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Size-based indicators are well established as a management tool in shelf seas as they respond to changes in fishing pressure and describe im-
portant aspects of community function. In the deep sea, however, vital rates are much slower and body size relationships vary with depth,
making it less clear how size-based indicators can be applied and whether they are appropriate for detecting changes through time. The
deep-sea fish stocks of the North Atlantic underwent a period of exploitation followed by management and conservation action that relieved
this pressure. We used data from a deep-water bottom trawl survey in the Rockall Trough, at depths of 300 2000 m, to test whether size-
based indicators changed over a 16-year period, during which fishing pressure decreased. We applied four indicators to these data: mean
body length, mean maximum length, large fish indicator (LFl), and the slope of the biomass spectrum. Patterns were analysed within four dif-
ferent depth bands. The LFI and slope of the biomass spectrum showed positive change over time, suggesting recovery from fishing pressure.
This response was generally most apparent in the shallowest depth band, where most fishing activity has been distributed. Values of the LFI
were much higher overall than in shelf seas, so the same reference points cannot be applied to all marine ecosystems. These findings imply
that size-based indicators can be usefully applied to the deep sea and that they potentially track changes in fishing pressure in the medium
term.
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Introduction

The deep sea is the largest ecosystem on the planet (Ramirez
Llodra et al., 2011), but due to its inaccessibility, we have known
relatively little about it until recent decades. Exploitation of the
deep sea increased dramatically at the end of the 20th century as
technologies allowed industrial scale trawling of the deep sea to
progress (Morato et al., 2006). Initial high yield fisheries for spe
cies such as blue ling (Molva dypterygia), orange roughy
(Hoplostethus atlanticus), and deep water sharks including the
Portuguese dogfish (Centroscymnus coelolepis) quickly underwent
serial depletion and eventual collapse. This mainly reflected the
slow vital rates (slow growth, late age at maturity) of deep sea
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fish that make them more vulnerable to exploitation and distur
bance than their shallow water counterparts (Drazen and
Haedrich, 2012). Consequently, there has been growing concern
over the sustainability of human activities in the deep sea and a
need to measure how the ecosystem is responding to human ex
ploitation so that we can better manage these pressures.

One way to monitor changes in fish communities is to use
size based indicators. These indicators represent the health of
communities by summarizing their size structure. Body size is
particularly relevant when examining impacts of fishing for two
main reasons. First, fishing is size selective, meaning that it is
likely to produce a change in size structure by removing large
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individuals from the system (Bianchi et al, 2000). Second, these
changes are important for understanding how fishing impacts
ecosystem structure and because of the role that body size plays
in virtually all aspects of a fish’s life: namely trophic level
(Jennings et al., 2001), diet breadth and choice (Scharf et al,
2000), maturity and fecundity (Winemiller and Rose, 1992),
growth (Jobling, 1983), and survival (Pauly, 1980). The use of
size based indicators is well established in coastal waters and they
are used to compute reference values to monitor impact and re
covery of fishing in areas such as the North Sea (e.g. Jennings and
Dulvy, 2005; Greenstreet et al, 2011) and the Celtic Sea
(e.g. Blanchard et al., 2005; Shephard et al, 2013). The respon
siveness of size based indicators to changes in fishing pressure has
also been corroborated by modelling studies (Blanchard et al,
2014; Thorpe et al, 2015).

Deep sea fish communities are harder to access and have been
less routinely sampled than those in shelf seas, and size based indi
cators have not yet been widely applied to this ecosystem. There is
some evidence for a steepening of the size spectrum in the deep sea
to the west of the British Isles between 1973 and 2000 due to in
creasing fishing pressure over this period (Basson et al, 2001).
However, these results remained somewhat inconclusive due to the
variety of surveys and gears considered, and the lack of data for
depths beyond 1400 m. As deep sea research surveys continue, lon
ger time series of abundance and body size data that have been mea
sured consistently throughout the study period are becoming more
available. One such survey has been conducted by Marine Scotland
on the continental slope of the Rockall Trough, Northeast Atlantic.
Fishing pressure has been decreasing in this area since the early
2000s due to the introduction, and subsequent decline, of Total
Allowable Catches, and recently it has been proposed that no bot
tom trawl fisheries will operate at depths of more than 800 m.
Therefore, the Rockall Trough provides a model study site to exam
ine the effect of decreasing fishing pressure in the deep sea
(at depths of 300 2067 m) using size based indicators.

