotein (P-gp), which functions as an efflux 

transport pump, removing toxins from the plasma membrane, hence reducing cytotoxicity 

(Lum & Gosland 1995). Okadaic acid efflux occurred in okadaic acid-resistant Chinese 

hamster ovary cells with increased levels of P-gp, and human intestinal Caco-2 at low 

concentration (Ehlers et al. 2014; Tohda et al. 1994). Therefore, the observed antagonisms in 

SH-SY5Y cells could be related to less toxic mycotoxin binding to the target site, while 

okadaic acid is actively removed from the plasma membrane. This could lead to lower 

toxicity than estimated for the combined effect. This is supported by the fact that 

undifferentiated SH-SY5Y cells expressed some degree of P-gp expression, while HT-29 

showed no detectable P-gp (Bates, Shieh & Tsokos 1991; Breuer et al. 1993). Furthermore, in 

the present study, mycotoxins were more abundant than okadaic acid in the binary mixtures, 

which could make mycotoxins more readily bind to the target site. Similarly, Alassane-

Kpembi et al. (2015) suggested that the MDR drug efflux mechanism might explain the 

observed antagonism between deoxynivalenol (DON)–3-Acetyldeoxynivalenol (3-ADON) 

and DON–Fusarenon-X (FX) combinations. However, the suggested mechanisms of 

antagonisms remain speculative and require further study. 

  Conclusions 

The present study demonstrated that binary mixtures of okadaic acid and shellfish- 

and dust-associated mycotoxins displayed cell line- and concentration-dependent interactions. 

The general interaction patterns observed in this study were a shift from antagonism to 

synergism with increasing concentrations on HT-29 cells, and antagonism or synergism at all 

concentrations on SH-SY5Y cells. The synergistic effects observed in the current study are of 

practical significance. While diarrhetic shellfish poisoning from okadaic acid and analogues 
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is widely considered to be a comparatively minor seafood toxin syndrome (e.g., no human 

fatalities have ever occurred), our human cell model studies provided preliminary insights 

that synergisms with mycotoxins can be expected to more seriously aggravate human health 

impacts. 

This also suggests the need for implementing more studies of seafood where there is 

risk of the co-occurrence of mycotoxins and algal toxins. Our results clearly demonstrate that 

the toxin interaction type depends on the effect level and cell type. This points to difficulties 

of predicting toxin interactions from the known mechanisms of actions of individual toxins 

without actual experimental data (Chou 2006). Mycotoxins are emerging toxins in seafood, 

and their occurrence may increase due to increased terrestrial runoff, dust storms, and the use 

of mycotoxin contaminated aquaculture feeds (Gonçalves et al. 2017). The current study did 

not explore the precise cellular mechanisms behind the mycotoxin and algal toxin interaction, 

and suggested mechanisms therefore remain speculative, and deserve further study. 

Furthermore, as there exists no information on the mycotoxin concentration in shellfish in 

situ, the present study employed equipotent ratio as suggested by Chou for an early stage 

study (Chou 2006) which might not represent the true exposure scenario. Therefore, future 

work should prioritise exploring levels of mycotoxin accumulation in shellfish, and 

determining the interaction types of commonly occurring algal toxins (e.g., saxitoxin and 

domoic acid), and other mycotoxins (e.g., DON, AF, ZEA, FB, and OTA) (Chou 2010). 

Multiple mixtures (e.g., more than two toxins) should also be considered. Our results 

highlight the possible risks of toxin co-occurrence in seafood, a scenario which is not 

considered in current shellfish safety regulations. 

