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Uncertainty in geocenter estimates
in the context of ITRF2014
Anna R. Riddell1,2 , Matt A. King1 , Christopher S. Watson1 , Yu Sun3 ,
Riccardo E. M. Riva3 , and Roelof Rietbroek4

1Surveying and Spatial Sciences, School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia, 2Geoscience
Australia, Canberra, ACT, Australia, 3Department of Geoscience and Remote Sensing, Delft University of Technology, Delft,
Netherlands, 4Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

Abstract Uncertainty in the geocenter position and its subsequent motion affects positioning estimates
on the surface of the Earth and downstream products such as site velocities, particularly the vertical
component. The current version of the International Terrestrial Reference Frame, ITRF2014, derives its origin
as the long-term averaged center of mass as sensed by satellite laser ranging (SLR), and by definition, it
adopts only linear motion of the origin with uncertainty determined using a white noise process. We
compare weekly SLR translations relative to the ITRF2014 origin, with network translations estimated
from station displacements from surface mass transport models. We find that the proportion of variance
explained in SLR translations by the model-derived translations is on average less than 10%. Time-correlated
noise and nonlinear rates, particularly evident in the Y and Z components of the SLR translations with
respect to the ITRF2014 origin, are not fully replicated by the model-derived translations. This suggests that
translation-related uncertainties are underestimated when a white noise model is adopted and that
substantial systematic errors remain in the data defining the ITRF origin. When using a white noise model, we
find uncertainties in the rate of SLR X, Y, and Z translations of ±0.03, ±0.03, and ±0.06, respectively, increasing
to ±0.13, ±0.17, and ±0.33 (mm/yr, 1 sigma) when a power law and white noise model is adopted.

1. Introduction

The need to monitor global change processes, such as sea level change and postglacial rebound, at a level
below 1 mm/yr, illustrates the requirement for an accurate and precise global geodetic reference frame.
The International Terrestrial Reference Frame (ITRF) [Altamimi et al., 2016] attempts to meet accuracy
and stability goals of 1 mm and 0.1 mm/yr, respectively [Gross et al., 2009]. As each iteration of the ITRF
provides improvements in the precision and accuracy of the global reference frame, challenges remain
to meet the accuracy and stability goals. Particularly challenging is the realization of the origin (defined
as the long-term averaged center of mass (CM) of the Earth) and its evolution in time [Dong et al.,
2014]. Presently, this realization is limited given that it is determined using measurements from a single
measurement technique (satellite laser ranging (SLR)) [Altamimi et al., 2016; Wu et al., 2011] that is known
to be affected by systematic biases and network asymmetry [Appleby et al., 2016]. The ITRF2014 (and each
predecessor) is a linear frame by definition, and consequently, the long-term motion of its origin is
described by a linear trend. Limitations arise given that when specifying the ITRF origin to coincide with
the long-term origin of the SLR frame, only time-constant annual and semiannual terms are included with
a white noise model [Altamimi et al., 2007, 2011, 2016; Argus, 2012], neglecting any other nonlinear
motions as part of the functional or stochastic model.

Relative motion between the center of mass of the total Earth system (CM) and the center of surface figure
(CF) of the solid Earth can be observed using space geodetic observations that tie Earth-fixed permanent geo-
detic sites and space-based satellite platforms. Both secular and seasonal geocenter motion occur as a result
of past and present mass redistribution, where geocenter motion is the difference between CM and CF (the
difference between geophysically determined origins). Past mass redistribution on the surface or interior
such as glacial isostatic adjustment (GIA) induces secular geocenter motion, while intra-annual, seasonal,
and interannual signals relate to present-day distributions, such as exchanges within and between the ocean,
atmosphere, continents, and cryosphere [Argus, 2012; Dong et al., 1997;Wu et al., 2012]. SLR translations with
respect to the ITRF2014 origin therefore consist of both measurement error and a component of real geocen-
ter motion affected by the nonhomogenous network distribution of SLR tracking stations. This leads to a
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sampling bias known as the “network effect,” and should ideally reflect the offset between the network origin
(CN) and the CM rather than the geocenter motion.

