

University of Tasmania Open Access Repository Cover sheet

Title

Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma

Author

Maikawa, CL, Weichenthal, S, Amanda Wheeler, Dobbin, NA, Smargiassi, A, Evans, G, Liu, L, Goldberg, MS, Pollitt, KJG

Bibliographic citation

Maikawa, CL; Weichenthal, S; Wheeler, Amanda; Dobbin, NA; Smargiassi, A; Evans, G; et al. (2016). Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma. University Of Tasmania. Journal contribution.

Is published in: 10.1289/EHP175

Copyright information

This version of work is made accessible in the repository with the permission of the copyright holder/s under the following,

Licence.

Rights statement: Public domain 'Reproduced with permission from Environmental Health Perspectives'

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections University of Tasmania Private Bag 3 Hobart, TAS 7005 Australia

E oa.repository@utas.edu.au

Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma

Caitlin L. Maikawa, Scott Weichenthal, Amanda J. Wheeler, Nina A. Dobbin, Audrey Smargiassi, Greg Evans, Ling Liu, Mark S. Goldberg, and Krystal J. Godri Pollitt

http://dx.doi.org/10.1289/EHP175

Received: 5 June 2015 Revised: 6 January 2016 Accepted: 25 April 2016 Published: 6 May 2016

Note to readers with disabilities: *EHP* will provide a 508-conformant version of this article upon final publication. If you require a 508-conformant version before then, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma

Caitlin L. Maikawa^{1,2}, Scott Weichenthal^{3,4}, Amanda J. Wheeler^{3,5}, Nina A. Dobbin³, Audrey Smargiassi^{6,7}, Greg Evans², Ling Liu³, Mark S. Goldberg^{8,9}, and Krystal J. Godri Pollitt¹

¹Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA; ²Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; ³Health Canada, Air Health Science Division, Ottawa, Ontario, Canada; ⁴Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada; ⁵Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania 7000, Australia; ⁶Département de santé environnementale et de santé au travail, Université de Montréal, Montreal, Canada; ⁷Institut National de Santé Publique du Québec, Montréal, Canada; ⁸Department of Medicine, McGill University, Montreal, Canada; ⁹Division of Clinical Epidemiology, Research Institute, McGill University Health Centre, Montreal, Canada

Address correspondence to Krystal Godri Pollitt, Department of Environmental Health Sciences, University of Massachusetts, 149 Goessman Lab, 686 North Pleasant Street, Amherst, MA 01003 USA. Telephone: +1 413 545 1778. E-mail: kpollitt@umass.edu

Running title: Oxidative burden and childhood asthma

Acknowledgments: We would like to thank the participants and their families and acknowledge the field staff for the samples collection. The Canadian Clean Air Regulatory Agenda funded this study.

Competing financial interests: The authors do not have any competing interests to declare.

Advance Publication: Not Copyedited

ABSTRACT

Background: Epidemiological studies have provided strong evidence that fine particulate matter

(PM_{2.5}, aerodynamic diameter 2.5μm and lower) can exacerbate asthmatic symptoms in children.

Pro-oxidant components of PM_{2.5} are capable of directly generating reactive oxygen species.

Oxidative burden is used to describe the capacity of PM_{2.5} to generate reactive oxygen species in

the lung.

Objective: This study investigated the association between airway inflammation in asthmatic

children and oxidative burden of PM_{2.5} personal exposure.

Methods: Daily PM_{2.5} personal exposure samples (n=249) of 62 asthmatic school-aged children

in Montreal were collected over ten consecutive days. The oxidative burden of PM_{2.5} samples

was determined in vitro as the depletion of low molecular weight antioxidants (ascorbate and

glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation

was measured daily as fractional exhaled nitric oxide (FeNO).

Results: A positive association was identified between FeNO and glutathione-related oxidative

burden exposure in the previous 24 hours (6.0% increase per IQR change in glutathione).

Glutathione-related oxidative burden was further found to be positively associated with FeNO

over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroids use may

reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use:

15.8%; irregular use: 3.8%), while mould (22.1%), dust (10.6%) or fur (13.1%) allergies may

increase FeNO compared to children without these allergies (11.5%). No association was found

between PM_{2.5} mass or ascorbate-related oxidative burden and FeNO levels.

Conclusions: Exposure to PM_{2.5} with elevated glutathione-related oxidative burden was

associated with increased FeNO.

Advance Publication: Not Copyedited

BACKGROUND

The prevalence of asthma in children has increased over the past decade in developed countries

(Centers for Disease Control and Prevention, 2011). Environmental factors may contribute to the

development of paediatric asthma, including allergens, tobacco smoke, chemical sensitisers, diet,

psychosocial factors and indoor and outdoor air pollution (Anderson et al. 2013; Eder et al.

2006). Increased emergency room visits and hospitalisations, episodes of wheeze, as well as

subclinical changes (i.e., airway inflammation) have been associated with exposure to traffic-

related emissions (McCreanor et al. 2007; Zora et al. 2013), as well as specific types of

particulate (ultrafine particles, black carbon) and gaseous pollutants emitted in vehicle exhaust

(Cornell et al. 2012; Ostro et al. 2009). These exacerbations of asthma in children have been

attributed in part to traffic-derived oxidants (McConnell et al. 2010; Sinclair et al. 2013).

Exposure to ambient particulate matter (PM) composed of redox active catalysts can induce

redox-mediated oxidative stress at the air-lung interface. Multiple chemical components

contribute to this oxidative response in the airway, so that assessing exposure to individual

chemical constituents would be laborious for large numbers of PM samples (Li et al. 2002;

Squadrito et al. 2001). Moreover, consideration of multiple compounds of a mixture in a co-

pollutant model is challenged due to collinearity across species originating from common

sources (Koenig et al. 2003). A measure of bulk oxidative properties as a single exposure

parameter has been proposed as an integrative approach to characterising the toxicologically-

relevant features of ambient PM (Ayres et al. 2008; Godri et al. 2010; Mudway et al. 2004;

Weichenthal et al. 2013). This metric quantifies the oxidative burden of pollutants as their ability

to oxidise constituents found in the fluid coating on the surface of the airways and the respiratory

Advance Publication: Not Copyedited

tract lining fluid. This protective network is the first point of contact that ambient pollutants have

in the airway once inhaled and characterises the capacity for the lung to tolerate radical-

generating xenobiotic challenges. Antioxidants contained in this endogenous airway defence

system provide a reducing environment to neutralise pollutant-induced oxidation. An acellular

model of abundant low molecular antioxidants (ascorbate, reduced glutathione and urate) was

developed to replicate physiological characteristics of the respiratory tract lining fluid (Mudway

et al. 2004). The capacity for ambient PM to oxidise antioxidants contained in the fluid chemical

model of the respiratory tract lining is a measure of the oxidative burden of a pollutant sample.

