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Abstract Response inhibition is frequently investigated
using the stop-signal paradigm, where participants perform
a two-choice response time task that is occasionally inter-
rupted by a stop signal instructing them to withhold their
response. Stop-signal performance is formalized as a race
between a go and a stop process. If the go process wins,
the response is executed; if the stop process wins, the
response is inhibited. Successful inhibition requires fast
stop responses and a high probability of triggering the stop
process. Existing methods allow for the estimation of the
latency of the stop response, but are unable to identify
deficiencies in triggering the stop process. We introduce a
Bayesian model that addresses this limitation and enables
researchers to simultaneously estimate the probability of
trigger failures and the entire distribution of stopping laten-
cies. We demonstrate that trigger failures are clearly present
in two previous studies, and that ignoring them distorts esti-
mates of stopping latencies. The parameter estimation rou-
tine is implemented in the BEESTS software (Matzke et al.,
Front. Quantitative Psych. Measurement, 4, 918; 2013a) and
is available at http://dora.erbe-matzke.com/software.html.
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Introduction

Response inhibition refers to the ability to stop an ongoing
response that is no longer appropriate, such as rapidly stop-
ping when a traffic light turns red. Inhibition is the hallmark
of executive functions and has received—and continues to
receive—considerable attention in psychology. Response
inhibition is frequently investigated with the stop-signal
paradigm (Logan & Cowan, 1984). Over the past 35 years,
the stop-signal paradigm has facilitated the interpretation
of numerous developmental, experimental, and neuropsy-
chological studies (e.g., Bissett & Logan, 2011; Forstmann
et al., 2012; Williams et al., 1999), and has been applied to
examine the nature of inhibition deficits in clinical condi-
tions, such as schizophrenia (Badcock et al., 2002; Hughes
et al., 2012) and attention deficit hyperactivity disorder
(e.g., ADHD, Schachar & Logan, 1990).

In the stop-signal paradigm, participants perform a two-
choice response time (RT) task. This primary task is occa-
sionally interrupted by a stop signal that instructs partici-
pants to withhold their choice response. Response inhibition
can be conceptualized as a race between two independent
processes: a go process that is initialized by the primary
(choice-task) stimulus and a stop process that is triggered
by the stop signal. If the go process wins, a response is
executed; if the stop process wins, the response is inhib-
ited (Logan & Cowan, 1984). The race model allows for the
estimation of the unobservable latency of the stop response
(stop-signal reaction time [SSRT]). Successful response
inhibition, however, not only requires relatively fast stop
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responses, but the stop process must also be successfully
triggered before it can begin the race against the go pro-
cess; if participants fail to encode and correctly interpret the
stop signal, they cannot even attempt to stop the ongoing
response.

Trigger failures pose well-known theoretical and
methodological challenges to the interpretation of stop-
signal data (Logan, 1994). First, differences in inhibition
performance across groups may result from differences in
the latency or variability of the stop response, but they might
just as well reflect differences in the probability of trigger-
ing the stop process. For instance, poor response inhibition
in ADHD and schizophrenia may result from a slower or
more variable stop response, but it may also reflect a stop
process that is not triggered reliably (e.g., Badcock et al.,
2002; Schachar & Logan, 1990).

Second, trigger failures can bias the estimation of stop-
ping latencies. Band et al. (2003) have shown that trigger
failures can result in a dramatic overestimation of SSRTs.
As we will demonstrate shortly, trigger failures can also
bias the estimation of entire SSRT distributions. As a result,
trigger failures may cause fictitious group differences in
estimated SSRT; researchers may mistakenly conclude that
two groups differ in the speed of the stop process because of
undetected differences in the probability of trigger failures.
They may also conclude that no difference in inhibition
exists when trigger failure and the speed of stopping differ
in opposite directions.

Previous attempts to identify trigger failures

Previous attempts to identify trigger failures have been
based on inhibition functions. Inhibition functions
describe the relationship between signal-respond rate (i.e.,
P(response | stop signal)) and the interval between the onset
of the primary task stimulus and the stop signal (stop-signal
delay [SSD]). SSDs are typically set according to the fixed-
SSD or the staircase-tracking procedure (Logan, 1994).
With the fixed-SSD procedure, participants are presented
with stop signals at a number of a priori chosen SSDs. With
staircase tracking, SSDs are set dynamically contingent on
participants’ performance, with the aim of achieving an
overall signal-respond rate of 0.50.

Regardless of the SSD procedure, the race model pre-
dicts that signal-respond rate increases with increasing SSD.
The black line in Fig. 1 shows an inhibition function for
the fixed-SSD procedure with a stop process that is reli-
ability triggered on every stop-signal trial. The inhibition
function asymptotes at 0 for short SSDs and increases
steeply with increasing SSD. In contrast, the gray line shows
an inhibition function for a stop process with a trigger-
failure probability of 15 %. This inhibition function is

less steep and asymptotes around 0.15, instead of 0, for
early SSDs.