 

 

 

 



 90 

 

 . Conclusions and future directions  

Climate change in Australia has the potential to significantly alter connectivity 

between terrestrial and marine ecosystems, and thereby impact on seafood security and 

safety. Increased loadings of nutrients and terrestrial microbes from dust storms and land-

runoff may increase marine ecosystem impacts from fungal pathogens, adding to those from 

algal blooms. The scenario of a mycotoxin-producing fungal bloom being delivered into 

coastal shellfish farms simultaneously exposed to toxin-producing algae, as suggested by 

events in Canada in 1987 and France in 1990, deserves critical attention, as does the potential 

of synergism, antagonism and additivity by commonly co-occurring phycotoxins. The present 

body of work confirmed that the 2009 Australian dust storm generated Aspergillus 

mycotoxins and shellfish associated mycotoxins with strong cytotoxicity against fish gill 

cells. Furthermore, these mycotoxins exhibited the capability of increasing cytotoxicity from 

dinoflagellate okadaic acid by 1.8 to 12 fold. Interactions between Australian marine 

mycotoxins and saxitoxins and domoic acid remain to be further defined.  

5.1 Aspergillus sydowii studies  

Dust originated (ASBS), terrestrial (FRR5068) and sea fan aspergillosis pathogenic 

(FK1) Aspergillus sydowii strains studied here exhibited the similar production of major 

metabolites such as sydowinin A, sydowinin B, hydroxysydonic acid, sydowinol, sydonic 

acid and sydonol [Chapter 2]. Other minor metabolites of these isolates varied mong the 

strains. Further isolation of fungal cultures from the 2009 dust storm CPR silks (Hallegraeff 

et al. 2014) confirmed the dominance of A. sydowii (73.7%) but also revealed varying 

metabolite profiles which all included sydonic acid. Other minor fungal species were also 

found such as Cladosporium, Penicillium, Aspergillus and unknown species (based on 

metabolite analysis), suggesting the possible secondary colonisation of the 2009 A. sydowii 

fungal rafts.  
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Crude extracts of both terrestrial (FRR5152) and marine A. sydowii (ASBS) exhibited 

no or minor effects on photophysiological performance (maximum quantum yield, Fv/Fm) of 

clade A1 and clade C Symbiodinium dinoflagellates, respectively [Chapter 2]. The major A. 

sydowii metabolites (including sydowinin A, sydowinin B, sydowinol and sydowic acid) 

reduced photophysiological performance (Fv/Fm) of the coral dinoflagellate endosymbiont 

Symbiodinium. The Symbiodinium clade A and C strains displayed moderate (up to 24% 

reduction compared to control) and high (up to 41% reduction) sensitivities, respectively, 

while clade A1 exhibited lower sensitivity. These observed differences in sensitivity match 

sensitivities to coral bleaching (Toller, Rowan & Knowlton 2001) and may reflect broader 

differences in disease susceptibility.  

Further studies are required, including: characterisation of novel strain-specific A. 

sydowii metabolites, examination of their possible role in pathogenicity of sea fan 

aspergillosis, and examination of the impacts of A. sydowii metabolites on the symbiosis 

between cnidarian hosts and endosymbiont Symbiodinium for example using the sea anemone 

Aiptasia as a model (Chakravarti & van Oppen 2018).   

5.2 General impacts of fungi on marine animals using a fish gill 

cell line model 

Shellfish and dust associated mycotoxins exhibited cytotoxicity against the fish gill 

RTgill-W1 cells in the order of sydowinin A << sydowic acid < patulin < sydowinol < 

alamethicin <<gliotoxin, based on the calculated toxicity (IC50, inhibitory concentration 50%) 

[Chapter 3]. Other tested mycotoxins sydowinin B and sterigmatocystin, and the algal toxins 

saxitoxin and domoic acid exhibited no effect on fish gill cell viability. Unlike mycotoxins, 

algal toxins have more specific modes of actions which target receptors in muscles and 

brains, hence these specificities contributed their inactivity in fish gill cells. The applicability 

of the fish gill bioassay for mycotoxins is well demonstrated in this study. Although we lack 

toxicity information of the tested mycotoxins on whole fish, the present experimental data 

suggest the potential of fish mortality by mycotoxins especially if they reach sufficiently high 
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aqueous concentrations. Further research on the mycotoxin concentration level in the real 

situation would deepen the understanding of their effects on marine organisms. The 

previously reported synergism between domoic acid and peptaibol by Ruiz et al. (2009) using 

a Diptera larvae bioassay was not observed in the current bioassay using RTgill-W1. 