Nitric oxide is present in the exhaled breath because it plays a number of key roles in lung

biology, including as a vasodilator, bronchodilator, and inflammatory mediator (Dweik et al.

2011a). Fractional exhaled nitric oxide (FeNO), which is measured non-invasively, has been

validated against other markers of inflammation, including IgE levels and blood eosinophils

(Ashutosh 2000; Silvestri et al. 1999; Strunk et al. 2003), but the actual mechanisms that are

indicated by FeNO are not known. It has been hypothesised that FeNO may be an indicator for

up-regulation of airway inflammation (Dweik et al. 2011a). FeNO is often tested in children to

evaluate the presence and severity of asthma (Robroeks et al. 2007). Allergic asthmatics often

exhibit elevated FeNO that increases after allergen exposures (Roos et al. 2014).

The present investigation was motivated by two studies which suggested that the respiratory

health of children living in an area of Montreal characterised by heavy industry, including two

refineries, and traffic may be adversely affected (Kosatsky et al. 2004; Smargiassi et al. 2009).

Rates of respiratory hospitalisation among 2 to 4 year olds were found to be 25% higher for the

residential areas surrounding two oil refineries as compared with the rest of Montreal. We

conducted a panel study from October 2009 to April 2010, among children with asthma, 8 to 12

years of age, residing near these oil refineries to determine whether changes in air pollution were

associated with a number of outcomes (Nethery et al. 2014; Smargiassi et al. 2014) In the present

paper, we determined whether daily variations in concentrations of FeNO were associated with

personal exposure to fine particulate (aerodynamic diameter of 2.5 um and lower: PM_{2.5})

emissions assessed as the integrative PM oxidative burden metric.

METHODS

Population

The target population was comprised of children diagnosed with asthma living in specific areas

in the eastern part of Montreal near the oil refineries (Table 1). Guardians provided written,

informed consent for their child to participate in the study, and the children also provided verbal

assent. Ethics approval was obtained from research ethics boards at Health Canada, the McGill

University Health Centre, Direction de santé publique de Montréal and Hôpital Maisonneuve-

Rosemont. Details regarding study population and recruitment have been previously described

(Smargiassi et al. 2014). The current study and Smargiassi et al. (2014) was comprised of the

same panel of children with the exception of two additional children included in the latter; these

two children were a part of a previous panel assessed in the Spring 2009.

Personal Pollutant Exposure Monitoring

The children carried rolling 7 kg backpacks containing personal exposure monitors and

completed diaries detailing daily medication use and activities (e.g., hours spent out- and

indoors, sports activities). Children were asked to keep the backpack with them throughout their

daily activities, although no direct methods were applied to assess compliance. If they were in

one location for an extended period of time (i.e., at school, playing sport, sleeping), they were

instructed to keep the backpack in the same environment close to them with the sampling inlet

facing up.

Personal exposure was assessed for 10 consecutive days to measure real-time concentrations of

PM_{2.5} mass as well a filter pack to sample PM_{2.5}. A Hobo sensor (Hobo U10, Onset Computer

Corp., Hoskin Scientific Ltd.), placed in an outside pocket of the backpack, was used to measure

temperature and relative humidity.

PM_{2.5} was sampled at a flow rate of 4 LPM for 24 hour periods using a continuous PM_{2.5} monitor

(pDR-1200; ThermoScientific) with an after filter (PEMs, Chempass System R&P / Thermo).

We measured concentrations of PM_{2.5} from the after filter. At the daily home visit, we checked

flow rates and changed batteries. If the end-flow rate of the PM_{2.5} samplers was more than 20%

above or below the target flow rate, corresponding continuous and gravimetric measurements

were deemed invalid as both were dependent on a specific flow rate. Samples were also deemed

invalid if they were deployed for more than 30 or less than 18 hours.

Regional Pollutant Monitoring

Ambient ozone concentrations were measured hourly in Montreal at monitoring stations operated

by Environment Canada through the National Air Pollution Surveillance network. Four of these

stations were located in residential areas inhabited by children participating in this study.

Advance Publication: Not Copyedited

Characterisation of Oxidative Burden

The oxidative burden of the Teflon filters was assessed. Prior to extraction the personal exposure

filters were equilibrated for 24 hours in a weighing room with temperature (18-22°C) and

humidity (45-50%) controls. Filters were weighed pre- and post- extraction. The filters were

submerged in high-pressure liquid chromatography grade methanol and placed in an ultrasonic

bath for 15 minutes. Once the filters were rinsed and removed, the extractions of the samples

were dried under a gentle stream of nitrogen gas in a 37°C water bath. Samples were re-

suspended in ultrapure water containing 5% methanol.

A synthetic human respiratory tract lining fluid, a 200 µM composite solution of physiologically-

relevant low molecular weight antioxidants (ascorbate, urate, glutathione), was incubated with

PM samples for 4 hours at 37 °C (Kelly et al. 2011). Positive (non-ferrous dust, NIST PD-1) and

negative (model carbon black, Arosperse 15B) particle controls were assessed in parallel with the

personal exposure samples to evaluate inter-experimental standardisation. PM samples and

controls were assessed in triplicate and incubated with the synthetic human respiratory tract

lining fluid on a 96-well plate at a final concentration of 75 µg PM mL⁻¹. The extent of

glutathione and ascorbate oxidation was taken to be indicative of oxidative burden, expressed as

percent depletion per unit mass concentration of PM. Ascorbate oxidation was measured using

absorbance spectra in a UV-vis plate reader (Molecular Devices, SpectraMax 190). Percent

ascorbate depletion for each sample was measured as the change in absorbance at a wavelength

of 260 nm before and after the incubation period. Following the 4-hour incubation, the reduced

glutathione concentration was determined using the oxidized glutathione-reductase-5,5'-dithio-

bis(2-nitrobenzoic acid) recycling assay (Baker et al. 1990; Godri et al. 2011). Glutathione-

related oxidative burden was expressed as the percent difference between each sample and a 4-

hour incubated particle-free blank.

