




During the survey, catch was identified to the finest taxonomic

resolution possible (which was species level for 99.9% individuals

caught) and the lengths of individual fish were measured. Where

applicable, standard length, pre anal fin length or pre supra cau

dal fin length were converted to total length (ICES, 2012) using

conversion factors calculated from a subset of the survey data

(Supplementary Table S1). Species specific conversion factors es

tablished from survey data were also used to convert lengths to

weights in order to calculate the indicators that are based on bio

mass. Individuals for which length weight relationships were un

known (n ¼ 7006; 0.01% of individuals caught) were excluded

from the analysis. This resulted in a final dataset of 686 832 indi

viduals, belonging to 105 species. The full taxonomy of species

was determined using the World Register of Marine Species

(WoRMS Editorial Board, 2014).

Depth specific trends were analysed by separating hauls into four

depth bands: Shallow (S) � 750 m (minimum depth ¼ 300 m);

Medium (M) ¼ 751 1200 m; Deep (D) ¼ 1201 1650 m; Very deep

(V) > 1650 m (maximum depth ¼ 2067 m). There was a consistent

increase over time in the number of hauls taken in the deepest

depth band (Table 1) so the results from this depth band were inter

preted with caution.

The Scientific, Technical and Economic Committee for

Fisheries (STECF, 2013) reported on fishing effort in the deep sea

of ICES (International Council for the Exploration of the Sea)

area VI by ICES member states. As these data are not depth

resolved, we use them for illustrative purposes only, rather than

to quantify the impact of fishing. Here we present bottom trawl

effort data, in order to focus on demersal fish, from the EU waters

of ICES area VI, which equates to area VIa (Figure 1). We exclude

2002 as recommended in the report due to the unreliability of

that year’s data (STECF, 2013).

Indicators
Due to the unreliability of catching very small individuals on the

survey, all individuals of � 32 g were excluded from the calcula

tion of indicators. This value was suggested by Jennings and

Dulvy (2005) as a potentially optimal cut off point, and from ex

amination of the data used in the present study, it captures the

sizes of fish that are consistently caught by the Marine Scotland

survey.

Mean body length of the community was the mean total length

across all individuals caught in a haul:

�L ¼
X

N
L=N

where L is body length and N is numerical abundance.

Mean maximum length of the community was calculated by

assigning each individual an Lmax based on its species and averag

ing this across all individuals in a haul:

Lmax ¼
X

i
NiLmaxi

=N

where i is a species index. Lmax illustrates the potential maximum

size of a species and was set as the maximum length listed on

FishBase for that species (Froese and Pauly, 2016), or the maxi

mum length recorded on the deep water trawl survey, whichever

was the greater (Supplementary Table S1). This approach was

chosen so that Lmax consistently equates to the largest known

length for that species (Mindel et al., 2016a).

The LFI was calculated as the proportion by weight of individ

uals >40 cm in length per haul (ICES, 2013):

LFI ¼ W>40 cm=W

where W is biomass and W>40 cm is biomass of individuals greater

than 40 cm in length.

The slope of the size spectrum was calculated using a

normalized biomass spectrum (Platt and Denman, 1977). This

was calculated for each combination of year and depth band,

rather than for each haul, as hauls did not represent enough data

to create a reliable biomass spectrum. Individuals were separated

into weight classes that were of equal widths on a log2 scale.

Biomass caught per hour of trawling in each weight class was

summed across hauls within each year and depth band. These val

ues of biomass were divided by the width of the weight class to

give an estimate of the abundance density of organisms in each

weight class (Platt and Denman, 1977). The slope of the

normalized size spectrum was then derived from the relationship

between log10 of the mid point of the weight class versus log10 of

the normalized biomass in that weight class, for each year and

depth band combination. The slope was established by fitting a

linear regression to the descending section of the relationship

(Blanchard et al., 2005), which was judged to start from the

weight class 25 26 g.

Analysis
General linear models (LMs) were fitted to the relationships be

tween indicator values and year, including the interaction be

tween time and depth band. For mean body length, mean

maximum length, and LFI, the haul was the unit of analysis. For

the slope of the size spectrum, the unit of analysis was year. Post

hoc multiple comparison Tukey tests were performed for the indi

cators without significant interactions using the R package

(R Core Team, 2015) multcomp (Hothorn et al., 2008). The rela

tionship between sea bottom temperature and year was analysed

for each depth band using general LMs. All analyses were per

formed using R version 3.2.3 (R Core Team, 2015); figures were

produced using the packages ggplot2 (Wickham, 2009), gridExtra

(Auguie, 2016), and marmap (Pante and Simon Bouhet, 2013).

