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Abstract

We construct the Hilbert space costratification of G = SU(2)-quantum
gauge theory on a finite spatial lattice in the Hamiltonian approach. We
build on previous work [IT], where we have implemented the classical gauge
orbit strata on quantum level within a suitable holomorphic picture. In this
picture, each element 7 of the classical stratification corresponds to the zero
locus of a finite subset {p;} of the algebra R of G-invariant representative
functions on Gg . Viewing the invariants as multiplication operators p;
on the Hilbert space H, the union of their images defines a subspace of
‘H whose orthogonal complement ., is the element of the costratification
corresponding to 7. To construct H,, one has to determine the images of the
p; explicitly. To accomplish that goal, we construct an orthonormal basis
in H and determine the multiplication law for the basis elements, that is,
we determine the structure constants of R in this basis. This part of our
analysis applies to any compact Lie group G. For G = SU(2), the above
procedure boils down to a problem in combinatorics of angular momentum
theory. Using this theory, we obtain the union of the images of the operators
P; as a subspace generated by vectors whose coefficients with respect to our
basis are given in terms of Wigner’s 3nj symbols. The latter are further
expressed in terms of 95 symbols. Using these techniques, we are also able
to reduce the eigenvalue problem for the Hamiltonian of this theory to a
problem in linear algebra.
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1 Introduction

This paper is a continuation of our previous one [I1], where we have derived the
defining relations for the orbit type strata of G = SU(2)-lattice gauge theory. It
is part of a program which aims at developing a non-perturbative approach to
the quantum theory of gauge fields in the Hamiltonian framework with special
emphasis on the role of non-generic gauge orbit types. The starting point is a
finite-dimensional Hamiltonian lattice approximation of the theory, which on the
classical level leads to a finite-dimensional Hamiltonian system with symmetries.
The corresponding quantum theory is obtained via canonical quantization. It is
best described in the language of C*-algebras with a field algebra which (for a
pure gauge theory) may be identified with the algebra of compact operators on
the Hilbert space of square-integrable functions over the product GV of a number
of copies of the gauge group manifold el Correspondingly, the observable algebra

IWe will see that N is the number of off-tree links for a chosen maximal lattice tree.



is obtained via gauge symmetry reduction. We refer to [23/25,26,35] for the study
of this algebra, including its superselection structure. For first steps towards the
construction of the thermodynamical limit, see [13,14].

If the gauge group is non-Abelian, then the action of the symmetry group in the
corresponding classical Hamiltonian system necessarily has more than one orbit
type. Correspondingly, the reduced phase space obtained by symplectic reduction
is a stratified symplectic space [32,35,38] rather than a symplectic manifold as
in the case with one orbit type [I]. The stratification is given by the orbit type
strata. It consists of an open and dense principal stratum and several secondary
strata. Each of these strata is invariant under the dynamics with respect to any
invariant Hamiltonian. For case studies we refer to [6,[7,9].

To study the influence of the classical orbit type stratification on quantum level,
we use the concept of costratification of the quantum Hilbert space as developed
by Huebschmann [20]. A costratification is given by a family of closed subspaces,
one for each stratum. Loosely speaking, the closed subspace associated with a
certain classical stratum consists of the wave functions which are optimally local-
ized at that stratum in the sense that they are orthogonal to all states vanishing
at that stratum. The vanishing condition can be given sense in the framework of
holomorphic quantization, where wave functions are true functions and not just
classes of functions. In [22] we have constructed this costratification for a toy
model with gauge group SU(2) on a single lattice plaquette. As physical effects,
we have found a nontrivial overlap between distant strata and, for a certain range
of the coupling, a very large transition probability between the ground state of the
lattice Hamiltonian and one of the two secondary strata.

In the present paper we deal with the theory with gauge group G = SU(2) for
an arbitrary finite lattice. In that case, there are non-trivial relations characteriz-
ing the classical gauge orbit strata which, in a first step, should be implemented
on quantum level. This problem has been solved in [I1] using the above men-
tioned holomorphic picture. In this picture, each element 7 of the stratification
corresponds to the zero locus of a finite subset {pi,...,p.} of the algebra R of
G-invariant representative functions on G¥ A Viewing the invariants p; as multi-
plication operators p; on the Hilbert space H, the union of their images defines
a subspace of H whose orthogonal complement .. is, by definition, the element
of the costratification corresponding to 7. Thus, to construct H,, one has to de-
termine the images of the p; explicitly. To accomplish that goal, we construct
an orthonormal basis in H and determine the structure constants of the algebra
R with respect to that basis. This part of our analysis applies to any compact
Lie group G. So, assuming that we are given the classical stratification for some
Lie group G in terms of the classical invariants p;, with the above result at our

2Here, G¢ denotes the complexification of G.



disposal, we can in principle determine the operators p; as well as their images in
‘H in terms of linear combinations of the elements of the chosen basis.

For G = SU(2), our procedure boils down to a problem in combinatorics of angular
momentum theory. For the latter we refer to [4,512839,42]. Using this theory, we
obtain the union of the images of the operators p; as a subspace of H generated by
vectors whose coefficients with respect to our basis are given in terms of Wigner’s
3nj symbols. The latter are further expressed in terms of 95 symbols. For these
symbols there exist nowadays efficient calculators, that is, the above coefficients
can be calculated explicitly. Using the same techniques, we are also able to reduce
the eigenvalue problem for the Hamiltonian of this theory to a problem in linear
algebra.

The paper is organized as follows. In Section 2] we explain the model. To keep
the presentation self-contained, in Section [B] we present the basics of stratified
quantum gauge theory for arbitrary compact gauge groups as developed in detail
in [11]. Moreover, we construct a basis of H consisting of G-invariant representative
functions and derive the multiplication law in R. In Section [4 we turn to the study
of the case G = SU(2). We describe the orbit type strata, analyze the zero loci
in terms of the above basis and obtain the images of the multiplication operators
p; in terms of linear combinations of the basis elements. As a consequence, the
costrata are given by systems of linear equations with real coefficients built from
3nj symbols. We illustrate the result for the special case N = 2. Finally, we
discuss the eigenvalue problem for the Hamiltonian in terms of the above basis.
The text is completed by two appendices containing the proofs of two technical
results.

2 The model

Let G be a compact Lie group and let g be its Lie algebra. Later on, we will
specify G = SU(2), but for the time being, this is not necessary. Let A be a
finite spatial lattice and let A°, A! and A? denote, respectively, the sets of lattice
sites, lattice links and lattice plaquettes. For the links and plaquettes, let there
be chosen an arbitrary orientation. In lattice gauge theory with gauge group G in
the Hamiltonian approach, gauge fields (the variables) are approximated by their
parallel transporters along links and gauge transformations (the symmetries) are
approximated by their values at the lattice sites. Thus, the classical configuration
space is the space GA' of mappings A! — G, the classical symmetry group is the
group GA of mappings A’ — G with pointwise multiplication and the action of
ge G onaeGM s given by

(g-a)(l) = g(z)a(l)g(y) ", (2.1)



where ¢ € A! and z, y denote the starting point and the endpoint of ¢, respectively.
The classical phase space is given by the associated Hamiltonian G-manifold [11,36]
and the reduced classical phase space is obtained from that by symplectic reduction
[32,136,[38]. We do not need the details here. Dynamics is ruled by the classical
counterpart of the Kogut-Susskind lattice Hamiltonian, see Subsection [4.6l. When
identifying T*G with G x g, and thus T*G*" with G*' x g*', by means of left-
invariant vector fields, the classical Hamiltonian is given by

H0.B) = &3 IBOF -2 3 (o) +ira)) . 22)

LeA! pEA?

where a € GV, g denotes the coupling constant, J denotes the lattice spacing
and a(p) denotes the product of a(¢) along the boundary of the plaquette p in
the induced orientation. The trace is taken in some chosen unitary representation.
Unitarity ensures that the Hamiltonian does not depend on the choice of plaquette
orientations. Finally, E € g*' is the classical colour electric field (canonically
conjugate momentum).

