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Supplementary Text 

Contributors’ Understanding of the Problem 

            Two concerns about our results center on whether our contributors were appropriately 

prepared for their task, and if they took the inferential task seriously. Regarding the first concern, 

consider the following excerpt from the emailed invitation to participate: 

 

The goal of this study is NOT to compare different memory models on model fit, 

statistical qualities, or psychological plausibility. Instead, the aim is to compare the 

psychological inferences drawn when using different tools to understand recognition 

decisions. 

To reach this goal, we are in the process of conducting several experiments in which 

various properties of recognition performance were explicitly manipulated. Specifically, 

we are using standard manipulations to influence the discriminability of memory 

evidence and the bias to respond “Studied.” You and other experts are asked to infer 

what was varied across conditions, using any tool, strategy, or model that you like. 

That is, you will decide whether each 2-condition data set was generated by an 

experiment that manipulated discriminability [i.e., memory accuracy], bias, both, or 

neither across the conditions.  

Thus, we feel confident that the contributors understood the task they would face. Supporting 

this claim, six individuals responded with substantive questions (about, e.g., what data would be 

shared; how many analyses they could submit), half of whom decided not to participate. 

Regarding the second concern, we note that of the 27 contributors who participated, 19 were 

willing to attach their names to their inferences, and 10 submitted more than one analysis of each 
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experiment. Thus, we believe their inferences reflected their true professional interpretations of 

the data.   

Contributors’ Methods 

The variability in inferences described in the main text was matched by a wide range of 

variability in the analysis methods selected by our contributors. Submissions used a variety of 

techniques that are purportedly capable of distinguishing discriminability and response bias, 

including a) mathematical models of choice behavior like Signal Detection Theory (SDT; 

Macmillan & Creelman, 2005) and the two-high-threshold model (2HT; Riefer & Batchelder, 

1988); b) mathematical models of choice and response time like the drift diffusion model (DDM, 

Ratcliff, 1978) and the Linear Ballistic Accumulator model (LBA, Brown & Heathcote, 2008); c) 

non-parametric measures like A' (Pollack & Norman, 1964) or area under the reaction-time-

based ROC curve (Thomas & Myers, 1972); and d) miscellaneous techniques like visually 

interpreting plots of the data, reporting a 50% chance of an effect for every data set, using a 

general linear model (GLM), or using the Retrieving Effectively from Memory (REM) process 

model (Shiffrin & Steyvers, 1997). Many contributors used multiple methods (see OSF for 

details). Some contributors used traditional frequentist methods (e.g., maximum likelihood 

estimation or significance tests) and others used Bayesian methods (e.g., posterior distributions 

of parameters or model selection via Bayes Factors). None of the submitted analyses were 

exactly identical: even similar analysis strategies differed in terms of exclusion criteria, and the 

subset of contributors who did not exclude any data each used different analysis methods.   

Simulation Method 

Assessing the success of our contributors required us to determine the expected accuracy 

level for these inferences, given the variability inherent in random samples of data (like the 
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samples that we collected in Phase 1). Even a valid inference procedure will sometimes reach 

inaccurate conclusions due to sampling variability, so we needed to identify a benchmark 

accuracy level below which it would be reasonable to conclude that an invalid inference 

technique had been applied. To estimate this benchmark, we ran a large number of simulated 

experiments with the same methodological details as Phase 1 and the same number of 

(simulated) participants and trials per participant. We then applied a theoretically appropriate 

inferential tool to the results. That is, we ensured a valid measurement procedure by generating 

data from a signal detection theory (SDT) model and using inferential measures of 

discriminability and bias that were derived from this same model. In this section, we describe 

each step of our simulation procedure. 

Generating parameter values. We simulated data using a signal detection model (Fig. 

S1) with varying parameter values across simulated participants. To ensure that the distributions 

of parameter values across participants were consistent with the empirical data from Phase 1, we 

performed signal detection fits to the full empirical data set using hierarchical Bayesian methods. 