Comparisons of the insignificant potentiation of domoic acid and alamethicin in the current 

study to the Diptera larvae results are tentative only, as different targets, endpoints and 

exposure periods were used. The different results most likely also reflect the target specificity 

of the neurotoxin domoic acid. The precise mechanisms underpinning these contradictory 

results warrant follow-up investigations. 

5.3 Combined effects of algal and fungal toxins  

Single and combined toxicities of the major algal toxins, shellfish- and dust storm-

associated mycotoxins were examined against human intestinal HT-29 and neuroblastoma 

SH-SY5Y cell lines [Chapter 4]. Based on the calculated IC50 (inhibitory concentration 50%), 

the cytotoxicity order of single toxin on HT-29 and SH-SY5Y cells were sydowinin A < 

sydowinin B << patulin < alamethicin < sydowinol << gliotoxin ≈ okadaic acid, and 

sydowinin B < sydowinin A << alamethicin ≈ sydowinol < patulin, << gliotoxin < okadaic 

acid, respectively. Furthermore, the algal toxins saxitoxin and domoic acid exhibited either 

no cytotoxicity or minor cytotoxicity to both HT-29 and SH-SY5Y. Using the combination 

index method by Chou and Talalay (1984), combinations of okadaic acid–sydowinin A, –

alamethicin, –patulin, and –gliotoxin demonstrated antagonistic to synergistic effects on HT-

29 cells with increasing cytotoxicity, whereas okadaic acid–sydowinol displayed an 

antagonistic relationship against HT-29 cells at all cytotoxicity levels. Furthermore, binary 

mixtures of okadaic acid–sydowinin A showed synergisms on SH-SY5Y cells. However, 

other tested combinations of sydowinol, –alamethicin, –patulin, and –gliotoxin demonstrated 

antagonism against SH-SY5Y cells. Toxin interactions at IC90 are summarised in Figure 5.1. 

DRI (dose reduction index) values suggested that in combination, each toxin doses could be 

reduced by 1.8 to 12-fold to have the same effect as that induced by each individual toxin on 

its own. The observed synergistic effects imply that intake of a regulatory safe concentration 
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of okadaic acid (0.16 mg OA equivalent/kg) could aggravate human health impacts from the 

synergistic effects from co-occurring mycotoxins.  

 

 Future studies need to prioritise examining the interaction types of commonly 

occurring algal toxins (e.g., saxitoxin and domoic acid) and other mycotoxins (e.g., 

deoxynivalenol, aflatoxin, zearalenone, fumonisins and ochratoxins). Type of mycotoxins, 

concentration levels and proportions in which they co-occur with phycotoxins would also 

require further investigation. However, a major obstacle of assessing combined toxicity of 

saxitoxin and domoic acid is that neuroblastoma cell lines exhibited low sensitivities to these 

toxins (LePage et al., 2005; Cañete and Diogène, 2008, Chapter 4). These insensitivities are 

most likely due to their specific mode of actions, and lack of the target glutamate receptors 

(LePage et al. 2005) and action potentials (Kogure et al. 1988). A pilot study demonstrated 

that it is possible to increase sensitivity by differentiating SH-SY5Y cells which allows them 

to develop extensions of neuritic processes (Påhlman et al. 1981), increase electrical 

excitability of the plasma membrane (Åkerman, Scott & Andersson 1984; Kafitz et al. 1999) 

and synaptic vesicle recycling (Sarkanen et al. 2007), activate neurotransmitter (Lopes et al. 