Measurement of Fractional Exhaled Nitric Oxide

Single-breath, on-line measurements of FeNO were carried out according to the standardised

procedures recommended by the American Thoracic Society and the European Respiratory

Society (ATS and ERS 2005; Dweik et al. 2011a) using the NIOX MINO monitor (Aerocrine)

on each personal exposure day. Ambient NO was initially scrubbed with potassium

permanganate by the instrument, which was then inhaled through the monitor to total lung

capacity. Participants then performed a slow vital capacity manoeuvre by exhaling over a six

second period to achieve exhalation rates of 50 ± 5 mL sec⁻¹. FeNO was calculated from a

minimum of two and maximum of three repeat measurement such that concentrations were

within 10% or 3 ppb. We visited children's homes each evening, approximately between 4 and 6

pm, to measure FeNO. Children were requested not to eat one hour prior to the FeNO

measurement and their body temperature was measured to ensure that they were not unwell.

Statistical Methods

A linear mixed model, using restricted maximum likelihood estimation, was used to estimate the

association between FeNO and personal exposures to PM_{2.5} and estimated metrics of oxidative

burden over the 10-day observation period. In all models, we accounted for within-subject serial

autocorrelation using a random effect indicator for each child, a first-order autoregressive

correlation structure, and indicators for day (1-10) of the study. We transformed the FeNO

Advance Publication: Not Copyedited

measurements with a natural logarithm to normalise residuals. We used the daily average value

of FeNO and substituted 2.5 ppb for FeNO values below the limit of detection (5 ppb).

The effects of PM_{2.5} mass and the two oxidative burden metrics, depletion of glutathione and

ascorbate, on the natural logarithm of FeNO were evaluated separately as fixed effects. The

oxidative burden metrics were expressed per unit volume of air sample (% depletion/m³) as well

as per unit PM mass (% depletion/ug). We used three exposure periods: exposure 24 hours prior

to the FeNO measurement (referred to as the 0-day lag); exposure the day before the FeNO

measurement (24-48 hour average, 1-day lag); and exposure two days before the FeNO

measurement (48-72 hour average, 2-day lag).

We postulated that the following were potential confounding variables; personal measurements

of average daily personal temperature and relative humidity; sex; corticosteroid use; use of

rescue medication (short acting beta agonists; defined as no use or any use); presence of

allergies; occurrence of an asthma attack in the past year; eczema before the age of two; and

parental asthma. Eczema before the age of 2 was selected as a potential confounder given the

prevalence of this skin disorder in infants who go on to develop allergic asthma later in

childhood (Spergel and Paller 2003). We included asthma attack in the last 12 months as

potential covariate related to asthma severity and increased FeNO. While the role of exposures to

air pollution on the onset of eczema in infants is not clear, asthma attacks can be exacerbated in

children residing in regions with elevated air pollutant concentrations (Chen et al. 2015).

Corticosteroid use was defined as no reported use, irregular use and regular use (defined as use

for a minimum of 8 out of the 10 study days). All covariates were considered as fixed effects. A

Advance Publication: Not Copyedited

"baseline model" that included the subject and day of study, a priori potential confounding

factors (sex, average personal daily temperature) as well as the daily averaged exposure metrics

was developed in order to assess the extent of confounding due to the other variables that were

included in subsequent models.

We assessed possible non-linear associations between continuous exposure variables or

covariates and health outcomes using natural cubic splines with 2 to 5 degrees of freedom.

We added the following personal variables to the base model one variable at a time: medication

use (corticosteroids, short acting beta-agonist); presence of allergies; occurrence of an asthma

attack in the first year of life; eczema before the age of two; and parental asthma. Personal

variables found to change the effect on the logarithm of FeNO per IQR in PM_{2.5} mass or the

oxidative burden metrics by 5% or more from the base model were included in the final model.

From the final model, we then assessed whether children's allergies and medication use were

effect modifiers with and without an interaction term with personal exposure variables were

contrasted with the likelihood-ratio statistic using a maximum likelihood approach. Once an

interaction was assessed to be present, restricted maximum likelihood estimation was used to

estimate model parameters.

We perused diagnostics for residuals to verify the data met the assumptions of the models,

including residual autocorrelation and normality of the residuals of the random effects. The

estimated associations between FeNO and the exposure metrics are expressed as the mean

percent change in FeNO per increase in the interquartile range (IQR) of the exposure metrics.

No outliers were identified in the analyses.

RESULTS

Seventy children participated in the study, with a total of 700 possible observations. Twenty-five

measurements of FeNO were missing leaving 675 measurements. A total of 371 filters with

insufficient mass loading (<40 µg) were omitted from oxidative burden analysis leaving 249

daily personal exposure periods for 62 children. The median number of observations per child

was 3, with a range of 1 to 9. We compared the 62 participants included in this analysis with the

entire group of 70 children (Supplemental Material, Table S1): the median value of FeNO for the

62 children was 16.3 (IOR=24.8) ppb when missing oxidative burden observations were

removed (n=249) as compared to 17.7 (IQR=25.2) ppb for the full data set. The distribution

between boys and girls was also similar for the complete dataset (70% of the 70 children were

boys) compared to the measurements analysed for oxidative burden (69% of the 62 children were

boys).

The health status of children (presence of allergies, eczema before the age of two, asthma attack

in the previous 12 months and incidence of parental asthma) included in the full and oxidative

burden data sets were also comparable. On the other hand, we found that the oxidative burden

data set was characterised by higher personal exposure concentrations compared to the full data

set, which can be attributed to the minimum PM mass loading required for the analysis of

oxidative burden.