Due to the large environmental differences between sites of dif
ferent depths (namely water pressure, temperature, and oxygen
levels; Lalli and Parsons, 1993; Kaiser et al., 2011), species compo
sition changes across depths (e.g. Gordon and Bergstad, 1992;
Carney, 2005; Yeh and Drazen, 2009), as does body size
(e.g. Polloni et al., 1979; Macpherson and Duarte, 1991; Collins
et al., 2005; Mindel et al., 2016a). Additionally, fishing pressure in
the Rockall Trough has only occurred at depths up to 1500 m, al
though it has been found that the effects of fishing can propagate
deeper than the areas fished (Bailey et al, 2009). Thus, effects
may be masked if depths are not analysed separately and we must
account for depth when investigating trends over time.

In this study we used four indicators that are well established
in shallow seas: (i) mean body length, (ii) mean maximum length,
(iii) large fish indicator (LFI), and (iv) slope of the normalized
biomass spectrum. Mean body length illustrates the average ob
served size of individuals and decreases as increasing fishing pres
sure removes large individuals (Shin et al, 2005). Mean
maximum length illustrates changes in species composition and
the relative abundance of small and large species; it is also ex
pected to decrease under exploitation because high pressure will
favour short lived species that mature faster (Shin et al., 2005).
The LFI is calculated as the proportion of biomass at a site that is
made up of individuals over 40cm in length (Greenstreet et al,
2011; Fung et al., 2012; ICES, 2013). This indicator was developed
due to the importance of large individuals in marine assemblages
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Figure 1. Location of hauls of the Marine Scotland deep-water
bottom trawl survey in the Northeast Atlantic from 1998 to 2013.
Shading indicates depth, where light represents shallow and dark
represents deep. Labelled sections represent ICES areas.

and high values indicate a healthy system. The normalized bio
mass spectrum is important in the marine environment because
it symbolizes how all individuals are arranged along a size axis
(Sheldon et al, 1972). The slope of the descending right hand
side of the spectrum becomes steeper under fishing pressure be
cause large individuals are removed (Bianchi et al, 2000;
Blanchard et al., 2005).

The trends in these four indicators were analysed over time
from 1998 to 2013 [a time period of a length that has been shown
to have sufficient power to detect trends in size based indicators
(Jennings and Dulvy, 2005)] in each of four depth bands.
We tested the hypothesis that all four indicators would show re
covery from fishing pressure (i.e. an increase in the values of the
indicators) due to decreasing levels of exploitation throughout
the study period. We predicted that the two shallower depth
bands would show the biggest change, as these are the depths at
which fishing occurs. We interpreted these patterns alongside
data on fishing effort (STECF, 2013) and sea bottom temperature.
The latter was examined because increasing temperatures can
have a positive effect on size based indicators (Marshall et al.,
2016; Robinson et al., 2017).

Methods

Data

A deep water bottom trawl survey was conducted by Marine
Scotland (Scottish Government) in September 1998, 2000, 2002,
2004 2009, and 2011 2013 along the continental slope of the
Rockall Trough in the Northeast Atlantic (Figure 1; ICES area VIa,
latitude 55° 59°N, longitude ~9°W) at depths of 300 2067 m
(Neat and Burns, 2010). The gear was designed to sample demersal
fish (those that live on or around the seabed, including those classi
fied as benthopelagic) so mesopelagic fish (those that live in the wa
ter column) and invertebrates were excluded from this analysis. Sea
bottom temperature was recorded on the survey at the depth of the
haul from 2005 onwards (205 out of a total of 325 hauls).
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Table 1. Number of hauls taken in each year of the survey from
each depth band.