An alternative approach to studying geocenter motion uses observations and numerical models of surface
mass transport to derive deformation of the solid Earth at the locations of the SLR stations (that change over
time), from which network translations may be estimated. The mass transport models provide bounds on the
network translations which are to be expected from known surface loading processes. Any inconsistency
between observed SLR translations and those derived from a surface loading model will hint at problems
in either the SLR methods (observations or processing) or problems within the surface loading model. In this
paper, SLR translations and output from two surface loading models are used to assess the uncertainty in the
SLR translations with respect to the ITRF2014 long-term origin.

2. Data

The origin of ITRF2014 is defined such that there are zero translation parameters and rates at epoch 2010.0
between the International Laser Ranging Service (ILRS) long-term mean origin from SLR and ITRF2014
[Altamimi et al., 2016]. The SLR temporal translation components used here have been derived with respect
to the ITRF2014 origin that has been defined using the internal constraint method described in Altamimi et al.
[2007] and Altamimi et al. [2016]. The translations were estimated using a seven-parameter similarity transfor-
mation between each week and a SLR ITRF2014 network of 21 core stations. The time series of the seven
parameters were adjusted globally, in one run using the CATREF software (Combination and Analysis of
Terrestrial Reference Frames) [e.g., Altamimi et al., 2016], with the full variance-covariance information of
the total SLR SINEX time series. We analyze the translations from weekly combined SLR solutions relative
to the ITRF2014 (linear) origin over the time span 1993.0 to 2015.0 in the temporal and spectral domains.
The complete ILRS SLR reference frame solutions in SINEX format submitted for the realization of ITRF2014
covers the time span 1983.0 to 2015.0. Only the data from 1993.0 onward are used here due to noisy data
in the early section of the time series, producing large formal uncertainties in the SLR translation series before
the LAGEOS-2 satellite was launched in 1992 [Dong et al., 2014]. We compare the SLR translation time series
with respect to the ITRF2014 long-term origin with two different estimates of network translations that are
derived from independent surface mass transport models.

The ITRF2014 origin is considered theoretically representative of the long-term CM, where geocenter motion
is defined as motion of the CM with respect to the CF [Altamimi et al., 2016]. Linear motions for ground sta-
tions are assumed, with some discontinuities and postseismic deformations enforced for sites affected by
major earthquakes or equipment changes. The ITRF origin reflects CM on secular timescales due to it coincid-
ing with the long-term average CM as observed by SLR, but on shorter (including seasonal) timescales, the
ITRF origin reflects CF [Blewitt, 2003; Collilieux et al., 2009; Dong et al., 2003]. We note that some of the litera-
ture considers the opposite convention, that is, displacement of CF with respect to CM [e.g., Métivier et al.,
2010; Dong et al., 2014].

Our first comparative geophysical model is from Rietbroek et al. [2015], who calculated surface mass transport
loading based on a combination of Gravity Recovery and Climate Experiment (GRACE) and radar altimetry
data using an inversion approach that applied conservation of mass to solve the sea level equation
[Rietbroek et al., 2016]. Surface displacement components are provided for the time span 2002.3 to 2014.5
with monthly sampling, hereon referred to as R15. R15 considers mass redistribution from the Antarctic
and Greenland ice sheets, land glaciers, GIA, continental water storage, and contributions from the oceans
and atmosphere. Although GRACE alone is not capable of observing degree-1 mass redistribution, combina-
tion with additional data sets and use of an inversion methodology enables derivation of surface mass trans-
port values. The short data span is limiting given that it covers only half of the SLR series but remains useful
given the independent GRACE-based approach.

Our second data set was estimated from numerical surface mass transport models and solves the sea
level equation to conserve mass for the global system after taking into account self-attraction and load-
ing effects [Gordeev et al., 1977; Frederikse et al., 2016; Tamisiea et al., 2010] using fingerprints [Mitrovica
et al., 2001] to represent the nonuniform redistribution of water. Hereon, this modeled surface mass pro-
duct is referred to as MSM. MSM yields values over the time span 1993.0 to 2015.0 with monthly sam-
pling. This data set includes modeled ocean and atmosphere mass redistribution (defined using the
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AOD1B product) [Flechtner et al., 2015], continental land glaciers [Marzeion et al., 2015], Greenland
[van den Broeke et al., 2016], and Antarctic ice sheet surface mass balance changes from the Regional
Atmospheric Climate Model (RACMO) version 2.3 [Noël et al., 2015], Global Reservoir and Dam database
(GRanD) dam water retention [Lehner et al., 2011] using the filling rate method of Chao et al. [2008], and
other terrestrial water storage from the Noah Global Land Data Assimilation System (GLDAS) product
[Rodell et al., 2004]. Both the land glacier and dam retention components are sampled annually and have
been linearly interpolated to monthly intervals for consistency with the other data sets, constraining the
temporal resolution. It would be expected for these components to contain annual signals due to the
seasonal nature of hydrologic mass exchange, and we return to this in section 4. A groundwater com-
ponent is available using data from Wada et al. [2010]. The contribution from groundwater to the overall
signal is primarily linear with very small annual amplitude for the available period. Further data descrip-
tion for MSM is available in the supporting information (Text S1) and Frederikse et al. [2016], including
uncertainties for the component contributions.