Advance Publication: Not Copyedited

Table 1 shows selected characteristics of the children included in the present analysis. The

children were predominately boys (69%) and Caucasian (65%). Half of the children used

corticosteroids, with 24% of all subjects using corticosteroids regularly (>8 days of the 10 day

monitoring period). This medication requirement classified 15% of the study's population with

severe asthma. Of the 62 participants in this study, 41% of the children had previously been

diagnosed with an allergy.

Table 2 shows details of the distribution of personal exposures to environmental variables. The

median daily temperature was 21.0°C (IQR=1.7) and the median concentration of PM_{2.5} mass

across all 249 observations was 14.1 (IQR=10.8) µg m⁻³. Day to day variations of PM_{2.5}

oxidative burden were also found (minima and maxima for ascorbate and glutathione were

0.009-0.22 and 0.0003-0.21, respectively). Ambient ozone concentrations were evaluated at four

monitoring stations operated in residential regions of Montreal. Mean daily ozone concentration

are presented in Supplemental Material Figure S1. Minimal variation was found across the four

residential monitoring sites.

Ascorbate- and glutathione-related oxidative burden measures expressed per unit mass (Pearson

r=0.45) and per unit volume (r=0.43) were correlated. No relationship was observed between PM

mass concentration (µg m⁻³) and the glutathione- (r=-0.09) and ascorbate-related (r=-0.28)

oxidative burden metrics (percent depletion per cubic meter). The relationship of these personal

exposure metrics was further assessed with daily ambient ozone concentrations. No correlation

was found with personal PM mass concentration (Pearson r=-0.006), glutathione-related

oxidative burden (r=-0.1) or ascorbate-related oxidative burden (r=0.06).

Advance Publication: Not Copyedited

Regression Analysis

Potential confounding variables were added to the baseline model (random effects for the subject

and study day variables, as well as a priori potential confounding factors of sex, average personal

daily temperature) to build the final model. Personal variables that changed the effect on FeNO

by more than 5% were the diagnosis of allergies, occurrence of an asthma attack in the previous

12 months, use of short acting beta-agonists and eczema before the age of two (see Supplemental

Material, Tables S2A and S2B for the results of the models). As these variables represent similar

information, we evaluated the sensitivity of the model to inclusion of only a subset of these

variables. In Supplemental Material Tables S3A and S3B, we present results for models adjusted

by different subsets of co-variables. The addition of eczema before the age of two and

occurrence of an asthma attack in the previous 12 months did not yield any change in results or

appreciably increase the width of the confidence intervals. They were consequently excluded

from the final model. The final model was adjusted by sex, average personal daily temperature,

diagnosis of allergies and use of short acting beta-agonists. We present in the text only the results

of the final models. None of the continuous variables, including PM_{2.5} mass, ascorbate and

glutathione, were found to deviate from linearity (data not shown). We evaluated the effect of

including ambient ozone concentrations in the final model for each personal exposure metric

tested for the 0-day lag period (Supplemental Material Table S4). No difference was found in the

results with the inclusion of ambient ozone. Consequently this pollutant not included in any

further analyses.

Ascorbate and glutathione-related oxidative burden measurements were evaluated as metrics

expressed per unit mass PM as well as per unit volume air sampled. Similar results were found

Advance Publication: Not Copyedited

for both mass (Supplemental Material, Table S2A) and volume based metrics (Supplemental

Material, Table S2B). We present results for oxidative burden per unit volume of air sampled in

the main text.

Figure 1 shows the results of the fully adjusted models for PM_{2.5} and for the two indices of

oxidative stress (percent depletion per cubic meter of air), according to an increase in each

variable for an increase equal to their inter-quartile ranges (Table 2). For PM_{2.5}, we found no

associations at lags 0 and 2 days, but found a reduction in FeNO at lag 1-day (-3.2%, 95%)

confidence interval (CI): -5.9, -0.4%) per an increase of PM_{2.5} across its IQR (11.3 µgm⁻³).

Across all three lags, only glutathione-related oxidative burden was found to be positively

associated with FeNO: for example, at lag 0-days (past 24 hours), we found a 6.0% (95% CI: 0.3.

12.0%) increase in FeNO per IQR increase of glutathione-related oxidative burden (IQR=0.32)

depletion per m³).

Figure 2 shows the results of analysis for glutathione-related oxidative burden associations

according to use of asthma medications and presence of allergies, evaluated at all three lags.

Children who did not use any medications experienced increased FeNO per IOR increase of

glutathione for the 1-day lag (17.4%, 95% CI: 5.4, 30.8) and 2-day lag exposure periods (14.7%,

95% CI: 4.4, 26.1) as compared to children who used medications (Figure 2A, Supplemental

Material, Table S5B), although the confidence intervals between groups overlapped (interaction

1-day lag p=0.08; 2-day lag p=0.21). As well, FeNO was elevated for children who did not take

corticosteroids (lag-2 days: 15.8%, 95% CI: 5.5, 27.2) as compared to children who used these

medications irregularly (lag-2 days; 3.8%, 95% CI: -4.8, 13.3; interaction p=0.11). No important

Advance Publication: Not Copyedited

differences were found for the beta-agonists. Similar results were found for glutathione-related

oxidative burden measurements expressed per unit mass (Supplemental Material, Table S5A)

and per unit volume (Supplemental Material, Table S5B). There was no evidence of effects of

PM_{2.5} ascorbate-related oxidative burden or mass concentration on FeNO that were found to be

modified by medication use (Supplemental Material, Table S5B).

A suggestion of an enhanced FeNO response to glutathione-related oxidative burden exposure

was found at the 2-day lag in children with allergies to dust (10.6%, 95% CI 3.2, 18.5%), mould

(22.1%, 95% CI 4.0, 43.4%) or fur (13.1%, 95% CI 1.9, 25.5%) (Figure 2B, Supplemental

Material, Table S6B); however, compared to children without these allergies, no difference were

found (interaction dust p=0.96; mould p=0.18; fur p=0.36). No increase in FeNO response was

found for the 0- or 1-day lag period. Similar results were found for the glutathione-related

oxidative burden metric expressed per unit mass (Supplemental Material, Table S6A). We did

not observe any associations of PM_{2.5} mass or the ascorbate-related oxidative burden metrics

with FeNO according to the presence of allergy (Supplemental Material, Table S6B).