Shallow Medium Deep Very deep
Year <750 m 751 1200 m 1201 1650 m > 1650 m
1998 10 9 0 0
2000 13 11 9 0
2002 15 8 7 1
2004 12 8 5 1
2005 5 8 5 1
2006 11 10 7 1
2007 6 6 6 1
2008 8 9 8 3
2009 8 16 7 4
2011 7 6 9 4
2012 7 8 8 6
2013 7 8 8 8
Total 109 107 79 30

During the survey, catch was identified to the finest taxonomic
resolution possible (which was species level for 99.9% individuals
caught) and the lengths of individual fish were measured. Where
applicable, standard length, pre anal fin length or pre supra cau
dal fin length were converted to total length (ICES, 2012) using
conversion factors calculated from a subset of the survey data
(Supplementary Table S1). Species specific conversion factors es
tablished from survey data were also used to convert lengths to
weights in order to calculate the indicators that are based on bio
mass. Individuals for which length weight relationships were un
known (n = 7006; 0.01% of individuals caught) were excluded
from the analysis. This resulted in a final dataset of 686 832 indi
viduals, belonging to 105 species. The full taxonomy of species
was determined using the World Register of Marine Species
(WoRMS Editorial Board, 2014).

Depth specific trends were analysed by separating hauls into four
depth bands: Shallow (S) < 750 m (minimum depth = 300 m);
Medium (M) = 751 1200 m; Deep (D) = 1201 1650 m; Very deep
(V) > 1650 m (maximum depth = 2067 m). There was a consistent
increase over time in the number of hauls taken in the deepest
depth band (Table 1) so the results from this depth band were inter
preted with caution.

The Scientific, Technical and Economic Committee for
Fisheries (STECF, 2013) reported on fishing effort in the deep sea
of ICES (International Council for the Exploration of the Sea)
area VI by ICES member states. As these data are not depth
resolved, we use them for illustrative purposes only, rather than
to quantify the impact of fishing. Here we present bottom trawl
effort data, in order to focus on demersal fish, from the EU waters
of ICES area VI, which equates to area VIa (Figure 1). We exclude
2002 as recommended in the report due to the unreliability of
that year’s data (STECF, 2013).

Indicators

Due to the unreliability of catching very small individuals on the
survey, all individuals of <32g were excluded from the calcula
tion of indicators. This value was suggested by Jennings and
Dulvy (2005) as a potentially optimal cut off point, and from ex
amination of the data used in the present study, it captures the
sizes of fish that are consistently caught by the Marine Scotland
survey.
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Mean body length of the community was the mean total length
across all individuals caught in a haul:

L= > I/N

where L is body length and N is numerical abundance.

Mean maximum length of the community was calculated by
assigning each individual an L,,,, based on its species and averag
ing this across all individuals in a haul:

Lyax = Zil\]iLmax, /N

where i is a species index. L., illustrates the potential maximum
size of a species and was set as the maximum length listed on
FishBase for that species (Froese and Pauly, 2016), or the maxi
mum length recorded on the deep water trawl survey, whichever
was the greater (Supplementary Table S1). This approach was
chosen so that L, consistently equates to the largest known
length for that species (Mindel et al., 2016a).

The LFI was calculated as the proportion by weight of individ
uals >40 cm in length per haul (ICES, 2013):

LFI = W>40 cm/W

where Wis biomass and W- 49 .,, is biomass of individuals greater
than 40 cm in length.

The slope of the size spectrum was calculated using a
normalized biomass spectrum (Platt and Denman, 1977). This
was calculated for each combination of year and depth band,
rather than for each haul, as hauls did not represent enough data
to create a reliable biomass spectrum. Individuals were separated
into weight classes that were of equal widths on a log, scale.
Biomass caught per hour of trawling in each weight class was
summed across hauls within each year and depth band. These val
ues of biomass were divided by the width of the weight class to
give an estimate of the abundance density of organisms in each
weight class (Platt and Denman, 1977). The slope of the
normalized size spectrum was then derived from the relationship
between log;, of the mid point of the weight class versus log;, of
the normalized biomass in that weight class, for each year and
depth band combination. The slope was established by fitting a
linear regression to the descending section of the relationship
(Blanchard et al, 2005), which was judged to start from the
weight class 2° 2° g.