Figure 5.1 Polygonograms of toxin interaction types between mycotoxins and okadaic acid at 

IC90 against HT-29 human intestinal (left) and SH-SY5Y (right) human neuroblastoma cell 

lines. Solid line indicates synergism, dashed line indicates antagonism. 
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2010), and neurotransmitter receptors (Adem et al. 1987). The results obtained showed minor 

increases in sensitivity of differentiated cells to saxitoxin and domoic acid with a ~20% 

reduction in viability compared to undifferentiated cells (Figure 5.2). Quantitative analysis of 

toxin combinations require complete dose response curves (0 – 100 % responses), and hence 

the observed low sensitivities by neuroblastoma cells would limit future investigation of other 

combinations of saxitoxin and domoic acid. In contrast to immortalised cell lines, primary 

cell cultures and organoids retain the functional characteristics of the original tissue such as 

the presence of the domoic acid target NMDAR (N-methyl-d-aspartate receptors), and 

saxitoxin target voltage gated sodium channels (Lancaster et al. 2013; LePage et al. 2005; 

Yakoub & Sadek 2018). Therefore, it is recommended that future studies on combined effects 

of fungal and algal toxins should focus on development of in vitro bioassay using more 

representative primary cell or organoid models such as cardiomyocytes for saxitoxin and 

domoic acid testing.  

 



 95 

 

Figure 5.2 Comparison of SH-SY5Y human neuroblastoma sensitivity to saxitoxin (A) and domoic acid (B) 

between STA (staurosporine), RA (retinoic acid)-BDNF (brain-derived neurotrophic factor) differentiated and 

undifferentiated cell lines. Details of differentiation protocol and relevant materials are in Appendix A.1. Results 

are expressed as % viability compared to control (mean ± SD from four biological replicates). ANOVA was 

performed to determine statistical difference in viability between control, STA differentiated and 

undifferentiated treatments. Student t-test was performed to determine statistical significance between treatment 

and control (***p < 0.001 **p < 0.01, *p < 0.05). 

 

** 

A.  

* 

B.
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Appendix A 

 Supplementary data for Chapter 2 

Table A.1.1 Aspergillus sydowii isolates examined in this study.  

ID Source Location  
FRR34 Wheat or flour sample Not available 

FRR2972 Dried fish; Puntius javanicus Kalibaru, Indonesia  
FRR2991 Dried fish; Sardinella fimbriata Bogor, Indonesia  
FRR4822 Partially dried sultana grapes Mildura, VIC, Australia  
FRR5068 Air, wardroom duct Naval vessel  
FRR5136 Water bath with ethylene glycol Maribyrnong, VIC, Australia  
FRR5152 Water bath with ethylene glycol additive Maribyrnong, VIC, Australia  

ASBS1 CPR silk after dust storm in 2009 Between Brisbane and Sydney, 
Australia 

FK1 Diseased Gorgonia ventalina Key West, Florida 
1 defined as the original A. sydowii culture isolated in 2009.  
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Table A.1.2 HPLC/DAD profile of A. sydowii FRR5068. 

 