Unfortunately, in practice, inhibition functions cannot be
used to identify trigger failures. First, differences in inhibi-
tion functions not only reflect differences in the probability
of trigger failures but also differences in the latency and
variability of the go and the stop process. Logan and Cowan
(1984) have suggested correcting inhibition functions for
differences in primary task “go” RTs, SSRTs, and go RT
variability using the ZRFT transformation. However, ZRFT-
transformed inhibition functions are unable to discriminate
between the effects of SSRT variability and trigger failures,
and also fail to adequately account for differences in go RT
variability (Band et al., 2003). Second, although the lower
asymptote of the inhibition function can theoretically pro-
vide an indication of the probability of trigger failures, in
practice, obtaining a sufficiently stable lower tail estimate
may require an impractically large number of stop-signal
trials. This approach is also incompatible with the widely
used tracking procedure, which typically yields only a few
stop-signal trials at short SSDs.

Despite its theoretical and methodological importance,
the problem of quantifying the contribution of trigger fail-
ures to stop-signal performance is presently unsolved. We
address this limitation and describe a Bayesian method that
allows researchers to reliably estimate the probability of
trigger failures as well as the entire distribution of SSRTs.
We first outline our approach and introduce the basic con-
cepts of Bayesian parameter estimation. We then investigate
its performance in two simulation studies. In the first, we
assess the asymptotic performance of the model and show
that—in contrast to other methods—it accurately recovers
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SSRTs even in the presence of relatively frequent trigger
failures. In the second, we investigate the number of obser-
vations that are necessary for accurate parameter estimation.
Lastly, we illustrate the advantages of our trigger-failure
framework with two published stop-signal data sets.

Methods

Simultaneous estimation of SSRT distributions
and trigger failures

The estimation of SSRT distributions follows the Bayesian
parametric—BEESTS—approach developed by Matzke et
al. (2013a, b). As shown in Fig. 2, BEESTS is based on a
race model that treats both go RTs and SSRTs as random
variables. If the go RT is slower than SSD + SSRT on a
given trial, the go RT is inhibited. If the go RT is faster than
SSD + SSRT , the go RT cannot be inhibited and results
in a signal-respond RT. BEESTS treats the signal-respond
(i.e., failed inhibition) RT distribution as a censored go RT
distribution. The censoring point is randomly drawn from
the SSRT distribution on each stop-signal trial. Estimation
of the SSRT distribution involves simultaneously estimating
the go RT distribution and its censoring distribution.

BEESTS assumes that go RTs and SSRTs follow an
ex-Gaussian distribution. The ex-Gauss is a commonly
used description of RT distributions obtained by adding a

Gaussian and an exponential random variable (Heathcote
et al., 1991; Matzke & Wagenmakers, 2009). The ex-Gauss
has three parameters: μ and σ reflect the leading edge of the
distribution, and τ reflects its slow tail.

Estimating trigger failures

We augment the standard BEESTS model with a parame-
ter P(T F) that quantifies the probability of trigger failures.
The resulting mixture model assumes that signal-respond
RTs are produced with (1) probability P(T F) if the stop
process was not triggered; or (2) probability 1 − P(T F) if
the stop process was successfully triggered but has finished
after the go process (i.e., go RT < SSD+SSRT ). Formally,
the likelihood (LSR) of the r = 1, ..., R signal-respond RTs
for a given SSD is:

ŁSR(μgo, σgo, τgo, μstop, σstop, τstop, P (T F), SSD)

=
R∏

r=1

{
P(T F) × fgo(tr ; μgo, σgo, τgo)

+[1−P(T F)]×[
1−Fstop(tr ;μstop,σstop,τstop,SSD)

]

×fgo(tr ; μgo, σgo, τgo)
}

(1)

where fgo(t; μgo, σgo, τgo) is the probability density
function of the ex-Gaussian go RT distribution and

onset go stimulus onset stop signal

SSD SSRT1

SSRT2

SSRT3

time

go RT distribution

Stop−signal RT distribution

Signal−respond RT distribution

Fig. 2 The race model. go RT = primary task RT; SSD = stop-signal
delay; SSRT = stop-signal reaction time. The model assumes that go
RTs and SSRTs are random variables. BEESTS treats the distribu-
tion of signal-respond RTs (gray area) as a go RT distribution that is

censored by the SSRT distribution. The censoring point can take on a
different value on each stop-signal trial (e.g., SSD + SSRT1, SSD +
SSRT2, and SSD + SSRT3; see also Matzke et al., 2013b)
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Fstop(t; μstop, σstop, τstop, SSD) is distribution function of
the ex-Gaussian SSRT distribution for a given SSD. Note
that P(T F) is assumed to be independent of SSD.

Inhibitions result from stop-signal trials where the stop
process was successfully triggered. Successful inhibitions
are therefore produced with 1 − P(T F) if the stop process
has finished before the go process (i.e., go RT > SSRT +
SSD). Formally, the likelihood (LI ) of the i = 1, ..., I

successful inhibitions for a given SSD is:

ŁI (μgo, σgo, τgo, μstop, σstop, τstop, P (T F), SSD)

=
I∏

i=1

[1−P(T F)]×
∫ ∞

−∞
[
1 − Fgo(ti; μgo, σgo, τgo)

]

×fstop(ti; μstop, σstop, τstop, SSD)dti, (2)

where Fgo(t; μgo, σgo, τgo) is the distribution func-
tion of the ex-Gaussian go RT distribution and
fstop(t; μstop, σstop, τstop, SSD) is the probability density
function of the ex-Gaussian SSRT distribution for a given
SSD. As SSRTs are unobservable, computing the likeli-
hood of successful inhibitions involves integrating over t .
Note that the integral in Eq. 2 acts as a normalizing con-
stant for the probability density function of the go RTs in
the second term of Eq. 1, ensuring that the distribution of
signal-respond RTs integrates to 1 (see also Colonius et al.,
2001; Logan et al., 2014).