When discussing orbit types in continuum gauge theory, it is convenient to first
factorize with respect to the free action of pointed gauge transformations, thus
arriving at an action of the compact gauge group G on the quotient manifold.
This preliminary reduction can also be carried out in the case of lattice gauge
theory under consideration. In fact, given a lattice site xg, it is not hard to see
that the normal subgroup

{g€ G : g(xo) =1}, (2.3)

where 1 denotes the unit element of G, acts freely on GM'. Hence, one may pass
to the quotient manifold and the residual action by the quotient Lie group of GA°
with respect to this normal subgroup. Clearly, the quotient Lie group is naturally
isomophic to G. The quotient manifold can be identified with a direct product
of copies of G and the quotient action can be identified with the action of G by
diagonal conjugation as follows. Choose a maximal tree 7 in the graph A! and
define the tree gauge of 7 to be the subset

{acGN alt)=1VLeT)}

of GM. One can readily see that every element of GA' is conjugate under G’ to
an element in the tree gauge of 7 and that two elements in the tree gauge of T
are conjugate under G’ if they are conjugate under the action of G via constant
gauge transformations. This implies that the natural inclusion mapping of the tree
gauge into G descends to a G-equivariant diffeomorphism from that tree gauge



onto the quotient manifold of G*' with respect to the action of the subgroup (2.3).
Finally, by choosing a numbering of the off-tree links in A!, we can identify the
tree gauge of 7 with the direct product of N copies of G, where N denotes the
number of off-tree links. This number does not depend on the choice of 7. Then,
the action of G on the tree gauge via constant gauge transformations translates
into the action of G' on G by diagonal conjugation,

g'(ala"'aa'N):(ga’lg_la"'agaNg_l)' (24)

As a consequence of these considerations, for the discussion of the role of orbit types
we may pass from the original large Hamiltonian system with symmetries, given
by the configuration space GA', the symmetry group G** and the action 1D, to
the smaller Hamiltonian system with symmetries given by the configuration space

Q:=G",

the symmetry group G and the action of G on @) given by diagonal conjugation
(24). This is the system we will discuss here. As before, the classical phase space
is given by the associated Hamiltonian G-manifold and the reduced classical phase
space is obtained from that by symplectic reduction. One can show that the latter
is isomorphic, as a stratified symplectic space, to the reduced classical phase space
defined by the original Hamiltonian system with symmetries.

We will need the following information about the classical phase space. As a space,
it is given by the cotangent bundle

T™Q =T"G"V.

It is a general fact that the action of G on () naturally lifts to a symplectic action
on T*@ (consisting of the corresponding 'point transformations’ in the language of
canonical transformations) and that the lifted action admits a momentum mapping

w:TQ — g, ©(p) (A) = p(A.),

where p € T*Q, A € g and A, denotes the Killing vector field defined by A. An
easy calculation shows that under the global trivialization

TGN =GN x gV (2.5)

induced by left-invariant vector fields and an invariant scalar product on g, the
lifted action is given by diagonal conjugation,

g'(ala"'aafNaAla"')AN) = (galg_la"'7gaNg_17Ad(g)A17'"7Ad(g)AN) (26)



and the associated momentum mapping is given by

N

lu(a’la"'aa'NaAla"')AN):ZAd(a’i)Ai_Aia (27)

i=1

see e.g. [36, §10.7]. The reduced phase space P is obtained from T*G™ by singular
symplectic reduction at g = 0. That is, P is the set of orbits of the lifted action
of G on the invariant subset p~1(0) C T*Q, endowed with the quotient topology
induced from the relative topology on this subset. In lattice gauge theory, the
condition p = 0 corresponds to the Gaufl law constraint. As a matter of fact,
the action of G on p~1(0) has the same orbit types as that on Q. By definition,
the orbit type strata of P are the connected components of the subsets of P of
elements with a fixed orbit type. They are called strata because they provide a
stratification of P [32,[38]. By the procedure of symplectic reduction, the orbit
type strata of P are endowed with symplectic manifold structures. The bundle
projection T*@Q) — @ induces a mapping P — )/G. This mapping is surjective,
because f is linear on the fibres of T*@Q and hence p~*(0) contains the zero section
of T*@. It need not preserve the orbit type though.

Remark 2.1. The tree gauge need not be invariant under time evolution with
respect to a gauge-invariant Hamiltonian (e.g., the Kogut-Susskind lattice Hamil-
tonian), but every motion in the full configuration space GM' can be transformed
by a time-dependent gauge transformation to the tree gauge. Thus, up to time-
dependent gauge transformations, the tree gauge is invariant under time evolution.
This is reflected in the isomorphism of the reduced phase spaces mentioned above.

¢

3 Stratified quantum theory

3.1 Quantization and reduction

To construct the quantum theory of the reduced system, one may either first re-
duce the classical system and then quantize or first quantize and then reduce the
quantum system. Here, we follow the second strategy, that is, we carry out geo-
metric (Kahler) quantization on T*G™ and subsequent reduction. Let g¢ denote
the complexification of g and let G¢ denote the complexification of G. This is a
complex Lie group having G as its maximal compact subgroup. It is unique up
to isomorphism. For G = SU(n), we have G¢ = SL(n,C). By restriction, the
exponential mapping
exp : gc — G¢



of G¢ and multiplication in G¢ induce a diffeomorphism
Gxg— G, (a, A) — aexp(iA), (3.1)
which is equivariant with respect to the action of G on G x g by

g-(a,A) := (gag™", Ad(g)A)

and the action of G on G¢ by conjugation. For G = SU(n), this diffecomorphism
amounts to the inverse of the polar decomposition. By applying this diffeomor-
phism to each copy, we obtain a diffeomorphism

GN x gV = GY, (a1,...,an, A1, ..., Ay) = (a1 exp(iAl),...,aNeXp(iAN)) )

By composing the latter with the global trivialization (2.5]), we obtain a diffeo-
morphism

TGN — G¥ (3.2)
which, due to (28], is equivariant with respect to the lifted action of G on T*G"™
and the action of G on G¥ by diagonal conjugation. Via this diffeomorphism,
the complex structure of G¥ and the symplectic structure of T*GY combine to a
Kihler structure. Half-form Kéhler quantization on G¥ yields the Hilbert space

HIL*(GY, dvy,)

of holomorphic functions on Gg which are square-integrable with respect to the
measure
dvy = e Mne, (3.3)
where . .
/i(alelAl, . .,aNe‘AN) = [A)P+ -+ AN

is the Kéahler potential on G¥,

p(e ™ ayd ) = %iet sin (ad(41)) %et sin (ad(4x))

ad(A;) ad(An)
is the half-form correction and
e(are™, ... ane™) =day ---day dA; ---dAy
is the Liouville measure on T*GV. Reduction then yields the closed subspace
H=HL*(GY,dv,)°

of G-invariants as the Hilbert space of the reduced system.



Remark 3.1. The above result belongs to Hall [16]. Alternatively, the Hilbert space
HIL*(GY,dv) is obtained via the Segal-Bargmann transformation for compact Lie
groups [I5]. In more detail, the Segal-Bargmann transformation

®: LA(GN) — HLA(GY,dw)

is a unitary isomorphism, which restricts to a unitary isomorphism of the subspaces
of invariants. ¢

3.2 Orbit type costratification

Following Huebschmann [20], we define the subspaces associated with the orbit
type strata of P to be the orthogonal complements of the subspaces of functions
vanishing on those strata. To accomplish this idea, we first clarify how to interpret
elements of H as functions on P. In the case N = 1 discussed in [22] and [19], this is
readily done by observing that P = T /W, where T is a maximal torus in G' and
W the corresponding Weyl group, and using the isomorphism HL?(G¢,dv)" =
HIL*(Te,dvr)Y, see §3.1 of [22]. Here, the measure dvyp is obtained from dv by
integration over the conjugation orbits in G, thus yielding an analogue of Weyl’s
integration formula for HL?*(GY,dv). In the general case, the argument is as
follows.

First, we construct a quotient of G¥ on which the elements of H define functions.
Consider the action of G¢ on G by diagonal conjugation. For a € G¥, let G¢ - a
denote the corresponding orbit. Since G¢ is not compact, G¢ - a need not be
closed. If a holomorphic function on G¥ is invariant under the action of G by
diagonal conjugation, then it is also invariant under the action of G¢ by diagonal
conjugation, i.e., it is constant on the orbit G¢ - a for every a € Gg. Being
continuous, it is then constant on the closure G¢ - a. As a consequence, it takes
the same value on two orbits whenever their closures intersect. This motivates the
following definition. Two elements a,b € G¥ are said to be orbit closure equivalent
if there exist ¢y, ...,c,. € G¥ such that

Gec-anNGe-¢g #9, Gec-eyNGe-c# 9, ..., Gec-¢,NGe-b#@.

Clearly, orbit closure equivalence defines an equivalence relation on G¥, indeed.
Let GY //Gc denote the topological quotientﬁ. By construction, the elements of H
descend to continuous functions on G¥ //Gc.

In [T1] we have explained in some detail how the orbit closure quotient GY //G¢ is
related to the reduced phase space P. This discussion is based on the observation

3This notation is motivated by the fact that the quotient provides a categorical quotient of
GY by Gc in the sense of geometric invariant theory [30].



that, via the equivariant diffeomorphism ([B.2]), the momentum mapping may be
viewed as a mapping

poGg =g
and, thus, P may be viewed as the quotient of u~'(0) C G¥ by the action of G.

In this language, p~'(0) turns out to be a Kempf-Ness set [24]. Using this fact,
one can prove the following.

Theorem 3.2. The natural inclusion mapping p~1(0) — G¥ induces a homeo-
morphism

P GY//Ge. (3.4)

For the proof, see [17].
As a by-product of the proof, one finds that two points a,b € G¥ are orbit closure
equivalent iff

Ge-aNGe - bNp(0)# . (3.5)

As a result, via the homeomorphism (3.4)), the elements of H can be interpreted
as functions on P. By virtue of this interpretation, to a given orbit type stratum
P, C P, there corresponds the closed subspace

VTI:{’(/JGHI’(/JWJT:O}.