DISCUSSION

In this panel study of asthmatic children living in Montreal, Canada, we evaluated daily

measurements of FeNO, a possible subclinical biomarker of airway inflammation, in relation to

personal exposure to PM_{2.5} mass and to two metrics of oxidative stress. We found FeNO to be

positively associated with a metric of oxidative burden (glutathione) but not with PM mass in

asthmatic children.

The novel aspect of this study is the daily longitudinal personal monitoring of a sensitive cohort

to characterise pro-oxidant pollutant exposure and its effect on FeNO. The study population was

comprised of children residing in neighbourhoods with exposures to industrial emissions and

traffic sources. Other studies, discussed below, have relied on exposure data estimated for traffic-

related emissions (mostly nitrogen dioxide) from land use regression models of annual averages

or these studies relied on central monitoring sites.

Increases in FeNO may indicate an increase in the underlying eosinophilic inflammation that is

the hallmark of asthma, before changes in clinical symptoms are observed, but the pathways are

not well understood (Dweik et al. 2011b). In fact, small changes in FeNO are not strongly

correlated with clinical symptoms (Silvestri et al. 1999; Strunk et al. 2003), although FeNO rises

dramatically during episodes of asthma exacerbation and decreases when they resolve (Ashutosh

2000). For example, Massaro et al. found FeNO levels during an acute asthma attack requiring

emergency care were about 50% higher than stable baseline levels (Massaro et al. 1995). The

above considerations must be kept in mind when interpreting the results of the present study.

We found an inverse association between PM_{2.5} mass and percent change in FeNO at the 1-day

lag, but little evidence of associations at 0- or 2-day lags. It is possible that the association at

lag-1 day was due to chance as it is especially difficult to appreciate how this environmental

exposure could lead to improvements in respiratory health. There have been few panel studies

investigating the effects of fine particulates on FeNO. In particular, American and Mexican

asthmatic children living in proximity to the border were also reported to experience a small

increase in FeNO with elevated 3-day averaged PM_{2.5} mass and nitrogen dioxide levels

Advance Publication: Not Copyedited

measured in school playgrounds (Sarnat et al. 2012). Positive associations between FeNO,

collected daily over 10 consecutive days, and PM_{2.5} mass concentrations were additionally

reported for a panel study of children living in Seattle, Washington (aged 6-13) (Koenig et al.

2003). Increased FeNO was observed for 1-day averaged PM_{2.5} mass concentration measured

outside and inside the children's home as well as using personal monitors and central monitoring

sites. Further evaluation of this Seattle panel identified positive associations between 1-hour

averaged PM_{2.5} mass concentrations collected from the central monitoring sites for up to 12

hours after exposure (Mar et al. 2005).

The only other studies making use of FeNO in asthmatic children that we are aware of were

designed using cross-sectional comparisons. Altug et al. (2014) reported no association between

FeNO in Dutch asthmatic children and weekly average nitrogen dioxide or sulphur dioxide

exposure concentrations measured in school playgrounds (Altuğ et al. 2014). Another study

conducted in Windsor showed positive associations between FeNO and annual PM_{2.5} mass

concentrations estimated at the children's home address using a land use regression model (Dales

et al. 2008).

The PM_{2.5} oxidative burden related to glutathione depletion was identified across all three lag

periods to be associated with elevated FeNO in asthmatic children. Ascorbate-related oxidative

burden was not found to be associated with this airway response. In a cohort of Californian

children, Delfino et al. also reported an association between PM_{2.5} oxidative burden and FeNO

measured at a central monitoring site, but no association was found between FeNO and PM_{2.5}

mass (Delfino et al. 2013). These authors found increases in FeNO of 8.7-9.9% per IQR increase

Advance Publication: Not Copyedited

of oxidative burden for 1 day and 2 day lags. Positive associations between FeNO and water

soluble organic carbon based on a two-day moving average were further described.

There are few studies in asthmatic children of oxidative burden. Delfino et al. described the only

other study in asthmatic children that considered oxidative burden as an alternative exposure

metric to PM mass concentration. Whilst similar positive associations were identified in both this

Californian study and ours, different methods were used to quantify PM redox activity. Both

methods evaluated the capacity of redox active PM species to catalyse the reduction of oxygen to

form superoxide and reactive oxygen species via subsequent reactions. We assessed the

formation of these reactive oxygen species by quantifying the induced antioxidant depletion. In

contrast. Delfino et al. measured the depletion of dithiothreitol. Dithiothreithol depletion has

been primarily associated with polycyclic aromatic hydrocarbons and quinones (O'Brien 1991),

but high concentration of metals can also oxidise dithiothreitol (Charrier and Anastasio 2012;

Kachur et al. 1997). Glutathione depletion from the synthetic respiratory tract lining fluid model

similarly exhibits enhanced sensitivity to organic compounds as well as redox active metals at

elevated concentrations (Supplemental Material, Figure S2).

We observed enhanced FeNO with exposure to PM_{2.5} characterised by increased glutathione-

related oxidative burden for children with allergies to mould, fur or dust. Suggestions of an

enhanced exacerbations of asthmatic symptoms in children exposed to traffic-related pollutants

and allergens have been reported previously for exposures to nitrogen dioxide (Dell et al. 2014),

black carbon (Cornell et al. 2012), formaldehyde and acetaldehyde (Flamant-Hulin et al. 2009)

as well as trace metals (nickel from residential oil heating) (Rosa et al. 2014). Ours is the first

report to show that the effects of pro-oxidant exposure, quantified by oxidative burden, may be

modified by the presence of allergic disease, although we must emphasise that there was no clear

signal in these interaction analyses. If these findings can be replicated, it may suggest that

allergic sensitisation may contribute to the pathogenesis of air pollutant-induced asthma

exacerbations.

Children who regularly used corticosteroids had a mean FeNO concentration of 15.1 ppb while

no corticosteroid use resulted in concentrations of 23.8 ppb for the asthmatic children in this

study. When stratified by medication use, children not using any medications experienced the

greatest increase in FeNO per IQR increase of PM2.5 oxidative burden. Again, we must

emphasise that these results are only suggestive that medication use (corticosteroids) may reduce

the FeNO response induced by the pro-oxidants of PM. Increased FeNO in children not taking

asthma medications and reduced inflammatory response in regular corticosteroid users have been

previously reported (Mar et al. 2005).