Bayesian parameter estimation

As a result of the Bayesian formulation, the trigger-failure
approach may be applied to hierarchical as well as indi-
vidual data structures. In the individual model, we estimate
parameters for each participant separately by updating the
prior distributions with the incoming data to arrive at the
posterior distributions. The priors quantify existing knowl-
edge about the parameters. As in Matzke et al. (2013b), the
priors for the go (μgo, σgo, and τgo) and stop parameters
(μstop, σstop, and τstop) are weakly informative uniform dis-
tributions. We assume a non-informative uniform prior for
P(T F) that covers the entire allowable range between 0 and
1. The resulting posteriors quantify the uncertainty about
the parameters after the data have been observed. The 95 %
credible interval of the posterior extends from the 2.5th to
the 97.5th percentile of the distribution and encompasses the
range of values that—with 95 % probability—contains the
true value of the parameter. The central tendency of the pos-
terior, such as the median, is often used as a point estimate
for the parameter.

In the hierarchical model, rather than estimating parame-
ters separately for each participant, we explicitly model the
between-subject variability of the parameters with group-
level distributions (e.g., Gelman and Hill, 2007; Rouder
et al., 2005). The group-level distributions act as priors

to adjust or “shrink” extreme estimates to more moderate
values. The degree of shrinkage is determined by the rel-
ative uncertainty of the parameter estimates. Especially in
data sets with relatively few observations per participant,
hierarchical estimation can provide more accurate and less
variable estimates than the individual approach (Farrell &
Ludwig, 2008). Moreover, hierarchical modeling automat-
ically provides inference on both the individual and group
levels.

We assume that the individual go and stop parameters
are drawn from truncated normal distributions. For instance,
each participant’s μstop parameter comes from a normal
group-level distribution truncated at 0 and 1000 ms, with
mean μμstop and standard deviation σμstop . Note that the
upper truncation is not necessary, but is numerically helpful.
As in Matzke et al. (2013b), the priors for the group-level
means and group-level standard deviations are weakly infor-
mative uniform distributions. The participant-level P(T F)

parameters are first projected from the probability scale to
the real line with a “probit” (i.e., standard normal cumula-
tive distribution function) transformation (see also Matzke
et al., 2015; Rouder et al., 2008). The probit-transformed
P(T F) parameters are then modeled with a normal group-
level distribution truncated at −6 and 6. The group-level
mean for P(T F) is assigned a standard normal prior trun-
cated at −6 and 6; the group-level standard deviation is
assigned a weakly informative uniform prior.

We used Metropolis-within-Gibbs sampling (Tierney,
1994) to approximate the posterior distribution of the
model parameters. For all reported analyses, we ran mul-
tiple sampling sequences (i.e., chains) and computed the
R̂ (Gelman and Rubin, 1992) statistic to ascertain that the
chains converged to their stationary distribution (R̂ < 1.1).
The parameter estimation routine is implemented in the
BEESTS software (Matzke et al., 2013a) and is available at
http://dora.erbe-matzke.com/software.html.

Parameter recovery studies

Asymptotic performance

We first conducted a simulation study to examine asymp-
totic (i.e., large sample) SSRT estimation for a single par-
ticipant with the trigger-failure model. We then investigated
the bias in SSRT estimates caused by the presence of trigger
failures in the standard BEESTS model and in the tradi-
tional integration and mean SSRT-estimation methods. We
generated four stop-signal data sets from the race model
using the ex-Gaussian distribution. The first and second data
sets were generated using the fixed-SSD procedure with
P(T F) = 0.1 and P(T F) = 0.2, respectively. In the first
data set, overall signal-respond rate equaled 0.5; in the sec-
ond data set, it equaled 0.57. The third and fourth data sets

http://dora.erbe-matzke.com/software.html
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were generated using staircase tracking with P(T F) = 0.1
and P(T F) = 0.2, respectively. Each data set contained
a total of 12,500 stop-signal trials. The generating parame-
ter values are shown in Fig. 3. Note that we also assessed
parameter recovery using a range of different true parame-
ter values; the results were qualitatively similar to the ones
reported here.

The Bayesian results reported below are based on
6,000 retained posterior samples per data set. Further
technical details of the sampling run and information
about the specification of the priors are presented in the
Supplemental Material available at http://dora.erbe-matzke.
com/publications.html. For the fixed-SSD data sets, we
computed traditional SSRT estimates with the integration
method, the most popular method for the fixed delays. For
the staircase data sets, we computed traditional SSRT esti-
mates with the mean method, which is most commonly used
with staircase tracking (for overview of these methods, see
Verbruggen et al. 2008, 2013).