We define the subspace H, associated with P, to be the orthogonal complement
of V. in H. Then, we have the orthogonal decomposition

H, &V, =H.

Remark 3.3. Since holomorphic functions are continuous, one has

V, = { € H: b =0} (3.6)

First, since the principal stratum is dense in P, this implies that the subspace
associated with that stratum coincides with 7. Thus, in the discussion of the
orbit type subspaces below, the principal stratum may be ignored. Second, recall
that in a stratification, the strata satisfy the condition of the frontier, which means
that if P,NP, # &, then P, C P,. In view of this, (3.6) implies that if P,NP, # @,
then V, C V, and hence ‘H, C H,. The family of orthogonal projections

H, — H, whenever P, NP, # &

makes the family of closed subspaces H, into a costratification in the sense of
Huebschmann [20]. ¢

10



In order to analyse the condition ¥p, = 0, it is convenient to work with those
subsets of GY which under the natural projection G¥ — G¥ //G¢ and the home-
omorphism (34 correspond to the orbit type strata of P. For a given orbit type
stratum P, denote this subset by (G¥),. That is, (G¥), consists of the elements
a of GY whose orbit closure equivalence class belongs to the image of P, under the
homeomorphism (3.4). In other words, a € (G¥), iff it is orbit closure equivalent
to some element of ~1(0) whose G-orbit belongs to P,. Clearly,

V, = {lﬁ eH: lpr(G(sz)T = 0}. (3.7)

3.3 Characterization of costrata in terms of relations

To conclude the general discussion, we describe how to construct V, and H, using
defining relations for the orbit type strata P,.

Let SR(G") denote the commutative algebra of representative functions on GV
and let R := R(GY)% be the subalgebra of G-invariant elements. Since G¥ is
the complexification of the compact Lie group GV, the proposition and Theorem
3 in Section 8.7.2 of [34] imply that SR(G") coincides with the coordinate ring
of G¥, viewed as a complex affine variety, and that SR(G") coincides with the
algebra of representative functions on G¥. As a consequence, R coincides with
the algebra of G-invariant representative functions on G¥, where the relation is
given by restriction and analytic continuation, respectively.

Recall that an ideal Z C R is called a radical ideal if for all f € R satisfying
f™ € I for some n one has f € Z. Moreover, given a subset R C R, one defines
the zero locus of R by

{ac G : fla)=0forall f € R} C GY.
It coincides with the zero locus of the ideal in R generated by R.
Proposition 3.4. Let P, be an orbit type stratum and let R, be a subset of R
satisfying
1. The zero locus of R, coincides with the topological closure of (G¥).,

2. The ideal generated by R, in R is a radical ideal.

Then, V. is obtained by intersecting H with the ideal generated algebraically by R,
in the algebra Hol(GX)Y of G-invariant holomorphic functions on G¥.

For the proof, see [11].

By Hilbert’s Basissatz, finite subsets R, C R satisfying conditions I and 2 of
Proposition B.4] exist. Given R,, Proposition B.4] implies the following explicit
characterization of the subspaces V, and H, in terms of multiplication operators.
For f € R, let f:H — H denote the operator of multiplication by f.

11



Corollary 3.5. Let P, be an orbit type stratum and let R, = {p1,...,p;} be a
finite subset of R satisfying conditions [l and 2 of Proposition 3.4l Then,

Vr =im(py) + - +im(p,) , H, = ker (ﬁ{) N---Nker (ﬁl) . O

In what follows, we will refer to conditions [Il and 2] of Proposition 3.4] as the zero
locus condition and the radical ideal condition, respectively.

3.4 The commutative algebra R

By Proposition 3.4l and Corollary B.5] the costratification of the quantum Hilbert
space H is given by a family of finite subsets R, C R satisfying conditions [II
and 2l Each of these subsets consists of a finite set of G-invariant polynomials
on G¥. To construct the costratification explicitly, one has to find the images
of the multiplication operators defined by these invariant polynomials. This can
be achieved by choosing an orthonormal basis in H and by finding the structure
constants of the multiplication law in R in that basis.

By RemarkB.1], we can first consider the Hilbert space L?(G™)% and use the theory
of compact Lie groups. For the convenience of the reader, and to fix the notation,
we recall some basics, see e.g. [31] or [12] for details. Below, all representations
are assumed to be continuous and unitary without further notice. Let G denote
the set of isomorphism classes of finite-dimensional irreps of G. Given a finite-
dimensional unitary representation (H,7) of G, let C(G), C R(G) denote the
subspace of representative functiond] of 7 and let Xr € C(G), be the character of
7, defined by X (a) := tr (7(a)). The same notation will be used for the Lie group
GN.
The elements of G will be labeled by the corresponding highest weight A relative to
some chosen Cartan subalgebra and some chosen dominant Weyl chamber. Assume
that for every A € G a concrete unitary irrep (Hy, m,) of highest weight A in the
Hilbert space Hy has been chosen. Given A = (AL,... \Y) € @N, we define a
representation (Hy,my) of G by

Hy = ® Hyi, m(a)= ®7T>\i(a,~) , (3.8)

where @ = (ay,...,ay). This representation is irreducible and we have

N

C(GV)ry = Q) C(G)ry,

i=1

4The subspace spanned by all matrix coefficients (¢, w(-)v) with v € H and ¢ € H*.

12



isometrically with respect to the L?-norms. Using this, together with the Peter-
Weyl theorem for G, we obtain that @, av C(G")x, is dense in L*(GV,d"Va).
Since @, cav C(GN)r, €D __gv C(GY)x, this implies

TeGN

Lemma 3.6. Fvery urreducible representation of GN is equivalent to a product
representation (Hy,my\) with A € GN. If (Hy,my) and (Hy,my) are isomorphic,
then A = ). O

Given )\ € GN , let Wg denote the representation of G on H, defined by

m(a) :==7(a,...,a). (3.9)

This representation will be referred to as the diagonal representation induced by
my. It is reducible and has the isotypical decomposition

Hy =P Hyx

\e@G

into uniquely determined subspaces H, ). Recall that these subspaces may be
obtained as the images of the orthogonal projectors

P, := dim(H,\)/GXm(a) my(a)da (3.10)

on H)y. These projectors commute with one another and with ﬂi. If an isotypical
subspace H) y is reducible, we can further decompose it in a non-unique way into
irreducible subspaces of isomorphism type A. Let m,(A) denote the number of

these irreducible subspaces (the multiplicity of ) in Wg) and let G ) denote the

subset of G consisting of the highest weights A such that my(A) > 0. This way, we
obtain a unitary G-representation isomorphism

)\EG)\ -
Let
my(A) my(A)
Py @ @HA%HM bV HA%@ @HM

denote the natural projections and injections of the direct sum. For every \ € G A

and every k,l =1,...,my(\), define a G-representation endomorphism A%l)‘ of wg
by
1
A= ——— o loid, oprd, o 3.12
k.l dim(Hy) P Ok OPIy; ©PA ( )

13



and a G-invariant function (x,)z, on GV by

Cba) == /dim(Hy) tr (ma(@)A})) (3.13)

Proposition 3.7. The family of functions
{(Xg)gvl LAY, Ae Gy, k= 1,...,mA()\)}

constitutes an orthonormal basis in L?(GN)C.
Proof. Note that for every \ € GN , the mapping

Ty : End(H,) = C(G"), Ty(A)(a) := \/dim Hy tr (mx(a)A), (3.14)

is a unitary G-representation isomorphism with respect to the scalar product on
End(H)) defined by (A|B) = tr(A*B) and the induced endomorphism representa-
tion on End(H,), given by assigning to g € G the automorphism

A m(g) Am(g)™"

of End(H). Being a representation isomorphism, 7 restricts to a unitary Hilbert
space isomorphism of the subspaces of G-invariant elements, End(H,)% — C(G"V)¢ .

Now, End(H,)“ consists precisely of the representation endomorphisms of Wg._
Hence, Schur’s lemma implies that it is spanned by the endomorphisms A%l)‘ with

A€ G\A and k,l =1,...,my()). Using prik o i%,’k, = w0 id g, , we compute
<A%,’NA%},A1/> = Oxx Ok O -

It follows that the endomorphisms Aﬁl)‘ with A € @A and k,l =1,...,my(\) form
an orthonormal basis in End(H,)%, and hence that their images under T}, i.e., the
functions (x»)y,, form an orthonormal basis in C(G™)S . Thus, the family given

in the proposition yields an orthonormal basis in R = ‘ﬁ(GN )¢,
It remains to show that R is dense in L2(GY,d"a)“. This follows from the Peter-
Weyl theorem for GV by applying the averaging operator

P : A(GY,dVa) = TGN, dYa)% | Po(f)(a) = / F(garg™, ..., gang ") dg.
G

and observing that the image of a dense subset under a surjective continuous
mapping is dense. U

14



By analytic contmuatlon the irreps 7y of G induce irreps 75 of Gg, the irreps
of GV induce irreps 7§ of Gf, and the functions (x,); , on G induce holomorphic

functions (x5)x, on G¥. Then, 38), BJ) and BI3) hold with my, 7\ and (xa)3,
replaced by, respectively, 7T§, 7% and ()&)27[.