Surface displacements from each geophysical model were derived by redistributing loaded masses within a
thin shell on the Earth’s surface. They are spherically symmetric, stratified, and nonrotating Earth responses
elastically redistributed over subsecular (subdaily to decadal) timescales. The displacements are proportional
to the incremental load potential according to the load Love number theory [Farrell, 1972] and are derived
from the preliminary reference Earth model elastic Earth model (PREM) [Dziewonski and Anderson, 1981].

Following the methodology of Collilieux et al. [2009], network translations have been derived from station dis-
placements due to loading effects from two distinct surface mass transport models and compared with SLR
translations with respect to the ITRF2014 long-term origin to account for the network effect of the SLR
station geometry.

From each of the geophysical models, network translations are computed following the methodology of
Collilieux et al. [2009], using the ITRF2014 station positions and velocities plus the modeled surface mass load-
ing deformation at each epoch of the respective data set. At each epoch, we used only those SLR sites that
were active. The monthly surface deformation values are interpolated from monthly to weekly values using
a cubic spline. The two synthetic time series are then used to estimate transformation parameters, using
Globk [Herring et al., 2015], with respect to ITRF2014 using the full covariance matrix of the ILRS combined
solution submitted for ITRF2014 analysis. Following Collilieux et al. [2012], only three rotations and three
translations were estimated (that is, scale was not estimated). Repeating the analysis with the scale parameter
included produced only negligible changes to the estimated transformation parameters. Covariance informa-
tion was used as given; an occasional site was automatically removed for a given week due to the estimated
station adjustments being larger than 10 sigma. Given that the ILRS combined solution was generated using
a loose constraint approach, correlations exist between the Helmert parameters where some of the station
displacements may leak into the rotation parameters [Collilieux et al., 2009]. Here the rotations have a mean
and standard deviation of 0.00±0.02 milliseconds of arc for all components from both models (1 sigma),
which induces station displacements below 1 mm.

The two network translation models, R15 and MSM, are compared with the SLR translation components
with respect to the ITRF2014 origin to assess the sensitivity of the SLR observed origin against geophysically
modeled geocenter motion taking into account the network effect of the SLR observing network.

3. Comparison of SLR and Modeled Network Translations

By construction, there are zero translation rates (trends) between ITRF2014 and the SLR stacked frame of
weekly solutions over the time span 1993.0 to 2015.0. Annual and semiannual periodic signals were not
removed from the SLR translation components as these are signals of interest. Figures 1a–1c show the three
data sets in the temporal domain sampled at monthly epochs for clarity. The surface deformation values at
each site were detrended before transformation [Collilieux et al., 2009]. Formal errors are not available for
either of the surface mass transport models, but uncertainties are available for the constituent data sets that
contribute to each model. Further information on the model uncertainties can be found in the associated
references. Our use of two geophysical models aims to reflect, at least partly, the uncertainty in the
two models.