Performance under realistic circumstances

We next conducted a series of simulations examining the
effect of sample size on SSRT estimation by both the
individual and the hierarchical trigger-failure models. For
the individual case, we assessed parameter recovery for

P(T F) = 0.1 and investigated the performance of both
the fixed-SSD and the staircase tracking procedures. For
both SSD methods, we manipulated the number of obser-
vations over three levels: 750 go trials and 250 stop-signal
trials (small set); 1500 go trials and 500 stop-signal trials
(medium set); and 3000 go trials and 1000 stop-signal trials
(large set). For each 6 = 2 (SSD procedure) × 3 (Number
of observations) scenario, we generated 100 stop-signal data
sets from the race model using the ex-Gaussian distribution.
The generating parameter values are shown in Fig. 4. Each
data set was fit individually, with the results reported below
based on 6,000 posterior samples retained per data set.

For the hierarchical case, we assessed parameter recovery
only with staircase tracking because the majority of recent
stop-signal studies have relied on it to set SSDs (Verbruggen
et al., 2013). We manipulated the number of participants and
the number of observations per participant over three levels:
25 participants, 600 go trials, and 200 stop-signal trials per
participant (25/200 set); 30 participants, 300 go trials, and
100 stop-signal trials per participant (35/100 set); and 35
participants, 150 go trials, and 50 stop-signal trials per par-
ticipant (35/50 set). We generated 100 stop-signal data sets
per scenario as follows. For each data set, the participant-
level go and stop parameters and the probit transformed
P(T F) parameters were drawn from truncated normal dis-
tributions, with group-level means and standard deviations
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Fig. 3 Asymptotic parameter recovery for the individual trigger-
failure model, the standard BEESTS model, and the traditional integra-
tion and mean methods. The top row shows results for the fixed-SSD
procedure. The bottom row shows results for the staircase tracking
procedure. The black posterior distributions were computed with the
trigger-failure model. The gray posteriors were computed with the
standard BEESTS model. The posteriors plotted with solid lines are for
the P(T F) = 0.1 scenario. The posteriors plotted with dashed lines

are for the P(T F) = 0.2 scenario. The vertical dotted lines represent
the true values, and arrows indicate the direction of the estimation bias.
The circle and the triangle in the top row represent SSRTs computed
with the integration method for P(T F) = 0.1 and P(T F) = 0.2,
respectively. The circle and the triangle in the bottom row repre-
sent SSRTs computed with the mean method for P(T F) = 0.1 and
P(T F) = 0.2, respectively
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as shown in Fig. 5. The participant-level parameters were
then used to generate stop-signal data for each synthetic
participant using the ex-Gaussian distribution. Each of the
resulting groups of 100 data sets was fit with the hierarchical
trigger-failure model. The results reported below are based
on 6,000 retained posterior samples per group.

Illustrative published stop-signal data sets

Finally, we compared the performance of the hierarchical
version of the trigger failure and the standard BEESTS
models using stop-signal data from healthy controls in two
studies of inhibition deficits in schizophrenia. The data set
from Hughes et al. (2012) had 13 participants, each per-
forming 672 go and 224 stop-signal trials. SSDs were set
with the staircase tracking procedure. Following Hughes
et al., we only used go RTs of correct responses, resulting in
3 % of the trials being excluded.

The data set from Badcock et al. (2002) had 30 par-
ticipants, each performing eight blocks of 36 go and 12
stop-signal trials. In each block, SSDs were based on each
participant’s go RT from the preceding block: stop signals
were presented 500, 400, 300, 200, 100, and 0 ms prior
to the last-block mean go RT. In each block, stop signals
occurred twice at each of the six SSDs. We only used go
RTs of correct responses and removed go RTs that were
slower or faster than each participant’s mean go RT plus or
minus three times the standard deviation, resulting in exclu-
sion of 3 % of the trials. We also removed signal-respond
RTs that were faster than 250 ms, excluding a further 1 %
of the trials. For both data sets, the results reported below
are based on 6,000 retained posterior samples. Further tech-
nical details of the sampling run and information about the
prior setting are available in the Supplemental Material.

We assessed the relative goodness-of-fit of the trig-
ger failure and the standard BEESTS models using the
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Fig. 4 Parameter recovery for the individual trigger-failure model for
small, medium, and large data sets. The black and gray squares show
the average of the posterior medians across the 100 replications for the
fixed-SSD and the staircase tracking procedure, respectively. The error
bars represent the standard error of the posterior median. The black

and gray dashed lines show the average range of the 95 % credible
intervals across the 100 replications for the fixed-SSD and the staircase
tracking procedure, respectively. The dotted horizontal lines represent
the true values
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Deviance Information Criterion (DIC; Spiegelhalter et al.,
2002), a popular model selection index that is particularly
suited for comparing the performance of Bayesian hierar-
chical models. The model with the smaller DIC value is
better supported by the data. A DIC difference of more than
10 can be considered strong evidence; a difference between
5 and 10 substantial evidence; and a difference of less than

5 only weak evidence for the model with the lower DIC
value.