Analysis

General linear models (LMs) were fitted to the relationships be
tween indicator values and year, including the interaction be
tween time and depth band. For mean body length, mean
maximum length, and LFI, the haul was the unit of analysis. For
the slope of the size spectrum, the unit of analysis was year. Post
hoc multiple comparison Tukey tests were performed for the indi
cators without significant interactions using the R package
(R Core Team, 2015) multcomp (Hothorn et al., 2008). The rela
tionship between sea bottom temperature and year was analysed
for each depth band using general LMs. All analyses were per
formed using R version 3.2.3 (R Core Team, 2015); figures were
produced using the packages ggplot2 (Wickham, 2009), gridExtra
(Auguie, 2016), and marmap (Pante and Simon Bouhet, 2013).
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Results

For mean body length in the community, there was no interac
tion between year and depth band (F = 1.3, p = 0.29) so the
model was fitted without the interaction, and this model had
high explanatory power (LM: F = 73.8, df = 4, 320, K = 0.47).
There was no significant change in mean body length over time,
but the trend was increasing (Figure 2a; LM: b = 0.13, s.e. = 0.10,
p = 0.17). There were significant differences in mean body length
between depth bands: Shallow (S) differed from all other depth
bands and Medium (M) and Deep (D) differed from each other
(Figure 2a; Table 2).

For mean maximum length in the community, there was no
interaction between year and depth band (F = 2.4, p = 0.07) so
the model was fitted without the interaction, and this model had
high explanatory power (LM: F = 91.4, df = 4, 320, R* = 0.53).
There was no significant change in mean maximum length over
time (Figure 2b; LM: b = 0.05, s.e. = 0.17, p = 0.79). Overall
mean maximum length differed significantly between all depth
bands apart from M and Very deep (V) (Figure 2b; Table 2).

For the LFI, there was a significant effect of year (F = 33.8,
p < 0.001), depth band (F = 110.5, p < 0.001), and their interac
tion (F = 4.3, p = 0.005), and the model had high explanatory
power (LM: F = 54.0, df = 7, 317, R* = 0.53). The LFI increased
over time in depth band S (Figure 2¢ IM: b = 0.011,
s.e. = 0.0027, p < 0.001), but did not change over time in any of
the other depth bands (Figure 2¢; LM: M: b= 0.0011, se. =
0.0038; D: b= 0.0010, s.e. = 0.0044; V: b= 0.0031, se. =
0.0082).

For the slope of the biomass spectrum, the interaction between
year and depth band was very close to significant at the 5%
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confidence threshold (F = 2.7, p = 0.058), so it was decided that
the interaction should remain in the model in order to retain as
much information as possible, and it had good explanatory power
(LM: F = 12.2, df = 7, 37, R* = 0.64). There was a significant
effect of year (F = 28.5, p < 0.001) and depth band (F = 16.3,
p < 0.001) on the slope of the biomass spectrum. The slope in

creased significantly over time (in other words, became less nega

tive, so the biomass spectrum became more shallow) in depth
bands S and V, but did not change over time in depth bands

Table 2. Statistical results of post hoc multiple comparison Tukey
tests for indicators not found to have a significant interaction.

Depth Standard
Indicator bands Estimate error p value
Mean body length SM 109 1.0 <0.001
SD 16.5 11 <0.001
SV 139 15 <0.001
MD 56 1.1 <0.001
MV 3.0 15 0.19
DV 26 15 0.32
Mean maximum SM 15.1 18 <0.001
length SD 372 20 <0.001
SV 18.4 28 <0.001
MD 21 20 <0.001
MV 33 28 0.63
DV 188 29 <0.001

Estimates represent the differences in intercept between depth bands.
Models were implemented using the R package multcomp (Hothorn et al.
2008).S  shallow,up to 750 m; M medium, 751 1200 m;D  deep,
1201 1650 m; V  very deep, over 1650 m.
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Figure 2. Change over time in the indicators (a) mean body length, (b) mean maximum length, (c) LF, and (d) slope of the normalized
biomass spectrum, in each of four depth bands. Lines represent the fitted general LM; significant changes over time are depicted as solid lines,

non-significant relationships are dashed lines.
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Figure 3. Temperature of hauls from the period 2005 2013 in each
of the four depth bands. None of the relationships over time were
significant.