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013698

RIDDELL ET AL. GEOCENTER UNCERTAINTY WITH RESPECT TO ITRF2014 4022



Figures 1d–1f show the SLR translations alongside the differences of R15 and MSM with SLR, where the qua-
litative agreement of the curves reveals that the differences are heavily influenced by signal not in R15 and
MSM. Considering the residual series, the percentage of SLR variance explained by R15 is 12.5%, 1.3%, and
2.1% for the X, Y, and Z components, respectively, with MSM explaining 8.1%, 4.0%, and 2.0%, respectively.
The small proportion of variance explained by the surface mass transport models indicates that either the
geophysical models are not able to capture the surface mass transport variability or systematic errors from
the SLR technique are substantial. The visual agreement between R15 and MSM is noteworthy given the dis-
similarity in the data used to construct the series. Surface thermoelastic effects, with annual amplitudes

Figure 1. SLR translation components and two mass transport models (R15 and MSM). (a–c) Monthly translation series
from SLR [1993.0–2015.0], R15 [2002.3–2014.5], and MSM [1993.0–2015.0] for each component (X, Y, and Z); the shaded
area is transformation uncertainty. (d–f) SLR and differences of detrended monthly network translation time series for
each component where the models have been subtracted from the SLR time series. Note the differences in scale of the Z
component plots (Figures 1c and 1f) versus the X and Y components (Figures 1a, 1b, 1d, and 1e).
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approaching 3 mm for radial displacements and 1.5 mm for transverse displacements [Xu et al., 2017], could
explain some of the difference between the SLR translations and the respective network translations.

3.1. Seasonal Variation

The dominant signal throughout the SLR translation series has an annual period with apparent variable
amplitude. Over the full time series, the SLR translation annual signal in the Z component is approximately
twice that of the SLR translation X and Y components (see Table 1). The greatest agreement in overall ampli-
tude and its temporal variation between SLR, R15, and MSM is found in the X component, which is predomi-
nantly ocean driven due to the limited land area along the X axis (X is in the direction of 0°N 0°E, Y of 0°N, and
Z of 90°N).

The annual signal expressed in the residuals for each coordinate component (Figures 1d–1f, SLR minus
model) computed between the SLR origin andmodel-based network translation estimates demonstrates rea-
sonable qualitative agreement in phase and amplitude, again demonstrating that both the R15 and MSM
models significantly underestimate the amplitude of the annual signal within the SLR translations. To explore
the strength of the annual signals more closely, we computed the power spectral density (PSD) using the
Lomb-Scargle approach described by Press et al. [1992]. Figure 2 shows the PSD for each data set across each
coordinate component. Lower frequency trends are less well resolved by R15 due to the restricted temporal
span, and care should be taken not to overinterpret differences at these frequencies.

The annual signal expressed in MSM significantly underestimates the observed SLR amplitude in all com-
ponents, particularly during the latter part of the Y component time series (Figure 1b) and remains visible
as a peak in the residual PSD (Figure 2e). The shorter duration R15 model also underestimates the magni-
tude of the annual signal, where the most notable differences for both R15 and MSM are with respect to
the Z component (Figure 1c). This is confirmed by the presence of a residual peak at the 1 c/yr frequency
in Figures 2d–2f.

Figure 2. (a–c) PSD from Lomb-Scargle analysis of the data from SLR [1993.0–2015.0], R15 [2002.3–2014.5], and MSM [1993.0–2015.0], for each time series compo-
nent (X, Y, and Z). (d–f) PSD of the residuals (data from Figures 1d–1f) for each component. Note the differences in scale of the Z component plots (Figures 2c and 2f)
versus the X and Y components (Figures 2a, 2b, 2d, and 2e).

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013698

RIDDELL ET AL. GEOCENTER UNCERTAINTY WITH RESPECT TO ITRF2014 4025



The SLR series was compared with the MSM translations over the same time span as R15 (results not plotted
here). In this analysis, the annual signal amplitude and phase of MSM were not statistically different from R15
in comparison to SLR over the shortened time span. The MSM data set, over the R15 time span, is very similar
to the SLR Y component but has reduced agreement with the SLR X and Z components, particularly in the
latter part (2002 onward) of the time series (similarly as for R15) where the signal deviates (Figure 1). That
the surface mass transport models are indistinguishable from each other in the later part of the time series
provides confidence in their construction, noting again the dissimilarities in their constituent data series.

Themagnitude-squared coherence of the SLR time series with each of themodels in Figure 3 provides further
evidence that an annual signal is clearly present in both the observations from SLR and the network transla-
tion estimates from geophysical models. A strong peak in each component is centered about 1 c/yr, with an
average magnitude-squared coherence of 0.9 across the X, Y, and Z components. Figure 3a shows that agree-
ment in the X component is poor for signals other than annual, particularly between SLR and R15. Better
agreement at other frequencies is evident in the Y and Z components between SLR and the network transla-
tion models. Other less significant peaks are observed at subannual periods, but they are not considered
further here.