Peak 
Number Ret. Time Area % 

Area 
Cumulative 

% Area 
Peak 

Number Ret. Time Area % 
Area 

Cumulative 
% Area 

1 0.53 1,273 6.61 6.61 45 5.62 40 0.21 66.61 
2 0.63 34 0.17 6.78 46 5.71 331 1.72 68.33 
3 0.70 21 0.11 6.89 47 5.79 99 0.51 68.84 
4 0.79 157 0.82 7.71 48 5.84 542 2.81 71.65 
5 0.87 290 1.51 9.21 49 6.02 15 0.08 71.73 
6 1.03 76 0.39 9.61 50 6.15 306 1.59 73.32 
7 1.30 91 0.47 10.08 51 6.23 5 0.03 73.35 
8 1.46 31 0.16 10.24 52 6.33 3,078 15.97 89.32 
9 1.82 34 0.18 10.42 53 6.42 14 0.07 89.39 
10 2.17 7 0.03 10.45 54 6.67 68 0.35 89.75 
11 2.24 11 0.06 10.51 55 6.91 8 0.04 89.79 
12 2.46 8 0.04 10.55 56 7.01 8 0.04 89.83 
13 2.78 161 0.84 11.39 57 7.14 9 0.05 89.88 
14 2.96 98 0.51 11.89 58 7.19 64 0.33 90.21 
15 3.12 27 0.14 12.04 59 7.30 236 1.22 91.43 
16 3.17 8 0.04 12.08 60 7.38 21 0.11 91.54 
17 3.22 21 0.11 12.19 61 7.42 10 0.05 91.59 
18 3.26 18 0.09 12.28 62 7.48 38 0.20 91.79 
19 3.32 131 0.68 12.96 63 7.56 88 0.46 92.25 
20 3.41 98 0.51 13.47 64 7.73 73 0.38 92.63 
21 3.44 85 0.44 13.90 65 7.89 8 0.04 92.67 
22 3.48 36 0.19 14.09 66 8.07 39 0.20 92.87 
23 3.59 98 0.51 14.60 67 8.17 16 0.09 92.96 
24 3.69 124 0.64 15.24 68 8.27 27 0.14 93.10 
25 3.78 6 0.03 15.27 69 8.37 17 0.09 93.19 
26 3.85 3,143 16.31 31.58 70 8.49 7 0.04 93.22 
27 3.96 12 0.06 31.64 71 8.56 7 0.04 93.26 
28 4.01 1,760 9.13 40.77 72 8.93 30 0.16 93.42 
29 4.11 6 0.03 40.80 73 9.00 39 0.20 93.62 
30 4.17 9 0.05 40.85 74 9.07 9 0.05 93.67 
31 4.23 51 0.26 41.11 75 9.10 9 0.05 93.71 
32 4.27 1,324 6.87 47.98 76 9.17 170 0.88 94.60 
33 4.36 68 0.35 48.34 77 9.31 20 0.11 94.70 
34 4.51 701 3.64 51.97 78 9.41 6 0.03 94.74 
35 4.65 111 0.58 52.55 79 9.49 19 0.10 94.83 
36 4.71 44 0.23 52.78 80 9.67 75 0.39 95.22 



A-3 

 
37 4.78 172 0.89 53.67 81 9.72 12 0.06 95.28 
38 4.86 35 0.18 53.86 82 9.81 7 0.04 95.31 
39 4.94 144 0.75 54.60 83 9.86 12 0.06 95.37 
40 5.08 21 0.11 54.71 84 9.90 6 0.03 95.40 
41 5.16 2,072 10.75 65.47 85 9.97 11 0.06 95.46 
42 5.42 119 0.62 66.09 86 10.11 33 0.17 95.63 
43 5.47 53 0.27 66.36 87 10.14 9 0.05 95.68 
44 5.56 9 0.04 66.40 88 10.30 779 4.04 99.72 

 

Table A.1.3 HPLC/DAD profile of A. sydowii ASBS. 

 

Peak 
Number Ret. Time Area % 

Area 
Cumulative 

% Area 
Peak 

Number Ret. Time Area % 
Area 

Cumulative 
% Area 

1 0.53 1,309 6.09 6.09 40 5.16 1,710 7.96 66.25 
2 0.59 111 0.51 6.61 41 5.25 6 0.03 66.27 
3 0.68 83 0.39 7.00 42 5.33 9 0.04 66.32 
4 0.79 343 1.60 8.59 43 5.42 10 0.05 66.36 
5 0.86 2,109 9.82 18.41 44 5.47 40 0.19 66.55 
6 1.09 65 0.30 18.71 45 5.56 25 0.12 66.67 
7 1.46 88 0.41 19.12 46 5.62 9 0.04 66.71 
8 1.74 68 0.31 19.44 47 5.71 212 0.99 67.70 
9 2.19 32 0.15 19.59 48 5.79 104 0.48 68.18 
10 2.48 32 0.15 19.74 49 5.86 114 0.53 68.71 
11 2.71 6 0.03 19.76 50 5.97 19 0.09 68.80 
12 2.78 79 0.37 20.13 51 6.15 233 1.08 69.88 
13 3.00 12 0.06 20.19 52 6.33 5,152 23.98 93.86 
14 3.09 17 0.08 20.27 53 6.67 63 0.30 94.16 
15 3.18 13 0.06 20.33 54 6.90 11 0.05 94.21 
16 3.22 10 0.05 20.38 55 7.19 13 0.06 94.27 
17 3.31 14 0.07 20.44 56 7.30 60 0.28 94.55 
18 3.44 99 0.46 20.90 57 7.37 33 0.15 94.70 
19 3.48 29 0.14 21.04 58 7.46 31 0.14 94.85 