We assessed the absolute goodness-of-fit of the pre-
ferred model using posterior predictive model checks
(Gelman et al., 1996). Posterior predictive checks evaluate
the descriptive accuracy of a model by comparing pre-
dictions based on the posterior distribution of the model
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Fig. 5 Parameter recovery for the hierarchical trigger-failure model
for three sample sizes. The black squares show the average of the
posterior medians across the 100 replications. The error bars repre-
sent the standard error of the posterior median. The black dashed lines
show the average range of the 95 % credible intervals across the 100
replications. The horizontal dotted lines represent the true values. The

group-level mean of P(T F) has been transformed back to the proba-
bility scale; the group-level standard deviation is on the probit scale.
25/200 = 25 participants and 200 stop-signal trials per participant;
35/100 = 35 participants and 100 stop-signal trials per participant;
35/50 = 35 participants and 50 stop-signal trials per participant
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parameters to the observed data. If the model adequately
describes the data, the predictions should closely approx-
imate the observed data. As a result of using the entire
posterior distribution to generate predictions, posterior pre-
dictive checks automatically take into account uncertainty
about parameter estimates.

We preformed the posterior predictive model checks
using the go RT distribution and the signal-respond rate
of the individual participants. We randomly selected 1,000
parameter vectors from the joint posterior of the participant-
level model parameters. We then generated 1,000 stop-
signal data sets using the chosen parameter vectors. For the
go RTs, we visually compared the observed go RT distribu-
tion to the 1,000 go RT distributions predicted by the model.
For signal-respond rate, we visually compared the observed
and predicted rates at each SSD, and quantified misfit with
posterior predictive p values, which are computed for each
SSD as the fraction of predicted signal-respond rates greater
than the observed rate. On SSDs where signal-respond rate
equaled 1, p values were computed as the fraction of time
that the predicted signal-respond rate was greater than or
equal to the observed signal-respond rate. Extreme p val-
ues indicate that the model does not provide an adequate
description of the observed data.

Results

Parameter recovery studies

Asymptotic performance

Figure 3 shows the asymptotic performance of the different
estimation methods in the presence of trigger failures. The
top row shows the results for the fixed-SSD procedure; the
bottom row shows the results for staircase tracking. The first
three columns compare the recovery of the stop parameters
estimated with the trigger failure and the standard BEESTS
models. The black posteriors plotted with solid and dashed
lines are computed with the trigger-failure model in the 10
and 20 % trigger failure scenarios, respectively. The gray
posteriors plotted with solid and dashed lines are computed
with the standard BEESTS model in the 10 and 20 % trig-
ger failure scenarios, respectively. The vertical dotted lines
represent the true values.

The trigger-failure model recovered the true value of the
stop parameters very well regardless of the SSD proce-
dure. The parameters were estimated precisely (i.e., peaked
posteriors) and the true values were well within the 95 %
credible interval of the posterior distributions. The esti-
mates for the P(T F) = 0.1 scenario are generally more
precise than the estimates for P(T F) = 0.2, consistent

with the fact that the data sets with 10 % trigger failures
contain more information about the stop parameters as
the stop process is active on more trials. Importantly, as
shown in the fifth column, recovery of P(T F)—the true
probability of trigger failures—was excellent in all four
data sets.

In contrast to the trigger-failure model, the standard
BEETS model underestimated μstop and σstop, and severely
overestimated τstop for both SSD procedures. The bias and
the uncertainty of the estimates increased with increasing
P(T F). As shown in the fourth column of Fig. 3, the bias
resulted in a dramatic overestimation of mean SSRT (i.e.,
μstop +τstop). Traditional estimation methods also overesti-
mated SSRT, although to a lesser degree. The bias increased
with increasing P(T F) and was larger for the mean method
in combination with staircase tracking (bottom panel) than
for the integration method with fixed SSDs (top panel; see
also Band et al., 2003).

Performance under realistic circumstances

Figure 4 shows recovery performance with the individual
trigger-failure model for small, medium, and large data sets.
We focus on the recovery of the P(T F) and the stop param-
eters; the results for the go parameters are available in the
Supplemental Material. Regardless of the SSD procedure,
the trigger-failure model recovered the generating parame-
ter values adequately even with as few as 250 stop-signal
trials (i.e., the small set). As the number of observations
increased, the standard error of the posterior median and the
range of the credible intervals decreased. The coverage of
the 95 % credible intervals was satisfactory: depending on
the number of observations per data set, the credible inter-
vals contained the true values of the parameters in 96 to
100 % of the replications.

Figure 5 shows recovery performance with the hierarchi-
cal trigger-failure model. We focus on the recovery of the
group-level stop and P(T F) parameters; the results for the
group-level go parameters are available in the Supplemental
Material. The trigger-failure model recovered the generat-
ing group-level parameters adequately for all sample sizes.
For the group-level means, the standard error of the pos-
terior median and the range of the credible intervals were
the smallest for data sets with 25 participants and 200
stop-signal trials, increased slightly for data sets with 35
participants and 100 stop-signal trials, and were the largest
for data sets with 35 participants and 50 stop-signal trials.
For the group-level standard deviations, the standard errors
and the credible intervals generally increased with the total
number of observations, being the smallest for data sets with
25 participants and 200 stop-signal trials and the largest for
data sets with 35 participants and 50 stop-signal trials. The
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coverage of the 95 % credible intervals was satisfactory:
depending on sample size, the credible intervals contained
the true values of the parameters in 92 to 100 % of the
replications.