To assess the time variability of the time series, we follow a similar method to Argus [2012], whereby each
time series is divided into 4 year segments, each overlapping by 1 year, producing seven segments in our
analysis. A linear plus seasonal model was fitted to each segment, with the amplitude for each origin compo-
nent shown in Figures 4a–4c, each centered on the midpoint of the segment. Four years is sufficient to reli-
ably estimate the linear plus annual and semiannual terms [Blewitt and Lavallée, 2002]. For the SLR data, a
number of annual amplitudes computed from segmented data are significantly different to those computed
over the full series in the Y and Z components. While natural variation in these terms is expected, some of the
behavior appears systematic and specific to SLR. For example, the Y component shows a marked reduction in
amplitude following the segment centered on 2003.5 (Figure 4b), which is not reflected in the R15 data, and
only marginally reflected in the MSM data. The largest variability in SLR annual amplitude is found in the Z
component (Figure 4c), with the large deviation in the segment centered on 1997.5 not reproduced by either
R15 or MSM.

We also note a decrease in the uncertainty of the annual amplitude across the SLR data segments, most
noticeably in the X and Z components. This perhaps reflects refinements in the SLR observing networks’ geo-
metry and operation capacity over time [Varghese, 2013].

3.2. Noise Characteristics

Examination of Figure 2 shows clear features other than the dominant annual signals. The noise floor of the
SLR data set is substantially higher than that of both the network translation models, presumably associated
the effect of measurement error. The SLR X component (Figure 2a) shows a flatter (whiter) spectrum than in Y
and Z indicating increased time-correlated noise in the latter components. The spectra of SLR-R15 and SLR-
MSM (Figures 2d–2f) also suggest time-correlated noise across each component.

Figure 3. (a–c) Coherence-squared of SLR translation components with network translations from surface mass transport
models (R15 and MSM).

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013698

RIDDELL ET AL. GEOCENTER UNCERTAINTY WITH RESPECT TO ITRF2014 4026



Figure 4. (a–c) Annual amplitude and uncertainty of each network translation component where each data set has been
segmented into 4 year segments with 1 year overlap for SLR, R15, and MSM with a PLW noise model. Uncertainties are
one sigma. (d–f) Linear rates and uncertainty with a PLW noise model of the time series (Figures 1d–1f). The shaded area is
the respective amplitude and linear rate values for the full SLR time series with 1 sigma uncertainty [1993.0–2015.0]. R15
and MSM have been offset in time for clarity. Four year segments are as follows: 1993.0–1997.0, 1996.0–2000.0, 1999.0–
2003.0, 2002.0–2006.0, 2005.0–2009.0, 2008.0–2012.0, and 2011.0–2015.0.
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To further examine the properties of the time-correlated noise, we tested various noise models for each data
set using HECTOR software [Bos et al., 2013], examining white noise only, randomwalk, flicker, autoregressive
moving average, autoregressive fractionally integrated moving average, generalized Gauss-Markov (GGM) or
power law and white (PLW) models. Noise model parameters and summary statistics were estimated along
with a linear rate and annual plus semiannual periodic terms. We used both the Akaike information criterion
[Akaike, 1973] and Bayesian information criterion [Schwarz, 1978] to identify the preferred noise model for
each time series. The characteristics of the SLR series are best fit by a GGM or PLWmodel, in strong preference
to a white noise-only model (see Table 1). Where a white noise-only model was estimated in HECTOR, our
values are consistent with the time-constant annual and semiannual terms of Altamimi et al. [2016].

The uncertainty in the rate of the SLR translations, estimated with a PLW noise model over the complete
time span, is a factor of 5 larger in comparison to a white noise-only model (see Table 1). That is, white noise
uncertainties for X, Y, and Z rates, respectively, of ±0.03, ±0.03, and ±0.06 increase to ±0.13, ±0.17,
and ±0.33 (mm/yr) when a PLW noise model is adopted. A PLW noise model was chosen instead of GGM
for the remaining analysis as a conservative estimate of rate uncertainty. We examined the apparent offset
around 2010 in the SLR origin Y component (Figures 1b and 1e), as described by Altamimi et al. [2016], and
found it to be statistically insignificant when estimated as an offset within the noise analysis. Neither of the
geophysical models shows an offset at this time. Together, this suggests that the apparent discontinuity is
simply characteristic of power law time-correlated noise with spectral indices close to �1 (flicker noise)
[Williams, 2003]. No other offsets were estimated for the data sets.