Corollary 3.8. The family of functions
{OE0 - A€GY, NGy, k=1, .m(N)}

constitutes an orthogonal basis in H. The norms are
OS2 = Hcm O = (R (@ 2N 0 (3.15)

where p denotes half the sum of the positive roots. The expansion coefficients of
[ € M wrt. this basis are given by the scalar products ((xy)p | fien) i L*(GN)C.

Proof. See Appendix[Al The last statement follows from the fact that two elements
of # coincide iff their restrictions to GV coincide. Since the functions (x,)y, form
an orthonormal basis in L?(GV)“, we have figv = EA,)\,k,l«XA)g,l‘fFGN) (X)R-
Since (xa)n; = (X3)rs1qn, this yields the assertion. B O

Remark 3.9. The orthonormal basis of invariant representative functions provided
by Proposition B.7]is a special case of a spin network basis in the sense of Baez [3].
It is special in so far as from the very beginning we have fixed a tree gauge, which
reduces the group of local gauge transformations to the action of G. Moroever,
our basis above clearly corresponds to a fixed graph (a finite regular cubic lattice).
In this situation, we are able to provide a more explicit presentation of the basis
elements in terms of appropriate functions. We refer to [3] for comments on var-
ious applications of spin networks in Mathematical Physics. In particular, over
the years spin network states have become an important tool in Loop Quantum
Gravity, see [40] and further references therein. ¢

Now, let us turn to the discussion of the multiplication structure of the G-invariant
representative functions ()&)27[. We assume that a unitary G-representation iso-

morphism (B.I1]) has been chosen for every A € GN and every N. Denote
d>\ ::dimH,\, dA::dimHA.
Writing

(X,\ )kl,ll( )(XAQ)QQJQ(@)

15



— \Jdy,dy, tr ((A“l ® A2, ) (7@1(@)@97@2(@))) , (316

we see that in order to expand the product (X,\ )k1 = (Xi)g; ,, in terms of the basis

functions (XA)k,lv a reasonable strategy is to decompose the G¥-representation
Ty, ® my, into GN-irreps A and then relate these GN-irreps to the basis functions
using the chosen G-representation isomorphisms ¢,. To implement this, we define
two different unitary G-representation isomorphisms of the diagonal representation
7r)\ ®7r)\ with an orthogonal direct sum of G-irreps. The first one, ®, »,, is adapted
to the tensor product on the right hand side of ([B.16). It is defined by

mx; (M) may (N2)

Py, - Hy, ® H), e Bl P PH H2H,) (3.17)

A1,A2 i1=1 ia=1

my; (A1) my, (A2) My g (A

%_g@ D P @@HA ., (3.18)

A1,A2 i1=1 io=1

where ¢y », acts on each summand Hy, ® Hy, as @z, Let pr;i’gz Y and
YN
T denote the natural projection and injection operators of the direct sum
DYBYEROPY;
. We have
M(x1,29) (A
()\17>\2 )\17A2
SO()‘I A2) © (prA1 i1 ® pry A2 22) z : : : 1)\ ) )\1,)\2,i1,i2,)\,i © (bAlAz
(3.19)
M1 Ag) (M)
Ardo (A1,A2)
¢3132 © (1)\1 i1 ®i >\2 12) Z Z Al)\z,zl,z’g,)\ i pl")\ 3 O PaiX2) -
(3.20)

The second unitary G-representation isomorphism, Wy ,,, is adapted to the defi-
nition of the basis functions (x,)z,. It is defined by

myy, )\2()‘
Uy, HA1®HA2 > P EB Hy (3.21)
A
o may 20 () ma()
21 b (P H ||, (3.22)
A i=1 A k=1

16



where wil », is some unitary GN-representation isomorphism, provided by Lemma
3.6, and wil 2, 18 the G-representation isomorphism acting on each summand Hy
as @,. Moreover, mx, a,(A) is the multiplicity of the GN-irrep Hy in Hy, ® H,,.

_1 7_2

Let pry’;”* and ifl’AQ be the natural projections and injections, respectively, of

the dlrect sum (B.21) and let pr;lz’;fk and 1?12’ Ak be the natural projections and
injections, respectively, of the direct sum ([3:22]) We have

my(A)
)\ ,)\ AN
Ui, oL = Z Z SUSVESSsll IO (3.23)
my(A)
Ay A
i © prxlZ = Z Z 1”‘C o pr>\1Z )\Qk o @Z)i& . (3.24)

By construction, Wy o@;}b is a unitary automorphism of a direct sum of G-irreps
H,. Hence, Schur’s lemma implies that

A2y -1 A7, AL A ALAE
pr}\ i,k © (\IIAUAQ ° (I)AI,A2> 1)\1,)\2,11,12 Nl 5)‘>‘/ U)\h)\g,il,ig,i’ 1dH)\ ’ (325)
Ak 1 Ay AN
PIX| 2a,inio Vit © (CDA A © \II)\ Py ) OLyiak — =ow U A1, A2, i1 yio,d idp, , (3.26)

A dgidi Ak
with certain coefficients Uz )\11 )\22“ ini

Proposition 3.10. In terms of the basis functions, the multiplication in R is

gien by
C
(X)\ )kl,ll ) (X)\ )k2,12
M1, () mx(A) M(xy2)(A)
d>\1d&2 dy AL A AN ALK A2 A1, Cy\\
TV dady, Z Z Z EUAh)\Q,klka,j U>\1,)\2,ll,lz,j (Xg)k,l'
2 n=1 A ki=1 =1

The same formula holds true for the basis functions (x)z, on G".

Proof. 1t suffices to prove the assertion for the basis functions (x,)s, on G". In
the proof, we will use the shorthand notation

1
( )k;l ll( ) (X)‘Q)22 lg( ) ’ q) = (I)A1A2 ) \I[ = \I]A1A2 .

Vo, dy,

Using (B.16) and the fact that @Z)il A, 52 GN-representation isomorphism, we may
rewrite

z

mMX1,20 (A)

A Ao _
z=1tr @ @ WA(Q) © Q/JLAQ © (Agll,hl ® Akj l22> © <wi1A2> 1
A =1

17



Since

Mxq,aq(A) Map 2y (A)
—_ A17)‘2 717&2
@ m(a) = E E Li © m(a) o Pryi =
A =1 A i=1

this can be further rewritten as

Mxq g (A)

A1LA >\ A1 Ao, A2 1 —1 AL

— 17 2 21 2 1,42

Z= E E tr (WA( OPry; % Ay © ( o © A, ) © (@/@132) Oy ) :
A =1

By (B23) and (B20),

mx(A)
)‘17)‘2 J— —17A2
Wi = E E (% AQ) Olmmoprxko‘mv
A k=1
mx(A)
Ay — A1y 2
pr)\z - E : QIOA 1)\kopr)\z)\k 1/}&1A2'
A k=1
Plugging this in, we obtain
MaL A (A A) my(X)

T S S (nwentotomie (vee)

=1 AN k=1 =1
oo (A @A) 0o (Pour )01>\12’>)\\2kopr>\kogp>\>
Using (319) and (3:20), we find
M(xq,20) (A7)

od~ 1 _ )‘17>‘2 >‘17A2
7/7(1[ 7 Dvida krka, N5 © PYX Xaln 02,05 -
)\1 )\2 NG

j=1

A1 Ag,A2
®o (Ak?hh ® Ak2 l2

Together with (3.25]) and (BE]) this yields, after taking the sums over X and \”,

M A (A ma(A) M(aga) (A -
>‘1 7)‘27>‘77'7)‘ k AlyAQ ;Ayiy)Vl
° = /7d 7 Z Z Z > 2 UAmz,khkg,m LWHNS
i=1 k=1 j=1

tr (7@(@) o 90; o iik o prik o g0A> )
The assertion now follows from (3.12) and (BI3). O

Remark 3.11. Note that the coefficients U in Proposition depend on the
unitary G-representation isomorphisms ®y y, and W, »,. In Subsection A1}, we
will see that for G = SU(2), these isomorphisms are uniquely determined by the
choice of a unitary G-representation isomorphism ¢, for every A € GN , and that
the coefficients U boil down to recoupling coefficients of angular momentum theory.

¢
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4 The model for G = SU(2)

4.1 The commutative algebra R for G = SU(2)

As observed in the preceding section, to fix concrete basis functions (XA)?]»,

have to fix the unitary G-representation isomorphisms ¢, entering their definition.
As a consequence, we obtain concrete formulae for the unitary operators in the
multiplication law of the above algebra, expressed in terms of SU(2)-recoupling
coefficients. This relates the algebra structure to the combinatorics of recoupling
theory of angular momentum as provided in [4,[5,28][42].