Table 1. Number of hauls taken in each year of the survey from
each depth band.

Year
Shallow
� 750 m

Medium
751 1200 m

Deep
1201 1650 m

Very deep
> 1650 m

1998 10 9 0 0
2000 13 11 9 0
2002 15 8 7 1
2004 12 8 5 1
2005 5 8 5 1
2006 11 10 7 1
2007 6 6 6 1
2008 8 9 8 3
2009 8 16 7 4
2011 7 6 9 4
2012 7 8 8 6
2013 7 8 8 8
Total 109 107 79 30
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for Fisheries (STECF, 2013). However, these fishing effort data are

not thorough enough to be used to quantify the impact of fishing.

The first issue with the fishing effort data is that they are not depth

resolved. Thus, the different patterns of indicator variation within

different depth bands cannot as yet be fully ascribed to either vary

ing fishing pressures in the depth bands, or varying patterns of re

covery. Additionally, although the area included by STECF (2013)

and the present study site overlap, we cannot know the precise effort

at the Rockall Trough only. We must also use the report’s definition

of deep sea species and are limited to fishing fleets that have pro

vided data for that report (STECF, 2013).

Despite the limitations of the fishing effort data, we can infer

that the change in size based indicators over time is likely to be

due to the reduction in fishing pressure. Environmental factors

could also potentially affect community size structure, but

Blanchard et al. (2005) illustrated that the impact of fishing is

likely to outweigh these effects. It has been shown that oxygen

concentration has a minimal impact on fish community size

structure and that net primary production is only the most im

portant determinant when the size structure is stable over time

(Marshall et al., 2016). One environmental factor that has been

found to affect values of size based indicators is temperature

(Marshall et al., 2016; Robinson et al., 2017); however, we are

able to rule out this potential effect in this study, as there was no

change in temperature over time for any of the depth bands.

Nevertheless, it should be noted that over a longer timescale

(1975 2013), temperature and salinity have increased over time

in upper waters (30 800 m) and stayed roughly constant in

Labrador Sea Water (>1200 m) in the Rockall Trough (Holliday

et al., 2015). These water masses cannot necessarily be translated

directly onto the depth bands used here, and do not always

equate to sea bottom temperature, so it would be unwise to inter

pret the alternative patterns in different depth bands using this

information alone. However, it is important to recognize that

long term environmental changes could be impacting overall

indicator values, because temperature affects body size

(e.g. Angilletta et al., 2004) and climate change can alter the depth

distribution of species (Dulvy et al., 2008).

For all of the analyses presented here, only individuals above a

predicted weight of 32 g were included. This is to exclude small

individuals that are considered to be poorly sampled by the sur

vey gear, and the specific threshold value was chosen based on

recommendations by Jennings and Dulvy (2005). When the

analysis was repeated with the inclusion of all individuals

caught on the survey, the results were unaffected (Supplementary

Figure S5). However, the choice of threshold could generate dis

crepancies when comparing specific indicator values among stud

ies that do not use the same methods. This is one of the reasons

why it has been suggested that “reference directions” (suggested

trends that indicators will show in response to recovery) rather

than “reference points” (suggested values of indicators in healthy

assemblages) are more suitable for use in ecosystem assessment

(Jennings and Dulvy, 2005; Shin et al., 2005). Reference directions

are expected to be consistent across surveys, areas, and different

marine ecosystems, while reference points are much harder to es

tablish (Shin et al., 2005). However, difficulty with using refer

ence directions arises when implementing management action,

because reference points are still required to establish when man

agement objectives have been achieved so that the focus can shift

to maintaining, rather than improving, the current state of the

ecosystem (Modica et al., 2014). Ecosystem assessments may

therefore require a combination of approaches, depending on the

data available, the timescale being examined, and the manage

ment goals (Samhouri et al., 2011).