In the model, the strength distribution for unstudied items (lures) had a mean of zero and a 

standard deviation of one, satisfying the conventional scaling assumptions of SDT (Macmillan & 

Creelman, 2005). Each participant, p, had a unique µ parameter representing the mean of the 

strength distribution for studied items (i.e., targets) and a unique δ parameter representing the 

deviation of the response criterion from the midpoint between the lure and target strength 

distributions. For example, if µ = 1.6 and δ = -0.2, then the response criterion was placed at 0.6 

(= 0.5×1.6 - 0.2). Higher δ values indicate more conservative responding that results in fewer 

"old" decisions. The standard deviation of the target distribution was fixed at 1.25 for all 

participants in light of the substantial evidence for unequal variance in evidence strength for 
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recognition memory (Macmillan & Creelman, 2005). Thus, the likelihood of an "old" response 

on each trial was 1 − 𝛷 $%&
'
+ 𝛿*+ for lures and 1 − 	𝛷 -

$
.&
/ 01&+2	%&

3.'5
6 for targets, where Φ is the 

cumulative density function of a standard Gaussian and p indexes an individual participant. Each 

trial outcome, yi, was modeled as a Bernoulli distribution parameterized with these response 

probabilities. 

In the model, the µ and δ parameters followed Gaussian distributions across participants. 

As shown in Fig. S1, the parameters defining these across-participant distributions have a 

superscript to identify which individual-level parameter the distribution applies to and a subscript 

identifying the experimental condition. The distributions for the μ parameter had different means 

for conditions with words studied once, twice, or three times, denoted by 𝜇8
% , where m could take 

values 1-3. The distributions for the δ parameter had different means for each of the nine 

conditions created by crossing number of study trials with the biasing conditions, denoted by 𝜇91, 

where c could take values 1-9. The model also had two free parameters to define the across-

participant standard deviation in the µ and δ parameters, σμ and σδ, respectively. We assumed that 

the across-participant variability in parameter values was equal across conditions. We used 

diffuse priors on the parameters defining the across-participant distributions; specifically, 

Gaussian distributions with a mean of zero and standard deviation of 10 for the across-participant 

distribution means and a uniform distribution from 0 to 10 for the across-participant standard 

deviations.  

We used JAGS (Plummer & Plummer, 2003) to define the posterior distributions of 

parameter values. We were mostly interested in the parameters defining the across-participant 

distributions, and we generated point estimates of these values by taking the median of each 

relevant posterior distribution. Table S1 shows the estimates for the average μ and δ values 



 
 

6 
 

across participants in each condition (μμ and μδ, respectively). As expected, the μμ values 

increased with additional learning attempts, and the μδ values indicated that responding was more 

liberal (conservative) when participants were asked to specifically avoid misses (false alarms) 

compared to the condition that equally emphasized avoiding both types of errors. The standard 

deviation in parameter values across participants was .74 for μ and .33 for δ.  

In the simulations, the parameter values for each simulated participant were randomly 

sampled from Gaussian distributions. Based on the condition assigned to the simulated 

participant, the means for these distributions were the appropriate values in Table S1. The 

standard deviation was .74 for μ and .33 for δ. Thus, the simulated participants matched the real 

participants both in terms of overall performance levels and variability in performance from one 

participant to the next. 

Simulation procedure. We performed 5000 simulated replications of the study. 

Consistent with the empirical data, each replication comprised seven two-condition experiments 

with 24 simulated participants in each condition (i.e., the minimum sample size across the seven 

experiments) and 100 simulated trials for each participant (50 target and 50 lure trials). For each 

replication, the computer first selected across-participant distributions of parameter values to 

match the condition structure of the data analyzed by contributors. For example, in the first data 

set one condition had items studied three times with liberal bias instructions and the other had 

items studied three times with conservative bias instructions, and the means of the parameter-

generating distributions were those reported in the corresponding cells in Table S1. Next, the 

computer randomly sampled parameter values for each simulated participant from these across-

participant distributions and randomly sampled a data set for each simulated participant from an 
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SDT model with the participant-level parameters. We used the simulated data to calculate 

discriminability and bias measures for each simulated participant with the formulas  

 

𝜇: = 	1.25𝜑(ℎ𝑟) − 	𝜑(𝑓𝑟) 

 

𝛿: = 	−𝜑(𝑓𝑟) −	 .5𝜇′ 

 

where μ' is the estimated mean of the target distribution, δ' is the estimated deviation of the 

response criterion for the midpoint between the target and lure distributions, hr is the hit rate, fr 

is the false-alarm rate, and φ is the inverse of the cumulative distribution function for a standard 

normal distribution. These measures assume that memory strength follows Gaussian distributions 

and that the standard deviation of strength values is 25% higher for targets than for lures, which 

matches the model that generated the data.  