In the case of G = SU(2), the highest weights A of irreps correspond 1-1 to spins
j =0, %, 1, %, .... We will use the common notation D’ for m;. Thus, (H;, D7)
is the standard SU(2)-irrep of spin j, spanned by the orthonormal ladder basis
{lj,m) : m = —j,—j + 1,...,j} which is unique up to a phase. Accordingly,
every sequence A of highest weights corresponds to a sequence j of spins. We

we

write DI = m; for the corresponding irrep of SU(2)Y and Dfl = 7T;l for the induced
diagonal representation of SU(2). To fix the G-representation isomorphisms

m;(5)

Joi=1

we choose the following reduction scheme for tensor products of N irreps of SU(2).
Given nonnegative half integers s, s9, denote

(s1,82) = {51 = sa|,[s1 — $2| + 1, |51 — 2| +2,..., 51+ 52}

and recall that the representation space Hs, ® H,, decomposes into unique irre-
ducible subspaces (H;, ® H,,)s of spin s € (s1,52). We start with decomposing
Hj ® Hj» into the unique irreducible subspaces (Hj ® Hj2);2 with 2 € (51, 52).
Then, we decompose the invariant subspaces

(Hjl X Hj2>12 X ng C Hjl (29 HjQ (29 ng
into unique irreducible subspaces
((Hj1 ®Hj2)12 ®Hj3)13, Be <l2,j3>.

Iterating this, we end up with a decomposition of H; into unique irreducible sub-
spaces
val = ( .. ((Hjl ® sz)p ® Hj3)13 e ® HjN)lN s (42)
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where [ = (I*,...,I") is a sequence of nonnegative half integers satisfying I! = j*
and ' € ('™, j%) for i = 2,3,..., N. Let us denote the totality of such sequences
by R(j). Moreover, denote

(g =1{j:3LeR@)s th.j=1"},  R(j,j)={LeR(): 1" =j}.

Then, m;(j) = [R(j,7)| and hence m;(j) # 0 iff j € (j), and the isotypical

component of type j of H; is given by the direct sum of the subspaces H;; with
L€ R(j,j)-

Remark 4.1. Reduction schemes for N-fold tensor products of SU(2)-irreps of spins
g1, ..., 7Y can be visualized by binary trees with N terminal points o labeled by
g1, ..., 7Y and representing the tensor factors, and with N — 1 internal points e
which have two incoming lines and, except for the last one, one outgoing line and
which represent the intermediate reduction steps given by the irreducible subspaces
in the tensor product of the incoming irreps. The last internal point represents
the final irreducible subspace obtained by the reduction scheme. Every labeling
of the internal points which is admissible in the sense that every internal label [
belongs to (I, %), where ' and [? label the starting points of the incoming lines,
corresponds to a unique such final subspace. The binary tree of the reduction
scheme used here is

jt 52
3
12 ijl
3 N
JN-1
IN
and admissible internal labelings are given by the sequences [ € R(j). ¢

To define the isomorphism ¢;, we choosdd ladder bases in the irreducible subspaces
Hj ;. Denote their elements by |j,1,m), where m = —I™, =1V +1,...,I". Then,

{li,L,m) : L€ R(j),m = A A A

is an orthonormal basis in H;. For given j € (j), we can use the sequences
L € R(j,7) to label the copies of H; in the direct sum decomposition of the target

5 Any other choice would yield the same basis vectors but multiplied by a phase which depends
on [ only.
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space of ¢;. As a consequence, the natural projections and injections related with
] J

. " J .
this decomposition read pr;; and i;,

respectively, the basis functions read (Xj)'lj y

. . . . e J»J
and the endomorphisms appearing in their definition read Az’ 2 We define ¢; by

pi(1g.Lm)) =il (|j,m)).

where |j,m) denotes the elements of the orthonormal ladder basis in H;. Using

(312) and the relation priloij—./i, = Oy idp,, forj € (j), L' € R(j,j) and " € R(j),
we compute

oy 1

i g ] 1 B ¥ . ] ]
A (1,1 m) = —= ()" o B o pry 0 95(13, 1"y m)) = == |j, L m)
VY% J
This implies
o d
J5J . . ..
A= —= Y GLmGliml, L€ R(.j). (4.3)
and
, dj < |
(i@ == DG lmD )i Lm),  LI€R(.]). (4.4)
] m=—j

For later use, we express these functions in terms of the matrix entry functions

D” . i=1,...,N. For spins sy, 52, s and spin projections my, mg, m, let
(ML)
81,52,8 . .
le,mg,m T <<817m1| ® <827m2| ‘817 52; S7m>

denote the Clebsch-Gordan coefficients. Here, |sq, $2;s,m) denote the elements
of the ladder basis in the irreducible subspace of spin s in H,, ® H,, whenever
s € (s1,$2) and the zero vector otherwise.

Proposition 4.2. We have

, d; & , .
()i (a) = d—j S SN GG L m) O m) D, () DI (),

m=—j m m'

where Y means the sum over all sequences m = (my, ..., my) such that
m;=—3"...,5 fori=1,...,N, my—+---+my=m,
and where
21 272 2 373 N—-1 ;N N
y — VARV 7l l ) 7l l ) 7l
C(l’ L m) o le,mz,mﬁrmz Cm1+m2,m3,m1+m2+m3 e Cm1+"'+mN—17mN7m :
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Proof. Using the tensor basis in Hj, given by the vectors
‘lum> = ‘jhml) ®®‘jN7mN>7 m; = _ji7"'7.jl'7 1= 17"'7N7

formula (4.4]) can be rewritten as

To compute the scalar products, we expand |j,[,m) wrt. |j,m). Denote j :=
(L, ..., Yand L= (14, ..., 1Y) and consider the irreducible subspace H;L of
Hj with its ladder basis {|j,{,m) : m = —N=L IV By construction:Hli
is the irreducible subspace of spin [ in H;; ® H;~ and |j,,m) are the elements
of the ladder basis in that subspace. Hence,

lN 1

. N-—1

gLmy= > Z Ol I L) @ 15, )
ny=—IN-"1my=—jN

Iterating this argument, we find that the expansion of |j,l,m) is given by

N—1 jN N N—2 iN—1 N-1 122 . . .
Z Cl A Cl ] ! "'05127,]m72l,n3 |.]17n2>®‘j27m2>®“'®‘jN7mN>7

nN,mN, NMN—-1,MN-1,NN
™mi,my
where the sum runs over n; = —'=!, ... It and m; = —j%,...,jifori =2,..., N.
Putting m; = ns and taking into account that the Clebsch-Gordan coefficients
vanish unless the first two spin projections add up to the third one, we find that
in the sum over ns,...,ny, only the terms with

ng=my+me, Ng=mMy+---+m3g, ..., NyN=M1+ +MnN_1

survive. As a result, we obtain
g.Lm) =Y C(j.Lm) |j,m).
m

Plugging this into the above formula for (Xg) v and taking into account that the
Clebsch-Gordan coefficients are real, we obtain the assertion. O

Next, we compute the coefficients U in the multiplication law for the basis functions
given by Proposition B.I0. For that purpose, we have to determine the unitary
G-representation isomorphisms (Ile,jQ and \Ijjpjz introduced in Subsection [3.4]
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First, C(?nsider D; .- Reca'll thfit ®; 4, = ®; 4, © (9011 ® <pl-2). Here, ¢; ; is given
by a unitary G-representation isomorphism

.~ @ H (4.5)

JE(1,52)

for every pair ji, jo with ji; € (j ) and jp € (J > Since the multiplicities are 1 here,
we may omit the corresponding 1ndeX in our notatlon Another consequence is that
the isomorphism (4.3) is determined up to a phase on every H;. We choose these
phases in accordance with the standard choice of the Clebsch-Gordan coefficients,
so that (4.5)) is given by these coefficients. Then, @, i, d, 18 uniquely determined by
the choice of ¢; for every j and hence by the choice “of the reduction scheme for
N-fold tensor products of SU( )-irreps. To write it down explicitly, we decompose
H i, ® H i, into irreducible subspaces according to the following reduction scheme:

L (4.6)

This leads to irreducible subspaces labeled by I, € R(j,), I, € R(j,) and | €

(IV,I5). In each subspace, we choose an orthonormal ladder basis and denote its
elements by |il,12;11,12; I,m), m=—I,...,1. Then,

{‘11722;117£2;lam> :ll € R(ll>7 12 € R(lQ)? l € <Z{V’lé\7>7 m = _luul}

is an orthonormal basis in H i, ® H i, and (IDj J, 18 given by

. . 7j2
(I)11’12 (‘11’22;£1’£2; l’m>> - ll_N IV l(‘lvm» )

1 72717l27

Jyd
where 1,517°%
ll 7l2 7l17l27

(BI]) (here, by our specific choice of notation, the labels II¥ and I3’ are actually
redundant).

denotes the natural injection associated with the decomposition
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Now, consider the unitary G-representation isomorphism W; ; . Denote (J ) 2> =
[TiZ1 (1, 42). Recall that ¥; ; = 1/112.1722 o 11.1712, where
1 .
Vi, Hi, @ H,— D A