Illustrative published stop-signal data sets

Hugher et al. (2012) data set

Figure 6 shows the posterior distribution of the group-level
means (first column) and group-level standard deviations
(second column) of the stop and the P(T F) parameters. The
results for the go parameters are available in the Supplemental
Material. The black posteriors are estimated with the
trigger-failure model; the gray posteriors are estimated with
the standard BEESTS model. The group-level parameters
for μstop and especially for τstop were estimated more pre-
cisely with the trigger-failure model than with the standard

BEESTS model. The group-level means followed the pat-
tern of the asymptotic recovery results with the individual
model: compared to the trigger-failure analysis, the poste-
riors of μμstop and μσstop were shifted to lower values, and
the posterior of μτstop was shifted to higher values in the
standard BEESTS analysis. With respect to the group-level
standard deviations, compared to the trigger-failure analy-
sis, the posteriors of σμstop and στstop were shifted to higher
values in the standard BEESTS analysis. The group-level
standard deviation σσstop was roughly equal across the two
modeling approaches.

As shown in the bottom row of Fig. 6, the different results
can be explained by the presence of trigger failures. The
posterior distribution of the group-level mean of P(T F)

was shifted away from 0 with a median of 0.07, indicat-
ing the non-negligible presence of trigger failures. The DIC
difference of 236 in favor of the trigger-failure model indi-
cated that it (DIC = 114, 643) provided a much better

μμstop

D
en

si
ty

0 50 100 150 200 250
0.00

0.14
Trigger−failure model
Standard BEESTS
Prior

σμstop

D
en

si
ty

0 50 100 150
0.00

0.14

μσstop

D
en

si
ty

0 10 20 30 40 50
0.00

0.25

σσstop

D
en

si
ty

0 25 50 75
0.00

0.25

μτstop

D
en

si
ty

0 60 120 180
0.00

0.13

στstop

D
en

si
ty

0 100 200 300
0.00

0.18

μP(TF)

D
en

si
ty

0.00 0.25 0.50 0.75 1.00
0

28

σP(TF)

D
en

si
ty

0 1 2 3
0.0

4.4

Fig. 6 Group-level stop and P(T F) parameters for the Hughes et al.
(2012) data set. The first column shows the group-level means. The
second column shows the group-level standard deviations. The black
posteriors are estimated with the trigger-failure model. The gray

posteriors are estimated with the standard BEESTS model. The dashed
horizontal lines represent the priors. The group-level mean of P(T F)

is plotted on the probability scale; the group-level standard deviation
is on the probit scale
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description of the data than the standard BEESTS model
(DIC = 114, 879).

To ascertain that the DIC has accurately recovered the
true model that generated the data, we conducted a simula-
tion study using the sample size and the parameter estimates
from the Hughes et al. (2012) data set. In the first set of
simulations, we generated 50 stop-signal data sets without
trigger failures using the posterior mean of the group-
level parameters obtained from fitting the standard BEESTS
model. In the second set of simulations, we generated 50
stop-signal data sets with trigger failures using the posterior
mean of the group-level parameters obtained from fitting
the trigger-failure model. We then fit the 100 synthetic data
sets both with the standard BEESTS and the trigger-failure
models and assessed the difference in DIC.

When the data came from the standard BEESTS model,
we were unable to compute the DIC difference between the
models for 24 % of the data sets, because the chains for
at least one of the parameters in the misspecified model—
often the P(T F) parameter—failed to converge. For the
remaining data sets, the DIC recovered the true model in
82 % of the cases, with an average DIC difference of 5.1.
The average DIC difference for data sets with incorrect
model recovery was 2.9. Both the standard BEESTS and the
trigger-failure models recovered the generating values of the
group-level stop parameters adequately, likely because the
P(T F) parameters were estimated very close to 0. When
the data came from the trigger-failure model, DIC recov-
ered the true model in all of the data sets, with an average
DIC difference of 110. The trigger-failure model recovered
the generating values of the group-level P(T F) and stop
parameters adequately, whereas the standard BEESTS anal-
ysis resulted in the same pattern of bias as for the observed
data.

Our model recovery simulations found that when the data
came from the standard BEESTS model, the stop estimates
from the standard BEESTS and the trigger-failure model
were similar, and the P(T F) parameter was estimated close
to 0. When the data came from the trigger-failure model,
the standard BEESTS analysis resulted in biased stop esti-
mates, and the DIC indicated very strong preference for the
trigger-failure model. These results corroborate our earlier
conclusion that the trigger-failure model provided a better
description of the Hughes et al. (2012) data than the stan-
dard BEESTS model: The standard BEESTS estimates were
biased relative to the trigger-failure estimates, the posterior
distribution of P(T F) was shifted away from 0, and the DIC
evidence of 236 was clearly in favor of the trigger-failure
model.

Figure 7 shows the results of the posterior-predictive
model checks for two participants using the joint poste-
rior of the participant-level parameters from the preferred

model, the trigger-failure model. The posterior-predictive
checks for the remaining participants are available in the
Supplemental Material. The first column shows histograms
of the observed go RT distributions. The gray lines show the
1,000 predicted go RT distributions. For both participants,
the predicted distributions closely followed the observed
go RT distribution, indicating that the trigger-failure model
provided a good description of the go RTs.