A-4 

 
20 3.54 17 0.08 21.12 59 7.72 23 0.11 94.95 
21 3.59 9 0.04 21.16 60 7.90 9 0.04 94.99 
22 3.62 9 0.04 21.20 61 8.03 30 0.14 95.13 
23 3.68 129 0.60 21.80 62 8.27 6 0.03 95.16 
24 3.78 7 0.03 21.83 63 8.37 7 0.03 95.19 
25 3.85 2,966 13.81 35.64 64 8.64 16 0.07 95.27 
26 3.93 54 0.25 35.89 65 8.93 62 0.29 95.55 
27 4.01 1,177 5.48 41.37 66 9.05 12 0.06 95.61 
28 4.11 25 0.12 41.49 67 9.11 8 0.04 95.65 
29 4.15 8 0.04 41.53 68 9.18 38 0.18 95.83 
30 4.22 50 0.23 41.76 69 9.45 8 0.04 95.86 
31 4.27 2,482 11.55 53.31 70 9.72 62 0.29 96.15 
32 4.36 34 0.16 53.47 71 9.86 14 0.07 96.22 
33 4.43 12 0.05 53.52 72 10.01 11 0.05 96.27 
34 4.51 810 3.77 57.29 73 10.12 64 0.30 96.56 
35 4.65 39 0.18 57.48 74 10.30 716 3.33 99.90 
36 4.71 37 0.17 57.65 75 10.46 7 0.03 99.93 
37 4.78 56 0.26 57.91 76 10.75 6 0.03 99.96 
38 4.96 73 0.34 58.25 77 10.98 8 0.04 100.00 
39 5.04 7 0.03 58.29      

 

Table A.1.4 HPLC/DAD profile of A. sydowii FK1 

 

Peak 
Number Ret. Time Area % 

Area 
Cumulative 

% Area 
Peak 

Number Ret. Time Area % 
Area 

Cumulative 
% Area 

1 0.53 840 7.25 7.25 29 4.71 11 0.09 70.09 
2 0.80 112 0.97 8.22 30 4.78 83 0.71 70.80 
3 0.86 200 1.73 9.96 31 4.94 27 0.23 71.03 
4 1.03 66 0.57 10.53 32 5.05 9 0.08 71.11 
5 1.30 31 0.27 10.80 33 5.15 123 1.06 72.17 
6 1.56 212 1.83 12.63 34 5.19 94 0.81 72.98 
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7 2.23 35 0.31 12.93 35 5.35 15 0.13 73.11 
8 2.46 24 0.21 13.14 36 5.47 10 0.09 73.20 
9 2.69 46 0.40 13.54 37 5.60 31 0.26 73.47 
10 2.95 368 3.17 16.71 38 5.71 20 0.17 73.64 
11 3.03 7 0.06 16.77 39 5.78 39 0.34 73.97 
12 3.08 655 5.66 22.43 40 5.87 94 0.81 74.78 
13 3.18 7 0.06 22.49 41 5.97 14 0.12 74.90 
14 3.28 371 3.20 25.70 42 6.16 107 0.92 75.82 
15 3.36 71 0.61 26.31 43 6.32 2,405 20.76 96.58 
16 3.44 986 8.51 34.82 44 6.43 9 0.07 96.66 
17 3.51 12 0.11 34.92 45 6.62 9 0.08 96.73 
18 3.62 272 2.35 37.27 46 6.90 10 0.09 96.82 
19 3.73 271 2.34 39.61 47 7.30 54 0.46 97.28 
20 3.86 707 6.11 45.72 48 7.90 8 0.07 97.36 
21 3.95 7 0.06 45.77 49 8.07 13 0.11 97.47 
22 4.01 479 4.13 49.91 50 9.05 18 0.16 97.62 
23 4.16 51 0.44 50.35 51 9.18 9 0.07 97.70 
24 4.27 2,149 18.56 68.91 52 9.65 8 0.07 97.76 
25 4.33 13 0.12 69.03 53 9.72 22 0.19 97.95 
26 4.45 6 0.05 69.07 54 10.12 14 0.12 98.08 
27 4.52 62 0.53 69.61 55 10.31 217 1.87 99.95 
28 4.65 45 0.39 70.00 56 10.98 6 0.05 100.00 
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Figure A.1.1 HPLC profiles of A. sydowii investigated in the present study. The strains were cultured on rice for 7 

