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The random magnetic field strength expression derived in Appendix B of the published article is incorrect because the filling
factor of thermal electrons (f) in the SMC was not treated properly. As a consequence, the second paragraph in Section 4.3 should be
replaced by the following revised text.

To allow comparison of the random field derived by combining the synchrotron intensity and starlight polarization measurements
(see the next paragraph), which has the same assumptions as ionized gas model 2 in Section 3.3.2, we construct the random magnetic
field model of the SMC based on the same ionized gas model. We assume that the average electron density along the line of sight
(ne) and the depth of the SMC (L) is the same through all lines of sight. We decompose the magnetic field along each sight line
into coherent and random components such that the coherent component does not vary across the SMC; the differences between
the magnetic field strengths along different sight lines are only due to the random component. In Appendix B we show that the
corresponding dispersion in RM is

σRM = 0.812ncloudlo

√
f N [〈Bc,‖〉2(1 − f ) + Br

2/3], (28)

where σRM ∼ 40 rad m−2 is the weighted standard deviation in RM for the extragalactic sources that lie behind the SMC; lo ∼ 90 pc is
the typical cell size along the line of sight, which we take to be similar to that in the LMC (Gaensler et al. 2005); ncloud = 0.1 cm−3 is
the mean cloud electron density in the SMC as derived in Section 3.3.2, 〈Bc,‖〉 ≈ 0.16 μG is the average SMC coherent field strength
along the line of sight as obtained using ionized gas model 2; and N = L/lo ∼ 110 is the number of cells along a sight line through the
SMC. Using the above equation, we find Br ∼ 1.4 μG. Therefore, in the SMC, the random component of the magnetic field dominates
over the coherent magnetic field along the line of sight.

Because the corrected random magnetic field expression predicts a field strength similar to that derived in the published article,
none of our conclusions have changed.

Since the derivation of Equation (28) in the published article is incorrect, the entire Appendix B should be replaced by the following.
We construct this model based on Gaensler et al. (2001, 2005) and ionized gas model 2 (see Section 3.3.2), for which case we

assume that the average electron density (ne) along different lines of sight is the same. However, unlike model 2 which assumes the
depth L through the SMC varies, we assume that L is constant (10 kpc) along different sight lines to enable the derivation of an
analytic expression for the random magnetic field. Suppose that lines of sight through the SMC are divided up into cells of linear
size lo. The total number of cells looking through the SMC is

N = L

lo
. (B1)

Within each cell, we suppose that the magnetic field is composed of a coherent component of strength Bc (same direction and
strength from cell to cell), whose strength along the line of sight is 〈Bc,‖〉 ≈ 0.16 μG, and a random component of strength Br oriented
at an angle θcell,i with respect to the line of sight. The component of the random field along the line of sight is

Br,‖ = Brcosθcell,i. (B2)

The line-of-sight magnetic field strength in a cell is thus given by

B‖ = 〈Bc,‖〉 + Br,‖ = 〈Bc,‖〉 + Brcosθcell,i. (B3)

In addition, we assume that the random component is coherent within each cell but that cosθcell,i varies randomly from cell to cell.
The electron density within each cell ncloud is assumed to be 0.1 cm−3 (see Section 3.3.2).

The Faraday rotation through one such cell can either be 0 rad m−2 with a probability of 1−f or

RM1-cell = 0.812ncloudloB‖ = 0.812ncloudlo(〈Bc,‖〉 + Br cos θcell,i) (B4)
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with a probability of f. This is because the filling factor f can be interpreted as the probability of intercepting a cell with electron
density ncloud. The mean RM through one cell averaged over many sight lines is thus

〈RM1-cell〉 = 0.812f ncloud〈Bc,‖〉lo, (B5)

whereas the mean RM2 through one cell is given by

〈
RM2

1-cell

〉 = 0.8122f n2
cloud

(〈Bc,‖〉2 + Br
2
/

3
)
l2
o . (B6)

After passing through N cells, the incident radiation would experience a mean RM of

〈RMN-cells〉 = 0.812f Nncloud〈Bc,‖〉lo, (B7)

whereas the mean-squared RM through N cells is expressed as

〈
RM2

N-cells

〉 = 0.8122f Nn2
cloudl

2
o

[〈Bc,‖〉2(1 − f + f N ) + B2
r

/
3
]
. (B8)

The standard deviation of RM through the SMC can be expressed as

σRM =
√〈

RM2
N-cells

〉 − 〈RMN-cells〉2 = 0.812ncloudlo

√
f N

[〈Bc,‖〉2(1 − f ) + Br
2
/

3
]
. (B9)
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