We submitted the µ' estimates to a Bayesian t-test with a Cauchy prior on standardized 

effect size (Rouder, Speckman, Sun, Morey, & Iverson, 2009) to define a Bayes Factor (BF) 

contrasting the hypothesis that each experiment involved a discriminability effect to the 

hypothesis that it did not. To translate the BF to a probability that there was a discriminability 

effect (i.e., the same judgment that out contributors were asked to submit), we used a prior odds 

of 1 (i.e., the effect and no-effect models were deemed equally likely a priori), so the posterior 

odds were equal to the BF for the test and the posterior probability of an effect equaled EF
EF03

. For 

each of the 5000 replications, we then calculated the same performance metrics that were used to 

evaluate our contributors’ responses; that is, the number of experiments with correct inferences 

and the adjusted Brier score across the 7 experiments. Inferences were scored correct if the 
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outcome deemed more likely was the actual outcome (e.g., over 50% chance of a 

discriminability effect for experiments from two different levels of the study repetition variable, 

or under a 50% chance for experiments from the same level). Brier scores for each replication 

were calculated by averaging the squared deviations between the inferred probability of a 

discriminability effect and the actual outcome of the experiment for each of the seven 

experiments within the replication. Actual outcomes were scored as a 0 (no discriminability 

manipulation) or 1 (discriminability manipulation). For these raw Brier scores, lower values 

indicate better performance and possible values range from 0 to 1 with chance performance 

(guessing a 50/50 chance of a manipulation for every data set) at .25. To aid in interpretation, we 

re-scaled these Brier scores in the same way as we did for contributors such that higher values 

represent better performance and the possible scores range from -1 to 1, with 0 indicating chance 

performance. Specifically, scores at chance performance (.25) were adjusted to 0; scores better 

than chance (below .25) were assigned a value from 0 to 1 depending on their proportional 

position between chance performance and the best possible performance (e.g., a raw Brier score 

of .05 would get an adjusted Brier score of .8 because it is 80% of the way from chance to the 

best possible score: .'52.G5
.'52G

= .8); and below-chance scores (above .25) were assigned a value 

from -1 to 0 depending on their proportional position between chance and the worst possible 

performance (e.g., a raw Brier score of .5 would get an adjusted score of -.33 because it is 33% 

of the way from chance to the worst possible score: .'52.5
.'523

= .33).  

Fig. S2 shows a histogram for the number of correct inferences across the seven 

experiments in each replication. The results show that inferential accuracy is generally high, but 

certainly not perfect, when data sets similar to those sent to our contributors are analyzed with a 

valid measurement technique (i.e., one that matches the true data-generating process). The 
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majority of replications had either five or six correct inferences out of the seven experiments, 

with less than 10% involving four or fewer. Fig. S3 shows a histogram of adjusted Brier scores 

across the simulated replications. The median value was 0.44, indicating that performance was 

typically about halfway between chance (guessing 50-50 for every data set) and perfect 

performance (indicating the correct answer every time with 100% confidence). A small 

proportion of the replications had values below zero, indicating that the sampled data sets were 

misleading as to the true effect status. 

Our primary goal for the simulations was to establish benchmark values that we can use 

to define problematic inference procedures. We identified these cutoffs as the 10th percentile of 

performance across the simulated replications. For evaluating the number of correct inferences, 

this policy suggests that contributors at or below a value of four applied invalid inference 

procedures. For evaluating the Brier scores, the benchmark value was 0.13. 