We did not observe associations between PM_{2.5} glutathione-related oxidative burden and mass

concentration, in keeping with previous exposure studies (Künzli et al. 2006; Szigeti et al. 2014).

This lack of relationship suggests that certain chemical constituents of PM_{2.5} may be responsible

for oxidative burden, and not bulk PM mass concentration. The pro-oxidant fraction of PM are

likely attributable to the observed antioxidant depletion (Kelly et al. 2011; Shi et al. 2003).

A primary strength of this study was the detailed and repeated follow-up of a panel of

participants. The same technicians visited the home each day to ensure consistency across health

measurements. The 10 co0nsecutive days of data collection enabled detailed analysis of short-

term effects. Another important strength of the study was the taking of personal measurements of

air pollutants and other environmental factors.

This multi-day monitoring period, however, presented challenges. In particular, daily visits

placed a high demand on study participants and limited recruitment. Further challenges included

low PM mass loading on personal exposure filters. A number of filter samples were excluded

from the oxidative burden analysis due to insufficient PM mass collection. The missing oxidative

burden data is an acknowledged caveat of our analysis, decreasing power and may have also

presented a bias towards children with higher pollutant exposure levels. While we were able to

observe effects on FeNO, recruitment and oxidative burden measurement limitations vielded a

relatively low sample size especially in stratified analyses examining the modifying effect of

medication use and presence of allergies.

A limitation of this study is the use of exclusive use of the synthetic respiratory tract lining fluid

method to assess oxidative burden. Other acellular methods include quantification of

dithiothreitol depletion by PM induced reactive oxygen species generation as well as

measurement of hydroxyl radical generation by PM redox active species using the electron

paramagnetic resonance assay (Ayres et al. 2008). Janssen et al. considered the equivalence of

oxidative burden measurements evaluated as dithiothreitol depletion, ascorbate depletion and

electron paramagnetic resonance. Univariate analysis suggested the strongest correlation between

PM_{2.5} ascorbate-related oxidative burden and electron paramagnetic resonance (Spearman

r=0.89) (Janssen et al. 2014). Weaker correlations were reported for dithiothreitol-related

Advance Publication: Not Copyedited

oxidative burden with ascorbate-related oxidative burden (r=0.63) and electron paramagnetic

resonance (r=0.52). The electron paramagnetic resonance method was also contrasted against

antioxidant depletion by Künzli et al.: a stronger correlation was found between oxidative burden

measured as hydroxyl radical generation measured by electron paramagnetic resonance and

ascorbate depletion (Pearson r=0.65) compared to glutathione depletion (r=0.18) (Künzli et al.

2006). The lack of equivalence across measurement techniques may be attributed to the

sensitivity of each method to different PM chemical characteristics (Ayres et al. 2008):

glutathione and dithiothreitol depletion are most sensitive to organic species, while the electron

paramagnetic resonance measure is primarily mediated by redox active metals (Shi et al. 2003).

The variance in sensitivity of each oxidative burden method across different organic and metal

PM species must be acknowledged when interpreting reported responses.

CONCLUSIONS

The oxidative burden metric provided a bulk measure of the pro-oxidant content of PM, and we

found that one metric of PM_{2.5} oxidative burden was associated with FeNO, a biomarker

suggested to be indicative of eosinophilic airway inflammation. As well, there was a suggestion

that using corticosteroids may reduce the response of FeNO to exposures to oxidative burden,

and some allergies may increase this airway response. We did not find any association between

FeNO and personal exposure measures of PM_{2.5} mass.

Environ Health Perspect DOI: 10.1289/EHP175 Advance Publication: Not Copyedited

REFERENCES

Altuğ H, Gaga EO, Döğeroğlu T, Brunekreef B, Hoek G, Van Doorn W. 2014. Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children. Science of the Total Environment 479–480:201-209.

Anderson HR, Favarato G, Atkinson R. 2013. Long-term exposure to air pollution and the incidence of asthma: Meta-analysis of cohort studies. Air Qual Atmos Health 6:47-56.

Ashutosh K. 2000. Nitric oxide and asthma: A review. Current Opinion in Pulmonary Medicine 6:21-25.

ATS, ERS. 2005. Ats/ers recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. American Journal of Respiratory and Critical Care Medicine 171:912-930.

Ayres J, Borm P, Cassee F, Castranova V, Donaldson K, Ghio A, et al. 2008. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative potential- a workshop report and consensus statement. Inhal Toxicol 20:75 - 99.

Baker MA, Cerniglia GJ, Zaman A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Analytical Biochemistry 190:360-365.

Charrier JG, Anastasio C. 2012. On dithiothreitol (dtt) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmospheric chemistry and physics (Print) 12:11317-11350.

Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. 2015. Chronic effects of air pollution on respiratory health in southern california children: Findings from the southern california children's health study. Journal of thoracic disease 7:46-58.

Cornell AG, Chillrud SN, Mellins RB, Acosta LM, Miller RL, Quinn JW, et al. 2012. Domestic airborne black carbon and exhaled nitric oxide in children in nyc. J Expos Sci Environ Epidemiol 22:258-266.

Dales R, Wheeler A, Mahmud M, Frescura AM, Smith-Doiron M, Nethery E, et al. 2008. The influence of living near roadways on spirometry and exhaled nitric oxide in elementary schoolchildren. Environmental Health Perspectives 116:1423-1427.

Delfino R, Staimer N, Tjio T, Gillen D, Schauer JJ, Shafer MM. 2013. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Science and Environmental Epidemiology 23:466-473.

Dell SD, Jerrett M, Beckerman B, Brook JR, Foty RG, Gilbert NL, et al. 2014. Presence of other allergic disease modifies the effect of early childhood traffic-related air pollution exposure on asthma prevalence. Environment International 65:83-92.

Advance Publication: Not Copyedited

Dweik RA, Bogg PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. 2011a. Interpretation of exhaled nitric oxide levels (feno) for clinical applications. American Journal of Respiratory and Critical Care Medicine 184:602-615.

Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. 2011b. An official ats clinical practice guideline: Interpretation of exhaled nitric oxide levels (feno) for clinical applications. American Journal of Respiratory and Critical Care Medicine 184:602-615.

Eder W, Ege MJ, von Mutius E. 2006. The asthma epidemic. New England Journal of Medicine 355:2226-2235.

Flamant-Hulin M, Caillaud D, Sacco P, Pénard-Morand C, Annesi-Maesano I. 2009. Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. Journal of Toxicology and Environmental Health, Part A 73:272-283.

Godri KJ, Green DC, Fuller GW, Dall'osto M, Beddows DC, Kelly FJ, et al. 2010. Particulate oxidative burden associated with firework activity. Environmental Science and Technology 44:8295-8301.

Godri KJ, Harrison RM, Evans T, Baker T, Dunster C, Mudway IS, et al. 2011. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in london. PloS ONE 6:e21961.

Janssen NAH, Yang A, Strak M, Steenhof M, Hellack B, Gerlofs-Nijland ME, et al. 2014. Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment 472:572-581.

Kachur AV, Held KD, Koch CJ, Biaglow JE. 1997. Mechanism of production of hydroxyl radicals in the copper-catalyzed oxidation of dithiothreitol. Radiation Research 147:409-415.

Kelly FJ, Anderson R, Armstrong B, Atkinson R, Barratt B, Beevers S, et al. 2011. The impact of the congestion charging scheme on air quality in london. 155. Boston: Health Effects Institute.

Koenig JQ, Jansen K, Mar TF, Lumley T, Kaufman J, Trenga CA, et al. 2003. Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environmental Health Perspectives 111:1625-1629.

Kosatsky T, Smargiassi A, Boivin M, Drouin L, Fortier I. 2004. Évaluation de l'excès de maladies respiratoires dans les secteurs de pointe-aux-trembles/montréal-est et mercier-est/anjou. Une analyse des données sanitaires et environnementales (1995-2000). Direction de santé publique, Régie régionale de la Santé et des Services sociaux de Montréal-Centre.

Künzli N, Mudway IS, tschi T, Shi T, Kelly FJ, Cook S, et al. 2006. Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient pm_{2.5} collected at 20 european sites. Environmental Health Perspectives 114:684-690.

Advance Publication: Not Copyedited

Li N, Wang M, Oberley TD, Sempf JM, Nel AE. 2002. Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. Journal of Immunology 169:4531-4541.

Mar TH, Jansen K, Shepherd K, Lumley T, Larson TV, Koenig JQ. 2005. Exhaled nitric oxide in children with asthma and short-term pm2.5 exposure in seattle. Environmental Health Perspectives 113:1791-1794.

Massaro AF, Gaston B, Kita D, Fanta C, Stamler JS, Drazen JM. 1995. Expired nitric oxide levels during treatment of acute asthma. American Journal of Respiratory and Critical Care Medicine 152:800-803.

McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. 2010. Childhood incident asthma and traffic-related air pollution at home and school. Environmental Health Perspectives 118:1021-1026.

McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L, et al. 2007. Respiratory effects of exposure to diesel traffic in persons with asthma. New England Journal of Medicine 357:2348-2358.

Mudway IS, Stenfors N, Duggan ST, Roxborough H, Zielinski H, Marklund SL, et al. 2004. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives of Biochemistry and Biophysics 423:200-212.

Nethery E, Mallach G, Rainham D, Goldberg M, Wheeler A. 2014. Using global positioning systems (gps) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: An automated method. Environmental Health 13:33.

O'Brien PJ. 1991. Molecular mechanism of quinone cytotoxicity. Chemical Biological Interactions 80:41.

Ostro B, Roth L, Malig B, Marty M. 2009. The effects of fine particle components on respiratory hospital admissions in children. Environmental Health Perspectives 117:475-480.

Prevention CfDCa. May 2011. Vital signs.

Robroeks CMHHT, Van De Kant KDG, Jöbsis Q, Hendriks HJE, Van Gent R, Wouters EFM, et al. 2007. Exhaled nitric oxide and biomarkers in exhaled breath condensate indicate the presence, severity and control of childhood asthma. Clinical & Experimental Allergy 37:1303-1311.

Roos AB, Mori M, Grönneberg R, Österlund C, Claesson H-E, Wahlström J, et al. 2014. Elevated exhaled nitric oxide in allergen-provoked asthma is associated with airway epithelial inos. PloS ONE 9:e90018.

Rosa MJ, Perzanowski MS, Divjan A, Chillrud SN, Hoepner L, Zhang H, et al. 2014. Association of recent exposure to ambient metals on fractional exhaled nitric oxide in 9–11 year old inner-city children. Nitric Oxide 40:60-66.

Advance Publication: Not Copyedited

Sarnat SE, Raysoni AU, Li WW, Holguin F, Johnson BA, Luevano SF, et al. 2012. Air pollution and acute respiratory response in a panel of asthmatic children along the u.S.-mexico border. Environmental Health Perspectives 120:437-444.

Shi T, Schins RPF, Knaapen AM, Kuhlbusch T, Pitz M, Heinrich J, et al. 2003. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. Journal of Environmental Monitoring 5:550-556.

Silvestri M, Spallarossa D, Frangova Yourukova V, Battistini E, Fregonese B, Rossi Ga. 1999. Orally exhaled nitric oxide levels are related to the degree of blood eosinophilia in atopic children with mild-intermittent asthma. European Respiratory Journal 13:321-326.

Sinclair AH, Melly S, Tolsma D, Spengler J, Perkins L, Rohr A, et al. 2013. Childhood asthma acute primary care visits, traffic, and traffic-related pollutants. Journal of the Air & Waste Management Association 64:561-567.

Smargiassi A, Kosatsky T, Hicks J, Plante C, Armstrong B, Villeneuve PJ, et al. 2009. Risk of asthmatic episodes in children exposed to sulfur dioxide stack emissions from a refinery point source in montreal, canada. Environmental Health Perspectives 117:653-659.

Smargiassi A, Goldberg MS, Wheeler AJ, Plante C, Valois M-F, Mallach G, et al. 2014. Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environmental Research 132:38-45.

Spergel JM, Paller AS. 2003. Atopic dermatitis and the atopic march.