3€{10do)

is a unitary GV-representation isomorphism and 1/1]2 ;. acts on every summand H;
21742 Ea
1
Jy:dy
type (43)), the multiplicities are 1 as well and so we may omit the corresponding
index in our notation. This also implies that w} ;. 1s unique up to a phase for
21742

as ;. Since for every factor of GV, boils down to an isomorphism of the

every factor of G and the corresponding irreducible factor of Hj. As before,

we choose these phases so that 1/1}- ; 1s given by the appropriate Clebsch-Gordan
PEARED)

coefficients. Then, \1111712, like <I>l»17l»2, is uniquely determined by the choice of the

reduction scheme for N-fold tensor products of SU(2)-irreps. To write it down
explicitly, we decompose Hl»1 ® Hig into irreducible subspaces according to the
following reduction scheme:

(4.7)

This leads to irreducible subspaces labeled by j € (j ,j,) and [ € R(j). In
each subspace, we choose an orthonormal ladder basis and denote its elements by
iy dsLm), m = —IN, ..., IN. Then,

{\ipigdvlvm) . j€ (i), L€ RG), m:—lN,...,zN}
is an orthonormal basis in Hil ® Hig and 11111712 is given by

. Jd
\Ill1’i2 <|~11’l2;~]’£’ m)) = Elei(‘ZNum»v
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where 1_11 ~'; denotes the natural injection associated with the decomposition B22)
(Where, by our specific choice of notation, the label IV is redundant).
Proposition 4.3. In the case of G = SU(2), the multiplication law for the basis

functions (x5)], reads

dj,d;

(XJ )ll,ll <XJ2)l2,12_ dj,_ldj,_ Z Z Z

N2 e g,) d€Gd2) LUER(.5)

Ulpl@ (27 L 117 12) U11’12 (l’ é/’ ll ) 112) (XE)Z,L' ’

M

ol

|~.

where
U11712<17£; £17£2) = <117Z2;17Lm‘11722;£17£2;j7 m) (48)
for every j € (j,,j,): 7 € (j1,J2) and L € R(j,j), and for any admissible m.

The coefficients

U11712<17£; £17£2) = <117Z2;17Lm‘11722;£17£2;j7 m)

are the recoupling coefficients for the reduction schemes (4.6) and . Up to
normalization, they are given by what is known as 3(2/N — 1)j symbols

Proof. By Proposition B.10, it suffices to compute the coefficients Ull’ig (4,51, 1)
According to (3.25), they are defined by
J — Jy0d ) .
pr;]—f \1111712 O(I),lA o 15152 L= Uzl7l‘2(l’£;ll’12) ldH]. ,

R I I RN N

where j € (j,,7,), j € (j1,J2) and [ € R(j,j). Evaluating the left hand side on a
ladder basis vector |7, m) and plugging in a unit, we calculate

,J2 1 Jy:d, ( . )
pr]]l \Ijj ’-72 q) 7]2 © 1.]‘17.727117127.7‘ |‘7’m>

ll 22

_pr]jl 11712(|21712;11712;j7m>)

= Gdyd Uimli syl L, )prj oW (I1d,0dyd s Um))
llvl/

L . . J Jyod

= > Gpdyp d Lomlgy gyl jom) pr s o 1155, (11, m)
llvll

:<21712;17£7m|‘11712;£1712;j7m>|j7m>'

This yields (4.8]). The multiplication law follows then by observing that the coef-
ficients U; ; (4,111, 15) are real. O

6See Topic 12 in [5] for details.
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The recoupling coefficients Ul-1 gy (4,L;1;,1;) can be expressed in terms of the recou-
pling coefficients for N = 2, that is, for a tensor product of four SU(2)-irreps as
follows. Given four spins j1, ja, ju, js5, the tensor product Dt ® D72 @ D7 ® D’5 can
be decomposed, on the one hand, into irreducible subspaces labeled by js, jgs, jo
according to the following reduction scheme:

Ji. J2  Ja  Js

J (4.9)

Let {|(71,72), (Ja, 75); 73, J6; Jo, M) = M = —Jo,...,Jo} be the ladder bases in these
subspaces chosen in accordance with the definition of the Clebsch-Gordan coeffi-
cientd]. On the other hand, this tensor product can be decomposed into irreducible
subspaces labeled by j7, js, jo according to the following reduction scheme:

J (4.10)

Let {|(j1,72), (Ju, J5); (J7s J8)s Jo, m) : M = —Jg, ..., Jo} be the ladder bases in these
subspaces, again chosen in accordance with the definition of the Clebsch-Gordan
coefficients. Tt is common to denote the recoupling coefficients between these two
reduction schemes by

JioJ2 s

.j4 j5 .jG = <(j17 j2)7 (j47 j5)a j37 ]67 j97 m| (jlv j2)7 (j47 ]5)7 (j77 j8)7 j97 m>

JrJs Jo
(the right hand side does not depend on m). These coefficients are related with
Wigner’s 95 symbols via

Ji J2 I3 Ji J2 I3
da s s | = V(205 + 1)(206 + 1)(257 + 1)(2js + 1) s Js e
J7 8 Jo J7 8 Jo

"This is our notation specified to N = 2. The common notation is |((j1J2)73, (4475 )j6 )Jo, Mm).
*In the common notation, |((j174)s7, (J2Js)Js)jo, m)-
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Lemma 4.4. The recoupling coefficients U; ; (5, 1;1y,15) are given by

NI I
Ui, G b0 L) =T 4t 7 7,
=2 \ Iy 5 T

where I} = ji, 13 := ji and [* := j!.

Proof. See Appendix [Al O

For general recursion formulae for 3nj symbols, see [42]. Since there exist efficient
calculators for 95 symbols, provided e.g. by the Python library SymPy [29] or
online by Anthony Stone’s Wigner coefficient calculator@, Lemma [4.4] provides an
explicit knowledge of the multiplication law in the commutative algebra R for
SU(2)N.

4.2 The orbit type strata

Recall that for G = SU(2), we have G¢ = SL(2,C), g = su(2) and gc = sl(2,C).
For convenience, we keep the notation G and G¢. Let Z denote the center of G.
Clearly, this is also the center of G¢. Let T' C GG denote the subgroup of diagonal
matrices and let t be its Lie algebra. Clearly, T is a maximal toral subgroup
isomorphic to U(1).

Let us briefly recall the orbit type strata P, of P in terms of subsets (G¥), of G¥.
For details, see [11]. First, one determines the orbit types of the lifted action of G
on T*GY. There are three of them and these can be labeled by G, T and Z, where
Z is the principal orbit type. The corresponding orbit type subsets of GV x gV
are as follows.

(G) An element (a, A) € GV x gV has orbit type G iff

(a,A) € ZN x {0},

(T) An element (a, A) € G x g has orbit type T iff it is conjugate to an element
of the subset
(T x M)\ (ZY x {0}7) .

Since conjugation by an element of G commutes with taking commutators,
for every element (a, A) of orbit type T', the entries (ay,...,an, A1, ..., Ay)
commute pairwise. Conversely, if for an element (a, A) all its entries commute
pairwise, then they are simultaneously diagonalizable and hence they belong
to the orbit type T.

9See http://www-stone.ch.cam.ac.uk/cgi-bin/wigner.cgi?symbol=9j
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(Z)

An element (a, A) € GV x g has orbit type Z iff it does not have orbit type
T or G, i.e., iff it is not conjugate to an element of TV x tV, that is, iff not
all entries of (a, A) commute pairwise.

Next, one intersects the orbit type subsets with the momentum level set 1~1(0),
takes the quotient of 1~1(0) with respect to the G-action, and passes to connected
components. This yields the following.

(@)

There exist 2V orbit type strata of orbit type G, each of which consists of a
single point representing the (trivial) orbit of an element of Z¥ x {0}V. Since
such an element is of the form (111,...,vy1,0,...,0) for some sequence of
signs v = (v1,...,vy), we denote the corresponding stratum by P,.

Since ZV x {0} consists of finitely many points and 7% x " has dimension
at least 2, the complement (T x tV)\ (Z x {0}") is connected. Since the
subset of P of orbit type T is the image of the subset

(T < )\ (27 x {0}) € p=H(0)

under the natural projection p=1(0) — P, it is connected, too. Hence, it
forms an orbit type stratum. We denote this stratum by Pr.

Since g* has dimension 3, the level set u~1(0) generically has dimension
2N -3—3=3(2N —1). On the other hand, since 7" has dimension 1 and the
elements of TV x tV¥ have stabilizer T" under the action of G, the subset of
G x g" of orbit type T has dimension 2N -1+ (3 —1) = 2(N + 1). Hence,
if the orbit type Z occurs in P, i.e., if N > 2, then the subset of u=1(0)
generated from T x tV by the action of G has codimension

32N —1) —2(N +1)=4N - 5> 3.

Therefore, its complement is connected. Since the complement coincides
with the subset of 1~1(0) of orbit type Z, the subset of P of this orbit type
is connected. Hence, it forms an orbit type stratum. We denote this stratum
by Pz.