Of course, it is possible for a valid inference procedure to fall below our benchmarks if 

unlucky sampling produces misleading data (as in 10% of the simulated experiments). To 

evaluate whether our empirical data could be one of these unlucky samples, we applied the 

inference technique used for the simulations to the empirical data (i.e., Bayesian t-tests on μ' 

estimates). This produced correct inferences for 6 of the 7 experiments (all but Experiment 2) 

and an adjusted Brier score of 0.38. These values are comfortably above our cutoff for 

problematic inferences, suggesting that the empirical data are not a particularly unlucky sample 

compared to the simulation results. This also shows that a fairly simple inference procedure can 

beat our performance cutoffs, reinforcing the conclusion that contributors below this cutoff likely 

applied problematic inference procedures. 
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Simulated Inference with the Wrong Measurement Model 

Our simulations above used the same process (i.e., an unequal variance signal detection 

model) to both generate and analyze simulated data sets. This provides a benchmark for 

performance when the only limiting factor on inference success is sampling variability in the 

data. Researchers analyzing empirical data can never be certain that they know the generating 

process in every detail, and must instead depend on having measurement models that are useful 

approximations of this process. Therefore, we used the simulated data sets from the previous 

section to explore the effect of applying a measurement model that does not match the data-

generating process. Specifically, we performed the same inference procedure as the above 

simulation, except that we substituted a hits-minus-false-alarms measure (Pr, Snodgrass & 

Corwin, 1988) for the μ' measures. As one might assume, this measure is calculated by simply 

subtracting the observed false alarm rate from the observed hit rate. This performance measure is 

based on the two-high-threshold (2HT) model of recognition decisions, which essentially 

assumes that a participant either retrieves information that unambiguously identifies the study 

status of an item (i.e., target or lure) or fails to retrieve this information and makes a guess. The 

Pr measure is consistent with a particular version of the 2HT model in which there is an equal 

probability of experiencing retrieval states that identify targets as studied and lures as not 

studied. Notably, this model does not match the unequal variance signal detection model that 

generated the data sets, and applying the two models can produce different conclusions based on 

their different assumptions for the relative effect of bias on hit and false alarm rates (e.g., Dube, 

Rotello, & Heit, 2010; Rotello, Masson, & Verde, 2008). That said, the models can be fairly 

close approximations of one another when changes in bias are subtle (Dube, Rotello, & Heit, 

2011; Rotello et al., 2008). 
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Applying the Pr measure to the simulated data sets produced relatively high accuracy 

levels, demonstrating that our contributors had the potential to make effective inferences even if 

they applied a measurement model that did not match the data-generating model in all respects. 

Specifically, using the Pr measure produced correct inferences for 76% of the simulated data 

sets, which is not far below the 79% accuracy achieved by the μ' measures that align with the 

data-generating model. Inferences with the Pr measure had a median adjusted Brier score of .38, 

which again was close to the .44 median for the μ' measures.  

We found similar results when we reversed the process and generated simulated data sets 

from the 2HT model and measured discriminability with either 2HT or signal-detection 

measures. Again, the measures based on an incorrect measurement model (signal-detection) 

achieved a level of inference success that was just slightly below the measures based on the 

correct model (2HT). This reinforces the conclusion that inference success for our data sets did 

not depend on applying exactly the correct measurement model. Interested readers can confirm 

these claims using the code for the 2HT simulations (see OSF site; this includes fitting code to 

define posterior distributions of 2HT parameters so that the simulations could be based on 

parameter distributions that were consistent with our data).  

 

Random Inference Simulations 

Although a surprising number of contributors fell below our benchmarks for performance 

based on valid inference methods, some contributors seemed to be basically as accurate as they 

could be given the sampling variability in the data. Based on these results, we concluded that at 

least some of our contributors applied effective inference methods; however, we must consider 

the possibility that our high-performing contributors were simply lucky. In assessing the 
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potential role of luck, one should first note that all contributors received the same data sets, so 

variation in inference success could not be driven by sampling variability in itself. Instead, luck 

played a role only in terms of the interaction between sampling variability and the characteristics 

of the chosen inference method, meaning that luck played a (potentially much) smaller role than 

if contributors had received different random samples of data. 

To more systematically assess the role of luck, we performed a third set of simulations to 

define expected performance levels based only on “guessing,” by which we mean a scenario in 

which contributors had no information about whether or not each data set involved a 

discriminability manipulation. The valid-inference-technique simulations above demonstrate that 

the data sets that we sent to contributors do theoretically provide information about 

discriminability, but we are imagining a scenario in which contributors had no way to use this 

information, perhaps because they did not have available models that matched (or at least 

usefully approximated) the memory and decision processes that generated the data. If the results 

from our contributors as a whole are well outside of the distribution of results produced by 

guessing, then this will demonstrate that at least some of them were making effective inferences. 