M and D (Figure 2d; LM: S: b = 0.042, s.e. = 0.011, p < 0.001;
M: b = 0.0092, se. = 0.016; D: b = 0.015, s.e. = 0.017; V:
b = 0.055, s.e. = 0.020). The individual size spectra for each
combination of year and depth band, and the associated statisti

cal results, are presented in Supplementary Appendix SI
(Supplementary Figures S1 $4; Supplementary Table S2).

There was no significant change in sea bottom temperature
from 2005 onwards for any depth band, though in the shallowest
depth band there was a minor increasing trend (Figure 3; LM:
S: b= 0.041, s.e. = 0.022, p = 0.06; M: b= 0.019, s.e. = 0.045,
p=0.67; D: b=0.023,s.e. = 0.016, p=0.15; V: b= 0.0065, s.e.
=0.010, p = 0.54).

Bottom trawling effort according to STECF (2013) has de
creased over the study period (Figure 4) but there is no informa
tion as to whether this has been equal across depth bands.

Discussion

The fish community of the deep Northeast Atlantic is functionally
and taxonomically diverse and primarily structured by depth
(Mindel et al., 2016a,b). Previous studies of this ecosystem have
shown that species diversity has remained stable over time
(Campbell et al., 2011), but that for some commercial species,
such as the roundnose grenadier (Coryphaenoides rupestris), there
is evidence for recent changes in size composition (Neat and
Burns, 2010). Here we show that out of the four size based indi
cators examined, two (the LFI and the slope of the normalized
biomass spectrum) show change over time in the demersal fish
community of the Rockall Trough. The statistically significant
trends were positive, which is consistent with recovering fish
stocks from coastal areas. Depth had a strong influence on the
values of size based indicators and the positive changes seen in
the two significant indicators varied with depth.

The indicator that showed the most striking pattern was the
LFI. There was a significant increase over time in the LFI in the
Shallow depth band (< 750 m), but not in any other depth band.
The values of the LFI in the shallowest depth band were much
lower than in any other depth band at the start of the study pe
riod, but by the most recent year surveyed, the values were ap
proaching those in the other depth bands. This implies that in the
Shallow depth band the fish increased in size, which may reflect
the relaxed fishing pressure in recent years. In contrast, in the
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Figure 4. Bottom trawl effort in the deep sea of ICES area Vla by
ICES member states from 2000 to 2012, as reported by STECF (2013).

deeper zones the assemblages appear not to have changed signifi
cantly, potentially reflecting the lower level of fishing pressure in
deeper areas.

Similarly, the slope of the biomass spectrum increased (i.e. the
slope became less steep) in the Shallow depth band, but not in the
Medium (751 1200 m) or Deep (1201 1650 m) depth bands.
In the Very deep depth band (>1650 m) there was also an in
crease in the slope over time, however this must be interpreted
with caution as sampling effort at those depths has increased
markedly over time. Thus, the main conclusions that can be
drawn are similar to those seen in the LFI and are consistent with
an effect of relaxed fishing pressure in the shallowest depth band.
This is because as fishing pressure decreases, individuals are able
to grow larger and the bias towards highly abundant small indi
viduals decreases, resulting in a shallower slope of the size spec
trum (Nicholson and Jennings, 2004; Blanchard et al, 2005, 2009;
Piet and Jennings, 2005). As fishing pressure extends as deep as
1500 m in the area, the lack of response in the Medium depth
band is likely to be because assemblages therein are slower to re
cover from fishing pressure than in the Shallow depth band.
However in the Deep depth band, where there is little or no fish
ing pressure, the lack of change implies that they were not im
pacted by exploitation, despite there being the potential for
fishing effects to propagate through depths due to vertical migra
tion or daily movement of fish (Bailey et al, 2009).

Mean body length, on the other hand, did not change over
time in any depth band. This may be because it is highly influ
enced by large numbers of small individuals (Shin et al., 2005).
If decreased exploitation has led to higher recruitment success,
then this could manifest itself as an influx of small individuals,
hence causing mean body length to remain low (Shin et al., 2005;
Houle et al., 2012). Mean maximum length also did not show
change over time, implying that species composition has not
shifted in favour of larger species during the period of declining
fishing pressure. For this indicator, it may be that exploitation
was never severe enough to cause an initial shift in species com
position to those with smaller maximum sizes.