days extracted with methanol (1 gm/mL) and analysed by gradient HPLC, (conditioned as described in body of the 

article). A. FRR34; B. FRR2972; C. FRR2991; D. FRR4822; E. FRR5136; F. FRR5152 and G. FRR5068. 
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Figure A.1.2 HPLC profiles of extracted silks from A. location 2 and B. location 3, with the UV spectra 

of the microbial metabolites in the extract. (Note: The dominant peak eluting at 5 min, is an artefact of 

extraction of the silks with methanol) 
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 Supplementary materials and methods for Chapter 5 

A.2.1 Human neuroblastoma SH-SY5Y cell line culture  

Human neuroblastoma SH-SY5Y was kindly provided by Ms Yilan Zhen and Dr. 

Kaylene Young (Menzies Institute for Medical Research, University of Tasmania, Australia). 

Cells were routinely maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, D0819, 

Sigma-Aldrich) and 10% foetal bovine serum (FBS) (Bovogen Biologicals), and 100U/ml 

penicillin and 100mg/ml streptomycin solution in a humidified incubator (5% CO2, 37oC). 

SH-SY5Y cells were routinely sub-cultured at a ratio of 1:30-1:50, and medium change-over 

occurred approximately every 5 d. Cell culture was sub-cultured <20 times upon receiving.  

A.2.2 Phycotoxin standards  

The details of mycotoxin and phycotoxin standards were previously described in 

Chapter 4, pp 56.  

A.2.3 Differentiated neuroblastoma cytotoxicity bioassay  

SH-SY5Y neuroblastoma cells were differentiated with sequential treatments of 

retinoic acid (RA, R2625, Sigma-Aldrich) with brain-derived neurotrophic factor (BDNF, 

B3795, Sigma-Aldrich), or staurosporine (STA, S6942, Sigma-Aldrich). Cells were 

differentiated with RA and BDNF, following the protocol developed by Encinas et al. (2002) 

with a few modifications. 100µL of cells suspension at 1.0 × 105 cells mL-1 were added to 

each well of 96 well plate, and allowed to attach for 24 h. Cells were further incubated with 

DMEM with 10 µM RA and 1% FBS for the first 6 days with media renewal at day 3. They 

were further incubated in DMEM with 25 ng/ml BDNF without FBS for the last 2 days 

before toxin exposure. SH-SY5Y cells were also differentiated with STA, following the 

protocols of Tieu, Zuo, & Yu (1999) with a few modifications. 100 µL of 5.0 × 104 cells mL-1 

were added to each well of a 96 well plate. After 24 h, 50 µL of DMEM (supplemented with 

10% FBS and antibiotics) containing STA were added to each well at the final STA 

concentration of 3 × 10-8 M. The cells were further incubated for 48h prior to toxin exposure. 
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As a comparison to STA differentiated cells, undifferentiated cells were also seeded at 5.0 × 

104 cells mL-1 for 72h without any culture medium change-over. 24h toxin exposure and 

viability measurement were performed as previously described in subsection 5.2.3.  

A.2.4 Data analysis  

Statistical analyses were performed using R (R Core Team, version 3.4.3). Either 

student’s t-test or One-way analysis of variance (ANOVA) was conducted to examine 

significant differences in cell viability among treatment. When a significant main effect was 

detected, Tukey’s honestly significant difference (HSD) post hoc tests were conducted. Box–

Cox transformation was applied to determine appropriate transformation to improve 

normality and homogeneity of variance. Data were express as mean ± standard deviation 

(SD) of four biological replicates (four wells). A significance level of 95% (α = 0.05) was 

applied in this study.  
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