We began by comparing our contributors to chance-level accuracy on the task of 

determining whether or not each data set had a memory discriminability manipulation. The 

contributors included in this analysis made inferences for a total of 182 data sets, comprising 7 

data sets each from 26 contributors1. The correct inference was selected on 124 (.68) of these 

attempts. Fig. S4 shows the expected binomial distribution for the number of correct inferences if 

each attempt was an uninformed guess (i.e., probability of success = 0.5), with the observed 

                                                
1 We excluded the contributor who reported a 50% probability of a memory effect for every data set, making it 
impossible to classify inferences as correct or incorrect. 
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number correct marked by the vertical line. Clearly, the observed accuracy of our contributors is 

well outside of the distribution of expected results based on pure guessing. 

We next considered adjusted Brier scores. As discussed in the main text, a value of zero 

corresponds to chance-level performance for the adjusted Brier scores. Thus, by one reckoning, 

the distribution of expected Brier scores in the no-information scenario is a spike at zero, but that 

outcome is only predicted if all contributors acknowledge their lack of information by always 

reporting a 50% chance of a discriminability manipulation. Only one of our contributors chose to 

adopt that strategy, and those 7 responses were excluded from this analysis (see Footnote 1). The 

other contributors responded as if they had some useful information about discriminability, and 

their average adjusted Brier score is .13. To assess whether this level of performance could be 

achieved without any information about which experiments had discriminability manipulations, 

we simulated 20,000 studies in which we took the reported probabilities of a memory 

manipulation from each contributor, randomly assigned these probabilities to experiments, and 

calculated the average adjusted Brier score across contributors. Fig. S5 shows the results. The 

average Brier score from these scrambled probabilities was almost always below zero. This 

result occurs because the random responses are equally likely to ascribe high confidence to 

correct and incorrect inferences, but Brier scores penalize high-confidence errors to a greater 

extent than they reward high-confidence correct responses (Brier, 1950). Although the average 

adjusted Brier score sometimes exceeded zero just by chance, the observed average across our 

contributors (the vertical line in Fig. S5) is well outside of range of what one might expect from 

random responding, suggesting that our high-performing responders were not simply lucky. 
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Fig. S1. Diagram of the Bayesian hierarchical unequal variance signal detection model. 
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Fig. S2. Histogram of the number of correct inferences about a discriminability effect out of the 
seven experiments in each simulation.  
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Fig. S3. Histogram of the 5000 adjusted Brier scores across simulated replications. 
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Fig. S4. The expected binomial distribution for the number of correct inferences if each attempt 
was an uninformed guess (i.e., probability of success = 0.5). The observed number correct is 
marked by the vertical line. 
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Fig. S5. Average adjusted Brier score for each of 20,000 simulated studies in which contributors’ 
reported probabilities of a memory manipulation were randomly assigned to each of the 7 
experiments.   
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Discriminability Bias μμ μδ 
1 Liberal 2.05 (.07) -0.30 (.05) 

Neutral 2.05 (.07) -0.25 (.06) 
Conservative 2.05 (.07) 0.02 (.05) 

2 Liberal 2.63 (.07) -0.37 (.06) 
Neutral 2.63 (.07) -0.29 (.05) 

Conservative 2.63 (.07) -0.14 (.06) 
3 Liberal 2.86 (.07) -0.46 (.06) 

Neutral 2.86 (.07) -0.35 (.06) 
Conservative 2.86 (.07) -0.24 (.06) 

Notes. Discriminability is coded in terms of how many times (1, 2, or 3) the targets were studied. 
The μμ parameter represents the mean of the across-participant distribution of μ, the mean of the 
target strength distribution for each participant; μδ represents the mean of the across-participant 
distribution of δ, the deviation of the response criterion from halfway point between target and 
lure distributions for each participant. Values in parentheses are standard deviations of the 
posterior distribution for each parameter. 
 
Table S1. Selected parameter estimates (medians of the posterior distribution) from the Bayesian 
hierarchical signal detection model. 
 