The positive change in size based indicators in the Rockall
Trough can be qualitatively related to the decreasing fishing pres
sure reported by the Scientific, Technical and Economic Committee
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for Fisheries (STECF, 2013). However, these fishing effort data are
not thorough enough to be used to quantify the impact of fishing.
The first issue with the fishing effort data is that they are not depth

resolved. Thus, the different patterns of indicator variation within
different depth bands cannot as yet be fully ascribed to either vary

ing fishing pressures in the depth bands, or varying patterns of re

covery. Additionally, although the area included by STECF (2013)
and the present study site overlap, we cannot know the precise effort
at the Rockall Trough only. We must also use the report’s definition
of deep sea species and are limited to fishing fleets that have pro

vided data for that report (STECF, 2013).

Despite the limitations of the fishing effort data, we can infer
that the change in size based indicators over time is likely to be
due to the reduction in fishing pressure. Environmental factors
could also potentially affect community size structure, but
Blanchard et al. (2005) illustrated that the impact of fishing is
likely to outweigh these effects. It has been shown that oxygen
concentration has a minimal impact on fish community size
structure and that net primary production is only the most im
portant determinant when the size structure is stable over time
(Marshall et al., 2016). One environmental factor that has been
found to affect values of size based indicators is temperature
(Marshall et al., 2016; Robinson et al., 2017); however, we are
able to rule out this potential effect in this study, as there was no
change in temperature over time for any of the depth bands.
Nevertheless, it should be noted that over a longer timescale
(1975 2013), temperature and salinity have increased over time
in upper waters (30 800 m) and stayed roughly constant in
Labrador Sea Water (>1200 m) in the Rockall Trough (Holliday
et al., 2015). These water masses cannot necessarily be translated
directly onto the depth bands used here, and do not always
equate to sea bottom temperature, so it would be unwise to inter
pret the alternative patterns in different depth bands using this
information alone. However, it is important to recognize that
long term environmental changes could be impacting overall
indicator values, because temperature affects body size
(e.g. Angilletta et al., 2004) and climate change can alter the depth
distribution of species (Dulvy et al., 2008).

For all of the analyses presented here, only individuals above a
predicted weight of 32 g were included. This is to exclude small
individuals that are considered to be poorly sampled by the sur
vey gear, and the specific threshold value was chosen based on
recommendations by Jennings and Dulvy (2005). When the
analysis was repeated with the inclusion of all individuals
caught on the survey, the results were unaffected (Supplementary
Figure S5). However, the choice of threshold could generate dis
crepancies when comparing specific indicator values among stud
ies that do not use the same methods. This is one of the reasons
why it has been suggested that “reference directions” (suggested
trends that indicators will show in response to recovery) rather
than “reference points” (suggested values of indicators in healthy
assemblages) are more suitable for use in ecosystem assessment
(Jennings and Dulvy, 2005; Shin et al., 2005). Reference directions
are expected to be consistent across surveys, areas, and different
marine ecosystems, while reference points are much harder to es
tablish (Shin er al., 2005). However, difficulty with using refer
ence directions arises when implementing management action,
because reference points are still required to establish when man
agement objectives have been achieved so that the focus can shift
to maintaining, rather than improving, the current state of the
ecosystem (Modica et al., 2014). Ecosystem assessments may
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therefore require a combination of approaches, depending on the
data available, the timescale being examined, and the manage
ment goals (Samhouri ef al,, 2011).

The issue of establishing target reference points that are appli
cable across a range of marine areas is illustrated here, as the val
ues of the LFI seen in the deep sea, even before fishing pressure
started to decline, are extremely high in comparison to the value
of 0.3 that has been suggested to equate to a healthy ecosystem in
the North Sea (ICES, 2007; Greenstreet et al., 2011). The high val
ues in the deep, even in the depth band < 750 m, show that there
are more large fish in proportion to small fish in the deep sea
than in coastal waters. One reason for this may be that some fish
species spawn in shallow waters and move deeper as they grow
(Lin et al., 2012; Trueman et al., 2013). Additionally, the value of
a healthy LFI for the North Sea was set as 0.3 using data from the
1920s 1980s (ICES, 2007), when shelf seas were already being ex
ploited. Thus, it may be that in the deep sea we are able to see
true pre exploitation values of the LFI a feat that has not been
possible in shallower waters. In order to produce LFI values in
the deep sea assemblages studied here that are similar to the shelf
sea reference point of 0.3, the calculation would need to be
changed to the proportion of fish at least over 60 cm in length
(Supplementary Figure S6). If this alternative calculation is used,
the overall patterns remain the same: recovery is shown in the
shallowest depth band, and all other depth bands show no change
(Supplementary Figure S6).