Neither of the network translations from the geophysical models captures the long-period variability in the
SLR series particularly well. The removal of the models from the SLR series results in generally no change
to the spectral index for the PLW model in the X, Y, and Z components for both MSM and R15, (see
Tables 1 and 2).

3.3. Time-Variable Trends

We next consider the multiyear trends in the SLR translation time series. By convention, the linear rate of
each SLR origin translation component is not statistically different from zero [Altamimi et al., 2016] over
the full time series. However, low-frequency variability is evident in the SLR time series, particularly in the Y
and Z components (Figures 1b and 1c). This signal is not present in either of the mass transport models
(Figure 1, noting that the same scale is used in the left and right panels). The nonlinear signature observed
in the temporal domain of the SLR Y component in Figure 1b is similarly reflected in Figure 2b where the Y
component of the SLR origin series shows high power at low frequencies.

The time-variable rate within each data series is shown in Figures 4d–4f, for each of the 4 year segments dis-
cussed previously. Similarly to the annual amplitude, the largest temporal variability in the short-term rate is
found in the SLR Y and Z components (Figures 4e and 4f), with a number of short-term rates significantly dif-
ferent to the rate determined over the full record (grey line, Figures 4d–4f). The section of the SLR X and Z
components before 1997.0 are distinctly different from the long-term average, with the Z component almost
a factor of 3 larger than the long-term mean in this period. Segments in the Y component have differences
from the mean ranging from +0.8 mm/yr to �0.9 mm/yr, and the two segments covering 2005.0–2012.0
are statistically significant from the long-term average. R15 contains contributions from ocean mass and
ice sheets mass that are indirectly affected by the GIA model used, which are not included in MSM and could
explain some of the offset between the rates derived from the two models.

4. Discussion

Our comparison of the SLR translations with respect to the ITRF2014 origin with network translations derived
from equivalently sampled geophysical models shows that it is likely that signals of nongeophysical origin,
with a range of frequencies (monthly to interannual), are insufficiently accounted for in the stochastic model
of the ITRF2014 origin. Altamimi et al. [2016] suggested to add annual corrections to the station positions
(equations (2) and (3) in their paper) in order to bring the network origin closer to the instantaneous CM,
as sensed by SLR. However, if the annual estimates are partly affected by systematic errors in SLR, it remains
unclear how these errors will propagate into station positions (and satellite orbits) if the published annual and
semiannual geocenter terms derived from SLR are applied.
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Several studies have examined potential systematic error in SLR, in particular, the influence of the time-
variable ground network distribution [Collilieux et al., 2009; Collilieux and Wöppelmann, 2011], and satellite
observation geometry [Spatar et al., 2015] in order to assess uncertainty. Collilieux et al. [2009] found that
the SLR network effect could affect the amplitude of the annual geocenter motion in the Z direction at
approximately 1 mm, depending on the simulated observing network geometry. We found that the network
effect was dominated by the geophysical models’ annual signal, rather than the network geometry and
account for the SLR network effect by deriving network translations from geophysical models, using only
the surface deformation at those active SLR stations for each epoch.

Previous studies have explored uncertainty in the data series submitted to the previous ITRF, ITRF2008
[Altamimi et al., 2011], and found substantial nonlinear variation around the origin [Métivier et al., 2010;
Argus, 2012]. Dong et al. [2014] note an acceleration in the Z geocenter component of the ITRF2008 origin
after 1998 and attribute this to terrestrial water mass redistribution, including mass loss from continental
ice sheets and glaciers. We note the same feature in our analysis with a clear change in the short-term rate
of the SLR Z component (Figure 4f), but note that this is not replicated by MSM, even though MSM and
Dong et al. [2014] both use the GLDAS terrestrial water storage model. We note that there are differences
in the glacier and ice sheet mass terms which could explain why the deviation is not present in MSM; the rea-
son for this discrepancy requires further consideration.