The dashed lines in the second column of Fig. 7 show the
observed signal-respond rates as a function of SSD. As pre-
dicted by the race model, signal-respond rate increased with
increasing SSD for both participants. The observed signal-
respond rates were well within the range of signal-respond
rates predicted by the trigger-failure model (i.e., gray vio-
lin plots), at least on the central SSDs where the tracking
algorithm resulted in a reasonable number of stop-signal
trials. This conclusion was corroborated by the posterior
predictive p values: for SSDs with at least ten observed
stop-signal trials, all p values were in an acceptable range
(i.e., 0.05–0.95), indicating that the trigger-failure model
provided a good description of the observed inhibition func-
tions. Note that the participant-specific P(T F) parameters
do not correspond to the asymptote of the empirical inhi-
bition functions at short SSDs, likely because the staircase
procedure sampled very few SSDs in this region.

For comparison, the third panel of Fig. 7 shows the
results of the posterior predictive model checks for the
standard BEESTS analysis. For both participants, the stan-
dard BEESTS model provided on average a reasonable
description of the observed inhibition functions because
the participant-specific P(T F) parameters were relatively
low. For participant 11, however, the signal-respond rates
predicted by the standard BEESTS model on early SSDs
were clearly more variable than the ones predicted by the
trigger-failure model. For participant 2, predictions from
the two models were visually indistinguishable because the
participant-specific P(T F) parameter was approaching 0.

Badcock et al. (2002) data set

Figure 8 shows the posterior distribution of the group-level
parameters. The results followed the same general pattern as
for the Hughes et al. (2012) data. The posteriors estimated
with the trigger-failure model were typically more precise
than the posteriors estimated with the standard BEESTS
model. Compared to the trigger-failure analysis, the posteri-
ors of μμstop and μσstop were shifted to lower values, and the
posterior of μτstop was shifted to higher values in the stan-
dard BEESTS analysis. The posteriors of σμstop and στstop

were shifted to higher values in the standard BEESTS anal-
ysis, and σσstop was roughly equal across the two modeling
approaches. Importantly, the group-level mean of P(T F)
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suggested the non-negligible presence of trigger failures,
with a posterior median of 0.10. The DIC difference of
117 in favor of the trigger-failure model indicated that it
(DIC = 116, 693) provided a much better description

of the data than the standard BEESTS model (DIC =
116, 810).

Figure 9 shows the results of the posterior predictive
model checks for two participants. For both participants, the
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Fig. 7 Posterior predictive model checks for two participants in the
Hughes et al. (2012) data set. The first column shows histograms of
the observed go RT distributions. The gray lines show 1,000 go RT
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in the second column show the observed signal-respond rates (RR)
as a function of SSD. The gray violin plots show the distribution
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25th to the 75th percentile of the predictions. The black solid lines
connect the median of the predictions across the SSDs. The dashed-
dotted and dotted horizontal lines show the 95 % credible interval (CI)
and the median of the posterior distribution of the participant-specific
P(T F) parameter, respectively. The third column shows the predicted
signal-respond rates from the standard BEESTS analysis
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predicted go RT distributions closely followed the observed
go RT distribution, indicating that the trigger-failure model
provided a good description of the go RTs. The predicted
signal-respond rates adequately approximated the observed
signal-respond rates for all SSDs, and all p values were in
an acceptable range, indicating adequate fit to the observed
inhibition functions.

For both participants, the observed inhibition function
asymptotes at short SSDs, where there are a reasonable
number of stop-signal trials, and so should give a rea-
sonable estimate of participants’ trigger failure probability.
The second column of Fig. 9 shows the 95 % credible
interval (dashed-dotted line) and the median (dotted line)
of the posterior of the participant-specific P(T F) parame-
ters. Indeed, the posterior median of the estimated P(T F)

parameters very closely approximated the lower asymp-
tote of the observed inhibition functions. About one-third
of the participants had similar results, but for the remain-
der there was no clear asymptote in the inhibition function,

even when P(T F) was estimated as clearly greater than
zero. The Supplemental Material presents the full set of
posterior predictive model checks as well as figures depict-
ing the relationship between the participant-specific P(T F)

parameters and the lower asymptote of the inhibition
functions.

The third panel of Fig. 9 shows the results of the posterior
predictive model checks for the standard BEESTS analysis.
For Participant 1, the standard BEESTS model clearly failed
to account for the lower asymptote of the observed inhibi-
tion function. Moreover, the signal-respond rates predicted
by the standard BEESTS model were more variable than
the ones predicted by the trigger-failure model, especially
on early SSDs. For Participant 14, the standard BEESTS
analysis seemed to account less well than the trigger-failure
model for the observed signal-respond rates on SSD levels
−400 and −300. Again, the predicted signal-respond rates
on early SSDs were more variable that the ones generated
by the trigger-failure model.
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Fig. 8 Group-level stop and P(T F) parameters for the Badcock et al. (2002) data set. See Fig. 6 for details
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Discussion

We introduced a Bayesian mixture model that allows
researchers to estimate the probability of trigger failures
as well as the entire distribution of stopping latencies in
the stop-signal paradigm. We first showed that—in contrast

to other methods—the trigger-failure approach accurately
recovers SSRTs even in the presence of relatively frequent
trigger failures. We then demonstrated that trigger failures
play an important role in stop-signal performance even in
participants chosen as healthy controls in two studies of
inhibition deficits in schizophrenia. Although the level of
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trigger failure was relatively modest—around 8–9 % on
average—its presence was shown to dramatically distort
estimates of SSRTs.