Squadrito GL, Cueto R, Dellinger B, Pryor WA. 2001. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biology and Medicine 31:1132-1138.

Strunk RC, Szefler SJ, Phillips BR, Zeiger RS, Chinchilli VM, Larsen G, et al. 2003. Relationship of exhaled nitric oxide to clinical and inflammatory markers of persistent asthma in children. Journal of Allergy and Clinical Immunology 112:883-892.

Szigeti T, Kertész Z, Dunster C, Kelly FJ, Záray G, Mihucz VG. 2014. Exposure to pm2.5 in modern office buildings through elemental characterization and oxidative potential. Atmospheric Environment 94:44-52.

Weichenthal S, Godri Pollitt K, Villeneuve P. 2013. Pm2.5, oxidant defence and cardiorespiratory health: A review. Environmental Health 12:40.

Zora JE, Sarnat SE, Raysoni AU, Johnson BA, Li W-W, Greenwald R, et al. 2013. Associations between urban air pollution and pediatric asthma control in el paso, texas. Science of the Total Environment 448:56-65.

Environ Health Perspect DOI: 10.1289/EHP175 Advance Publication: Not Copyedited

Table 1. Selected characteristics of the 62 children included in the present analysis.

Table 1.	
Demographics	
Median age (range), in years	10.0 (8 -12)
Gender, n(%)	,
Boys	43 (69)
Girls	19 (31)
Race, n(%)	, ,
Caucasian	40 (64.5)
Black	12 (19.4)
Other	10 (16.1)
Health status	
Allergies, n(%)	44 (71)
Hayfever, n(%)	13 (21)
Eczema before age 2, n(%)	17 (27)
Asthma attack in previous 12 months, n(%)	31 (50)
Parental asthma, n(%)	36 (58)
Medication use during monitoring	
Corticosteroids, n(%)	27 (44)
Rescue medication (short acting beta agonist), n(%)	18 (29)
Median FeNO (IQR), in ppb	16.3 (24.8)

Environ Health Perspect DOI: 10.1289/EHP175 Advance Publication: Not Copyedited

Table 2. Daily personal exposure measurements of ambient particulate pollutant metrics.

Table 2.					
Exposure	Number of samples	Mean ± standard deviation	Median	Interquartile range	Minimum/ Maximum
Particulate Matter (µg/m³)					
PM _{2.5} mass	249	19.3 ± 16.8	14.1	10.8	6.53/101
Oxidative burden (%					
depletion/m³)	249	0.08 ± 0.04	0.07	0.06	0.009/0.22
Ascorbate Glutathione	249	0.06 ± 0.04	0.05	0.06	0.0003/0.21
Temperature (°C)	246	21.1 ± 1.52	21.0	2.00	16.0/26.0

Advance Publication: Not Copyedited

FIGURES LEGENDS

FIGURE 1. Percent change in FeNO per IOR change (95% confidence limit) in ambient

pollutant (PM_{2.5} mass concentration) and oxidative burden (ascorbate- and glutathione-related

depletion per cubic meter of air) exposure metrics over a 0-, 1- and 2- day lags. The mixed

models included a random effect for each child, a first-order autoregressive correlation structure,

and indicators for day (1-10) of the study. Models were adjusted for fixed effects including

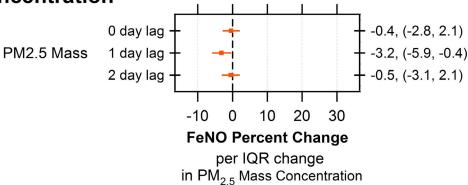
temperature, sex, presence of allergies and use of beta-agonists.

FIGURE 2. Effects of glutathione-related oxidative burden exposure per cubic meter of air on

the percent change in FeNO over a 0-, 1- and 2- day lags as modified by medication use (any

medication, none, corticosteroids, beta-agonists) and presence of allergies (dust, mould, pollen,

fur). The mixed models included a random effect for each child, a first-order autoregressive


correlation structure, and indicators for day (1-10) of the study. Models were adjusted for fixed

effects including temperature, sex, presence of allergies and use of beta-agonists.

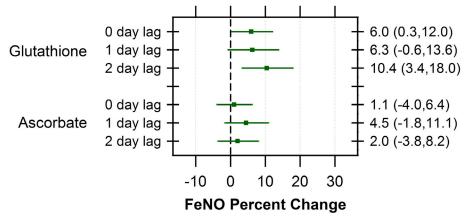
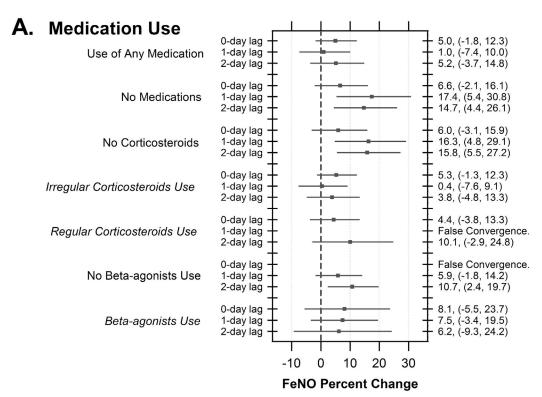
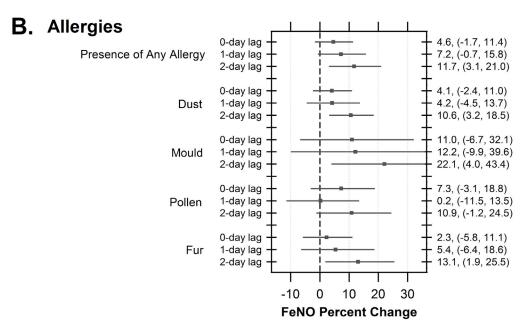

Environ Health Perspect DOI: 10.1289/EHP175 Advance Publication: Not Copyedited

Figure 1.


B. Oxidative Burden


per IQR change in Oxidative Burden Metric (%Depletion per m³)

Advance Publication: Not Copyedited

Figure 2.

per IQR change in Glutathione-Related Oxidative Burden (%Depletion per m³)

per IQR change in Glutathione-Related Oxidative Burden (%Depletion per m³)