Although we present higher values of the LFI here than have
been recorded in shelf seas, recovery of the LFI in shallow waters
can be particularly rapid. The LFI increased from ~ 0.05 in 2001
to 0.22 in 2008 in the North Sea (Greenstreet et al., 2011) and
from 0.17 in 1996 to 0.42 in 2008 in the Bay of Biscay (Modica
et al., 2014). However, the extreme to which the LFI has been af
fected in shallow seas may mean that initial improvement in the
indicator can appear to be quick, but that full recovery to baseline
levels may take much longer. Shephard et al. (2013) predicted
that even if fishing pressure were to be removed entirely from the
Celtic Sea, recovery of the LFI to the values seen in 1986 would
still take ~30years. The power to detect meaningful rates of re
covery in various size based indicators can vary from 10 years
(Jennings and Dulvy, 2005) to 75 years (Nicholson and Jennings,
2004) of data. Thus, the improvement in the LFI and the slope of
the biomass spectrum presented here appears to be occurring on
a reasonable timescale, despite the high vulnerability of deep sea
species (Koslow et al, 2000; Morato et al., 2006; Drazen and
Haedrich, 2012; Norse et al., 2012).

The slope of the size spectrum also highlights the difficulty of
predicting indicator values across different areas of the oceans.
The three shallowest depth bands show normalized biomass spec
trum slopes of around 1 in the most recent years of the survey,
which is in the range of what is expected for unexploited or
weakly exploited demersal fish communities in shelf seas using
the same method [e.g. in the Mediterranean Sea (Macpherson
et al. 2002), the Celtic Sea (Blanchard et al., 2005) and the North
Sea (Blanchard et al. 2014)]. However, in the deepest depth band
(over 1650 m), during the most recent years when data collection
for these depths was at its highest, the slope approaches values of

0.5. The biomass spectrum for these depths is therefore sub
stantially shallower than at other depths in the deep sea and in
shelf seas. This shallow slope may be due to the absence of fishing
pressure at those depths, or alternatively the depth bands could
naturally differ in the shapes of their size spectra. Indeed, it has
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been shown that functional differences within communities result
in different values for the slope of the spectrum (Haedrich and
Merrett, 1992; Blanchard et al., 2009). Additionally, “subsidized”
communities can exhibit inverted biomass pyramids, which may
even lead to positive size spectrum slopes (Trebilco et al., 2016).
Such external resource subsidies could be said to occur in the
deep sea, e.g. through whale falls (Hilario et al., 2015).

Our results suggest that relaxed fishing pressure in the deep sea
of the Rockall Trough has allowed assemblages to recover, as
shown by positive responses of the LFI and the slope of the
normalized biomass spectrum, and that the positive change is
most apparent at the shallowest depths. Mean body length and
mean maximum length did not vary over time, perhaps because
the former is unduly influenced by recruitment events that keep
body size values low, while the latter may take longer to either be
affected or to show signs of reversal. We suggest that size based
indicators can be applied to the deep sea with the same success
that they have achieved in shelf seas, but that the same reference
points cannot be used for these different ecosystems. It is encour
aging that even in the medium term, deep sea fish assemblages
show signs of recovery, implying that they may be more resilient
than previously thought (Koslow et al., 2000), which is just one
of many paradigms that are now being questioned in the deep sea
(Drazen and Haedrich, 2012; Danovaro et al., 2014). Non size
based indicators such as mean trophic level, biodiversity indica
tors and those based on life histories, should also be applied to
the deep sea where there is sufficient information on the relevant
traits of these poorly known species.
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