Our approach to trigger failures was developed within a
Bayesian framework, but parameter estimation in the indi-
vidual model might also proceed with standard maximum
likelihood estimation (Myung, 2003). For the hierarchi-
cal model, however, maximum likelihood estimation can
become computationally infeasible. Moreover, the present
formulation allows us to take advantage of the benefits of
Bayesian inference, such as a coherent inferential frame-
work, the principled use of prior information, and the
possibility of state-of-the-art model selection techniques. In
either case, our approach does not depend on the particu-
lar ex-Gauss form that we use to describe the data (see also
Matzke et al., 2013a, b). The ex-Gauss may be substituted
with other RT distributions, such as the Wald or Lognor-
mal distributions (e.g., Heathcote, 2004; Heathcote et al.,
2004). Our mixture-model based approach may be also used
to augment recently developed process models of response
inhibition (Logan et al., 2014).

We used weakly informative priors for parameter estima-
tion and relied on the DIC to compare the goodness-of-fit of
the trigger failure and standard BEESTS models. Note that
Bayesian parameter estimation is robust to changes in the
prior as long as sufficiently informative data are available
(Lee and Wagenmakers, 2013). As opposed to estimation,
Bayesian model selection can be sensitive to the prior distri-
butions. Our choice for the DIC was partly motivated by the
fact that it does not require the explicit specification of prior
information. Due to its strong dependence on the prior, the
development of more sophisticated model selection mea-
sures, such as the Bayes factor (Berger, 2006; Liu & Aitkin,
2008), requires further research focusing on the choice of
theoretically justified and computationally convenient prior
distributions.

Our parameter recovery studies indicated that the trigger-
failure model can provide accurate and precise parameter
estimates with a realistic number of observations. Our find-
ings with respect to the required number of observations,
however, only serve as a rough rule of thumb. Recovery per-
formance depends on the true—unknown—probability of
trigger failures in a particular data set: the more prevalent
trigger failures are, the less information the stop-signal tri-
als provide about the stop parameters, and the more data
are needed to obtain the same level of estimation precision.
Prior to data collection, we encourage users to examine the
expected uncertainty of the estimates with synthetic data
by varying the probability of trigger failures and/or the
number of observations per participant. Data from pilot par-
ticipants can help guide choices about other parameters in
these simulations.

The parameter recoveries have also shown that for signal-
respond rate of approximately 0.50 recovery performance
was similar for the two SSD procedures. However, the
two procedures may yield results that differ in the relative
precision of the parameter estimates. With the fixed-SSD
procedure, it is possible to present participants with a
large number of early SSDs that provide the most valu-
able information about the P(T F) parameter. However, the
fixed-SSD procedure can also result in low overall signal-
respond rate, which can hinder the estimation of the stop
parameters. The tracking procedure results in relatively few
stop-signal trials at early SSDs, but unless the probability of
trigger failures approaches 50 %, it typically yields a suf-
ficient number of signal-respond RTs to estimate the stop
parameters. In practice, a hybrid SSD procedure might work
ideally, with a proportion of stop-signal trials at early fixed
SSDs to facilitate the estimation of P(T F), and the track-
ing algorithm on the remaining trials to obtain a sufficient
number of signal-respond RTs for the precise estimation of
the stop parameters.

Our model recovery simulations found that when the
data came from the trigger-failure model, DIC-based model
selection was correct and clear (i.e., provided very strong
evidence). The situation was less straightforward for data
sets without trigger failures. DIC-based selection identi-
fied the correct model in the majority of the data sets, but
the DIC evidence for the standard model was only mod-
erate. Therefore, we urge readers to visually compare the
parameter estimates from the two models and to not only
consider the DIC difference. If the DIC prefers the standard
model, parameter estimates from the two models are simi-
lar, and the P(T F) parameters are estimated close to 0, it
is safe to conclude that the standard model provides a bet-
ter description of the data, even if the DIC evidence is not
strong. However, in situations where the DIC difference is
only slightly in favor of the trigger-failure model, parameter
estimates from the two models are similar, and the P(T F)

parameters are close to 0 (or have failed to converge), we
discourage readers from interpreting the weak DIC evidence
as sufficient support for the trigger-failure model.

Conclusion

The goal of this paper was to introduce a Bayesian mix-
ture model that enables researchers to investigate the relative
contribution of trigger failures to stop-signal performance
and to correct SSRT estimates for the bias that results
from deficiencies in triggering the stop process. We illus-
trated the theoretical and methodological advantages of
the proposed framework and demonstrated the clear pres-
ence of trigger failures in healthy populations. It seems
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likely that trigger failures will be at least as common, if
not more so, in special populations, or under manipula-
tions that tax participants’ cognitive resources. The way
in which the probability of trigger failures varies with
such factors will provide important theoretical and practical
insights.
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