One can visualize the set of strata and their partial ordering by a Hasse diagram,
see [I1]. Finally, one transports the above results to G¥, that is, for each of the
above strata, one finds the subset (G¥), of G¥. Tt suffices to do this for every
sequence of signs v = (v4,...,vy) and for T. Let Trz C G¢ denote the subgroup
of diagonal matrices. One obtains the following.

Theorem 4.5. Let a € GY. Then,

1.
2.

a € (GY), iff a is orbit closure equivalent to (111, ... ,vx1),

a € (GN)r iff a is orbit closure equivalent to an element of T \ ZN.
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4.3 Zero locus and radical ideal conditions

In this subsection, for the strata 7 found above, we recall from [11] the finite subsets
R, of R having the corresponding orbit type subset (G¥), as their zero locus and
satisfying the radical ideal condition. Since 7 = Z correponds to the principal
stratum and hence H; = H, it suffices to discuss the secondary strata 7 = v
and 7 = T. For that purpose, we define the following G-invariant representative
functions:

pfs(g) = tr ([araas]Q) ) 1<r<s<N,
P;{st(@) =tr ([araas]at) 5 1 S r<s<t S N .

For the strata labeled by sequences of signs v one obtains the following.

Theorem 4.6. The subset (GY), C GY is the set of common zeros of the Ge-
invariant functions pL, with 1 < r < s < N, pI, with1 <r <s <t < N
and

p4(a) = tr(a,) — 1,2, r=1,...,N.

Remark 4.7. Instead of using Theorem [4.6] one can construct the subspace H, as-
sociated with the stratum P, directly as follows. Let {1, : @ € A} be an orthonor-
mal basis of H which contains a constant function vy. Clearly, the basis provided
by Proposition 3.7]is of that type. Since for a continuous invariant function v, the
condition to vanish on (G¥), is equivalent to the condition ¥ (v1,...,vx1) = 0,
the vanishing subspace V, of the stratum P,, given by (8.7), is spanned by the
elements
¢a_¢a(yll,...,VN1)1, OéGA,O(?éO,

where 1 denotes the constant function with value 1. One proves that H, is spanned
by the single element

1
1/@: F Z¢ﬁ(ylﬂa"'7VN1)wﬁa

Y geA

where C), is a normalization constant. See Remark 5.4 in [I1] for the details. 4

By this remark, checking the radical ideal condition is relevant for the stratum Py
only.

Theorem 4.8. The topological closure (GY¥)r is the set of common zeros of the
G-invariant representative functions

pro1<r<s<N, pl,, 1<r<s<t<N. (4.11)

The ideal in R generated by these functions is a radical ideal.
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The proof of the radical ideal condition is the hard part of [11].

For the construction of the subspace Hp associated with the stratum 7', it will
be convenient to express the functions pZ, and pI,, in terms of the basis functions
(X}C){,y introduced in Section 1l Tt will turn out that the functions pl, are linear
combinations of basis functions with j having entries j, at r, j, at s and 0 elsewhere.
For such a sequence we write j = ( 4o, Jss). The corresponding sequences [ € R(j)
have entries [! = ... ="' =0,"=--. = ' =j, and I* = --- = [V = j, where
J € {jr, Js). Hence, for given j, there is only one sequence [ in R(j, j), so that we
may omit the labels [ and [ in the notation. In a similar way, the functions pZ,
will turn out to be linear combinations of basis functions with j having entries j,
at r, js at s, j, at t and 0 elsewhere. For such a sequence we write j = (Jr7, JsS, Jet)-
Here, the sequences [ € R(j) have entries I' =--- =1""1 =0, 1" ===
P=-.=0l1=land ' =--- =Y = j wherel € (j,,7s) and j € (l,j,). That
is, they are labeled by a single intermediate spin [, so that in our notation we may
replace the labels [ and [’ by [ and /.

Lemma 4.9. The functions pl, and pl,, on G¥ are given by

2
pfs = (X((Clr,Os))1 + (X%r,ls))l + (X%:lr,ls))o - —(X%:lr,ls))l -3, (412)
V3
r_ V3 ¢ 3 C 3
P =5 (O gs0)is = OGaa0)i0) - (4.13)

Proof. According to the last statement of Corollary B.8] the expansion coefficients
of p, and pZ,, wrt. the basis {(X;C)? y} in H coincide with the expansion coefficients
of their restrictions to GV wrt. the basis {(Xl){l/} in L2(G™)%. Hence, it suffices
to determine the latter. By an abuse of notation, in what follows, pI, and pl,,

mean the restrictions to G¥.
First, consider pl,. We have

p;:FS = 2tr ((araS)Q) — 2tr(aza§) )

For the second term, we use a = D%(a) and Dz @ D2 = DY @ D! to calculate

2. 2\ __ D% D% D% D%
tr(a,a;) = Z mims (@) Dinams (@7 ) Dingma (@s) Dingmy (as)
miz:l:%
= > (Gml® doma| [Da) © DHa)| I3, ma) @ |4, ma))

2

((3.mal @ (3, mal | DH(a) ® D¥(a,)

|%7m4>®|%7m1>>
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lljr lljr lljs lljs i 7
22 22 22 22 T s
C C , C C Dy (ar) Dy (as)

mimeon, — Mmamanl. “mgmgyns — mamin/
Hence,

1 Js

Jr
tr(afal) = Y > > Ri DY (a,)DE (as),  (4.14)

Jrds=0 nrn —Jr nsﬂ/s:_js

11, 11, 11 -
RJsz — } : CEEJT C22r (22 (22

/ /
(IR AN PR A mi1manr ma2ms3n, — ms3m4ns maming

mi::t%

A similar calculation for the first term of pZ,, using the relations

J1j2y J1itj2—j 241 E J1J2J J1j2J _
lemgm - ( 1) Cm2m1m7 lemngmlmgm ]j/émm )
mi,ma2
yields
1 jT js
2\ Jris Jr Js
tr ((ara’s) ) - § Snrn NN Dnrn;" (a’T’) Dnsn’s (aS) ) (415)
Jrds=0 neni=—jr neni=—js
Jris — 1-j
Sn,nn’r,nsng T ( ) der]sénrn/ ning -

From (EI4) and (#I5) we conclude that pZ, is a linear combination of the basis
functions (x(j.rj.s))? with j,,j, = 0,1 and j € (jr, js). To compute the expansion
coefficients, we use Proposition to write

(XGrrges)) = ” & Z > O, Dy (an) Dy (a) - (4.16)
1 nrt+ns=m

/ /
nyp+ng=m

and compute the scalar products ((x(j,rj.s))’|Pl) using the orthogonality relation

i 1
<Dfn1m2|Dm1m2> =4 5jj’5m1m/15m2m’2 . (4.17)

J

This results in

. . § Jrls] Jris] Jrjs Jrds
<(X(.]r7'7.]ss ) |p7’8> d d d Z Cnrnsan n m(SnTnT’ns’n Rnrny,ns,n ) .
V Yirtys &g

m=—j nr+ns—
nr+ns—m
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Computation of the right hand side for j,.,js = 0,1 and j € (j,, js) vields (£12).
For computations involving products of Clebsch-Gordan coefficients, one may use
for example the Clebsch-Gordan coefficient function of Mathematica [41] or the
class sympy.physics.quantum.cg.CG provided by the Python library SymPy [29].

For pI,, we proceed in an analogous way. Writing

T 1 1 1 1 1
Prst(@) = Z (Dfnﬂm (ar)Dioms(as) — Diyms (as) Dingms (ar)> Digmy (ay)

1

we see that pl,, is a linear combination of the basis functions (X( T72872t))”, with
admissible 7, [ and U, ie., with j = 5 and [,l' = 0,1 or with j = 3 and [ =1 =1
(five functions altogether). According to Proposition 1.2

| E E 22 133
(X(2T‘ =S, t))ll’ - 2 Cn'ryns,nr‘f’nsc’nr‘i’nmntvm

m_fj nr+ns+nt m
nT-Q—nS-Q—nt—m

1, 1 1 1
C ; szm; (ar) Disng(as) Dimg (ar) .

/
nl,nl n! +ns,nt,m

Using the orthogonality relation (£I7), we thus obtain

11,
<<X( rs s t)ll"prst> = Z Z Crf 2n nq+n Cn +ns,n
2\/% ~ = ryTls, M s T 5,1,
J m=—j nTinsint:

11y 11y
c22! ol orEL ol
g,y N1 7‘+nt7n57m Ns,Mt,Ns+Nt s+nt7nrym :

Now, ([@I3)) follows by computing the right hand side for the values of j, [ and
given above. O

4.4 The costratification

According to Theorem and Corollary B.5] the subspaces V; and Hp associated
with the stratum Pr are given by

Ve= Y im(pL)+ > im(pl,) (4.18)

1<r<s<N 1<r<s<t<N
and ; ;
Hr = ﬂ ker (pr,)' N ﬂ ker (pl)" (4.19)
1<r<s<N 1<r<s<t<N
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where the adjoint is taken with respect to the L?-scalar product (-, -) defined by
the measure vy, given by (B.3)).