Both the land glacier and dam retention components of the MSM surface mass transport model have insuffi-
cient temporal resolution to capture the annual component of these constituents. The resolution of surface
displacements due to terrestrial water storage changes remains challenging due to deficiencies in hydrologic
models, in particular, the long-term trends and accurate representation of groundwater use. The missing
annual hydrologic signal could explain some of the gap between SLR and MSM, but we note that this signal
is included in R15 which also does not agree with SLR in amplitude over a short period.

Others have evaluated the stability of the ITRF2008 origin using statistical and spectral analysis [Collilieux and
Altamimi, 2013; Argus, 2012]. These analyses show that a colored noise model is more appropriate than a
white noise-only model; an outcome that we find remains robust for the ITRF2014 origin. Argus [2012]
demonstrated time variability in both the annual amplitude and short-term rates of geocenter motion and
that the linear CM velocity uncertainties are ±0.4 mm/yr for X and Y and ±0.9 mm/yr for the Z component
(95% confidence limit). Our findings confirm that a simple linear regression using a white noise-only model
will poorly reflect the true uncertainty of the estimated parameters, with the uncertainty for the linear rate
typically a factor of 5 smaller than estimates using a PLW noise model (see Tables 1 and 2). Our analysis of
the SLR translations relative to the ITRF2014 origin suggests improvement of the CM velocity compared with
those from Argus [2012] for ITRF2008. Simply scaling our rate uncertainties to 2 sigma, the PLW noise model
results in a 27% improvement of the SLR Z component, reducing from ±0.9 mm/yr (95% confidence limit)
[Argus, 2012] to ±0.66 mm/yr (95% confidence limit).

The future improvement of the precision and accuracy of the ITRF origin will depend on advances in analysis
of SLR data and improved network geometry. Indeed, the present SLR station geometry is suboptimal, with a
concentration of SLR stations in the Northern Hemisphere decreasing the precision of the Z component com-
pared to the equatorial components [Bouillé et al., 2000; Collilieux and Wöppelmann, 2011; Wu et al., 2012].
Otsubo et al. [2016] confirmed this finding with a simulation study indicating that the addition of a station
at low latitudes (15°S–30°S) would improve the precision of the Z component of the geocenter and that addi-
tional sites at high latitudes, particularly in the south, would provide an important improvement in the X and
Y geocenter components.

5. Conclusions

We assess the temporal variability of the latest SLR translations with respect to the International Terrestrial
Reference Frame (ITRF2014) origin and find significant differences when compared to modeled network
translations from two independent surface mass transport models. The proportion of variance explained in
the SLR origin time series by geophysical models is on average less than 10% in each component. We iden-
tified colored noise in both observed and modeled network translation time series, but substantial colored
noise remains after subtraction of the model based translations, with notable signal remaining at annual
and longer periods. Consideration of power law noise when estimating the rate in the origin components
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yields an upper bound fivefold increase in rate uncertainty, compared to the white noise-only case. When
using a power law and white model, the uncertainty of the SLR Z component (0.33 mm/yr; 1 sigma) is twice
as large as that of the X and Y components (0.13 and 0.17 mm/yr, respectively). This represents a 27%
improvement for the Z component of the results in comparison to those from Argus [2012] for ITRF2008.

Over shorter time periods, the temporal variability of linear rates computed over 4 years suggests that the SLR
translations with respect to the long-term ITRF2014 origin cannot be rigorously represented by a simple lin-
ear model over longer periods. For the annual signal, model-based network translations, particularly in the Z
component, do not represent the variability in the annual amplitude of the SLR translations with respect to
the ITRF2014 origin. This indicates that a significant component of the signal is due to other processes, includ-
ing likely large systematic error.

Positioning uncertainty for geophysical applications is likely to be impacted by nonlinear geophysical signals
of the kind we identify in the SLR translation time series with respect to the ITRF2014 origin and may be
further impacted when nongeophysical signals exist. Space geodetic analyses that require an instantaneous
CM frame (precise orbit determination, for example) will also likely be affected given that the annual geocen-
ter motion model used is derived from the same SLR data that are used to define the long-term origin of
ITRF2014. Further improvements in SLR data analysis and network geometry are likely required to address
this issue. The demonstration of other geodetic techniques to contribute to the Earth’s center of mass deter-
mination would also be of great benefit.
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