The issue of establishing target reference points that are appli

cable across a range of marine areas is illustrated here, as the val

ues of the LFI seen in the deep sea, even before fishing pressure

started to decline, are extremely high in comparison to the value

of 0.3 that has been suggested to equate to a healthy ecosystem in

the North Sea (ICES, 2007; Greenstreet et al., 2011). The high val

ues in the deep, even in the depth band � 750 m, show that there

are more large fish in proportion to small fish in the deep sea

than in coastal waters. One reason for this may be that some fish

species spawn in shallow waters and move deeper as they grow

(Lin et al., 2012; Trueman et al., 2013). Additionally, the value of

a healthy LFI for the North Sea was set as 0.3 using data from the

1920s 1980s (ICES, 2007), when shelf seas were already being ex

ploited. Thus, it may be that in the deep sea we are able to see

true pre exploitation values of the LFI a feat that has not been

possible in shallower waters. In order to produce LFI values in

the deep sea assemblages studied here that are similar to the shelf

sea reference point of 0.3, the calculation would need to be

changed to the proportion of fish at least over 60 cm in length

(Supplementary Figure S6). If this alternative calculation is used,

the overall patterns remain the same: recovery is shown in the

shallowest depth band, and all other depth bands show no change

(Supplementary Figure S6).

Although we present higher values of the LFI here than have

been recorded in shelf seas, recovery of the LFI in shallow waters

can be particularly rapid. The LFI increased from � 0.05 in 2001

to 0.22 in 2008 in the North Sea (Greenstreet et al., 2011) and

from 0.17 in 1996 to 0.42 in 2008 in the Bay of Biscay (Modica

et al., 2014). However, the extreme to which the LFI has been af

fected in shallow seas may mean that initial improvement in the

indicator can appear to be quick, but that full recovery to baseline

levels may take much longer. Shephard et al. (2013) predicted

that even if fishing pressure were to be removed entirely from the

Celtic Sea, recovery of the LFI to the values seen in 1986 would

still take �30 years. The power to detect meaningful rates of re

covery in various size based indicators can vary from 10 years

(Jennings and Dulvy, 2005) to 75 years (Nicholson and Jennings,

2004) of data. Thus, the improvement in the LFI and the slope of

the biomass spectrum presented here appears to be occurring on

a reasonable timescale, despite the high vulnerability of deep sea

species (Koslow et al., 2000; Morato et al., 2006; Drazen and

Haedrich, 2012; Norse et al., 2012).

The slope of the size spectrum also highlights the difficulty of

predicting indicator values across different areas of the oceans.

The three shallowest depth bands show normalized biomass spec

trum slopes of around 1 in the most recent years of the survey,

which is in the range of what is expected for unexploited or

weakly exploited demersal fish communities in shelf seas using

the same method [e.g. in the Mediterranean Sea (Macpherson

et al. 2002), the Celtic Sea (Blanchard et al., 2005) and the North

Sea (Blanchard et al. 2014)]. However, in the deepest depth band

(over 1650 m), during the most recent years when data collection

for these depths was at its highest, the slope approaches values of

0.5. The biomass spectrum for these depths is therefore sub

stantially shallower than at other depths in the deep sea and in

shelf seas. This shallow slope may be due to the absence of fishing

pressure at those depths, or alternatively the depth bands could

naturally differ in the shapes of their size spectra. Indeed, it has
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been shown that functional differences within communities result

in different values for the slope of the spectrum (Haedrich and

Merrett, 1992; Blanchard et al., 2009). Additionally, “subsidized”

communities can exhibit inverted biomass pyramids, which may

even lead to positive size spectrum slopes (Trebilco et al., 2016).

Such external resource subsidies could be said to occur in the

deep sea, e.g. through whale falls (Hilario et al., 2015).

Our results suggest that relaxed fishing pressure in the deep sea

of the Rockall Trough has allowed assemblages to recover, as

shown by positive responses of the LFI and the slope of the

normalized biomass spectrum, and that the positive change is

most apparent at the shallowest depths. Mean body length and

mean maximum length did not vary over time, perhaps because

the former is unduly influenced by recruitment events that keep

body size values low, while the latter may take longer to either be

affected or to show signs of reversal. We suggest that size based

indicators can be applied to the deep sea with the same success

that they have achieved in shelf seas, but that the same reference

points cannot be used for these different ecosystems. It is encour

aging that even in the medium term, deep sea fish assemblages

show signs of recovery, implying that they may be more resilient

than previously thought (Koslow et al., 2000), which is just one

of many paradigms that are now being questioned in the deep sea

(Drazen and Haedrich, 2012; Danovaro et al., 2014). Non size

based indicators such as mean trophic level, biodiversity indica

tors and those based on life histories, should also be applied to

the deep sea where there is sufficient information on the relevant

traits of these poorly known species.

Supplementary data
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