To derive Vr from (£I8) and Hr from ([@I9) explicitly, we simplify the notation
by collecting the data j, j, [ and " labeling the basis functions in a multi-index

L= (j;5;:50).

Let Z denote the totality of all these multi-indices. According to Proposition [£.3],
the structure constants of multiplication, defined by

X(Icl ‘X12 Z 01112 X (4.20)
Icz
are given by
cl. = s, %3, U L1, L) U o (LT 4.21
i — J (]a 2y 2]y & ) J45J. (17_7_17_2)7 ( . )
d]ldhdl 4 1

YRR

where [; = (] Jis L

is spanned by the functions p, ¢ with 1 <r < s < N, I € T and the functions
pryxF with 1 <r <s <N, I€Z Weexpand

ph=> (PR X%, phe=)_h) ¥k, (4.22)

KeZl KeT

l) and [ = (j‘j;é; ). According to ([AI8), the subspace Vr

where the coefficients (pI)X and (pI,)¥ are given by Lemma L9 Then,

PXT = > AT (rs)XT Af(r,s) =Y (ph) Cit
JET KeT

p:{st X? - Z B}](T, sat) X(jv B}](Tv 5) = Z(p:{st)KCIJ(I'
JeT KeTl

Thus, Vr is spanned by the functions

ZA{(T,S)XS, r<s, ZB}](T,S,t)X«J:, r<s<t, IeT. (4.23)

JeT Jel

It remains to determine the coefficients A/ (r, s) and B{(r, s, t). Recall the notation
(7171, jora, - . . ) for a sequence of spins having entries j; at place 11, j2 at place o
etc., and 0 elsewhere. In addition, we introduce the notation (j;]51, j2[52,...) for a
sequence of spins having entries j; at places r1,..., 1, jo at places r, ..., sy etc.,

and 0 elsewhere. From Lemma [£.9] we obtain
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Theorem 4.10. The vanishing subspace Vr is spanned by the functions (L23),
with the coefficients A{(r,s) and Bi(r,s,t) given by

J J J
Ar(rs) = Crarommama) + Crgommmamsam)

2
J J
- CL((17‘718);0;(1If~_1);(1\i_1)) + % CI,((1T,18);1;(1\£V);(1|£V))
V3

2

—307,

B (r,s,t) = cy/

V3

2

((3r, 3,385 108 L 2 M) (315 51Y)

c/ e 1 g :
(34,3055 11133110157 A1)

By taking the orthogonal complement, we obtain

Corollary 4.11. The subspace Hr associated with the stratum Pr consists of the
vectors ¢ = 7 X§ whose coefficients o’ are determined by the system of linear
equations

ZA{(r,s)szo, r<s, ZB}](T,S,t)(pJ:O, r<s<t, I€T,
JeT JeT

where A1(r,s) = A(r,) | XS I? and Bi(r,5,t) = BI(r,5,8) || x5 |, with the
norm || X5 |I* given by B.15).

Remark 4.12. For given multi-indices Iy = (j;j1;4;0) and I = (j,;j2; 1 1),
the range of I3 = (is;jg;Lg;Lg) for which the structure constant C’{f’b is nonzero is
given by

j_3 € <j_17]_2>7 j3 € <j17j2>7 £37L{5 € R(.7_37j3)
In particular, the range is finite. Hence, the sums in Theorem are finite.
Furthermore, for fixed I; and I3 the range of I, is finite, too, because j, and j, are

bounded by
‘jf_j§|§j§7i:17"'vN7 ‘jl_j2|§j3
and the range of the sequences [,, [, of intermediate spins is given by R( J2, J2)-

Since C’Ilfb = 0{23[1, for fixed I and I3, the range of I; is bounded as well.

In contrast, the sums in Corollary EET1] are not finite. To find the coefficients 7,
one has to rewrite the defining equations into recurrence relations and to use the
asymptotic behaviour of the norms. This will be discussed elsewhere. ¢

To summarize, the costratification for G = SU(2) consists of the Hilbert subspaces

ng HT7 HZ:Hu
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together with their orthogonal projectors. Here, H, is given by Remark [4.7 and
Hr is given by Theorem [Tl By Lemma 7 of [10], the orthogonal projector onto
the vanishing subspaces of the point strata are given by

P,(f)=f—f(nl,...,vn1)1,

where 1 denotes the constant function on G¥ with value one. Thus, the projector
onto H, is idy —IP,. There are various approaches to the construction of the
orthogonal projector for the T-stratum. One of them consists in applying the
Schmidt orthogonalization procedure to the family (£.23]). This will be studied in
future work.

4.5 The case N =2

To illustrate the general result, let us discuss the case N = 2. Here, for given
j = (3%, 7% and j € (§) = (41, 4%, the set R(j,j) consists of the single sequence
[ = (7). Hence, the labels [ and ! are redundant and the basis functions may be
denoted by (X((leﬁ))j . Moreover, the isotypical components of H; = Hj @ Hj»

L
AU"3%):3 | Thus, the basis functions are given by

are irreducible and the endomorphisms A7 boil down to orthogonal projectors

. doad. oo . )
(i) (araz) = |22 0 (A9 0 (D7 () © D7 (a2) )
j
By B.15),
||(X(é:j1,j2))j||2 _ (hﬂ_)3eh((2j1+1)2+(2j2+1)2) . (424)

According to Lemma [£.4] the recoupling coefficients U are given by
N O
Ui, g,dsd3 31, 32) = | 41 G2 7
Ju J2 )

Hence, by Proposition 3] the multiplication law reads
S .
SRR D SR W Vi Al O C )

iteGhady je@td® | J2 ]
32€(i%.33)

where )
g1 g1
T2 T dpdpdydgd; (I 720
S I P P E )
Ji J2 ] ST JioJ2 ]
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is the structure constant C(lj) . In terms of Wigner’s 95 symbols,
(117]1)7(127]2)

2

Ji J2 J3 9 Ji J2 73
i g5 do| = |11 s s 35 o
Jr Js Jo i=1 Jr Js Jo

By the analysis of Subsection [4.2] we have the following orbit types and strata.

(G) The stabilizer is G = SU(2). The corresponding subset of P consists of (the
trivial orbits of) the points

((a,0),(A,B)) = (+1,£1),(0,0)).
Hence, this subset decomposes into the four strata P,.

(T") The stabilizer is a torus. The corresponding stratum Pr consists of the orbits
of the points ((al,ag), (Al,Ag)) #+ ((i]l, +1, (0,0)) for which aq, as, Ay, As

commute pairwise.

(Z) The stabilizer is the center of SU(2). The corresponding stratum P, consists
of the orbits of the points ((al, as), (A, Ag)) for which aq, as, A;, Ay do not
commute pairwise.

To these strata, there correspond the following closed subspaces of H.

(Z) Asin the general case, the subspace H, associated with the principal stratum
Py coincides with H.

(G) The subspaces Hys associated with the strata Piy can be constructed as
outlined in Remark L7 Since P1 corresponds to (+1,+1) € G¢ X Gg, the
subspace V.. is spanned by the functions

(X((le,ﬁ))j - (X((Cjaﬂ))j(i]la ZHI) 1

and the subspace H.4 is spanned by the single vector

1 j '
Vi =g 0 2 (WG ELED (G

3t3? G€GT.5%)

(T') The subspace Hr associated with the stratum Pr is defined by the single
function

p (ay,ay) = tr ([al, a2]2) )
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By Lemma 4.9

2
p = <X((C1,o))1 + (?C((co,1))1 + (X((c1,1))0 - ﬁ (X((cm))l —3. (4.26)

As a consequence, the vanishing subspace Vr is spanned by the vectors

AN, Iex,
JeT

where according to Proposition EL10, the coefficients A7 are given by

1 ’il jl 0 ’il jl 1 ’il jl 5 1 ’il jl
Al =10 2 2| + |1 % 72| + |1 & 32| += |1 i* 52| —36/
1 ¢+ 7 1 ¢+ 7 0 ¢+ 3 V3 1 ¢+ 3

with L = (4;4) and J = (j;j). Finally, Corollary 411l implies that Hr
consists of the functions ¢ = ¢”/x§ whose coefficients 7 are determined by
the system of linear equations

Y Ale’ =0, IeT,

Jel

where A7 = A7 || X7 [|* and || x§ ||* is given by [@.24).

4.6 The eigenvalue problem for the Hamiltonian

Recall the classical Hamiltonian

) LI =5 2 (iratr) + ira) |

LeA! pEA?

given by (22)). Here, a(p) = a(¢1)a(ly)a(l3)a(ly), where the links ¢4, ..., ¢y, in this

order, form the boundary of p and are endowed with the boundary orientation.

The quantum Hamiltonian, obtained via canonical quantization in the tree gauge,

is called the Kogut-Susskind Hamiltonian (more precisely, its pure gauge part):
g? 1

H:%Q ol (4.27)

€= E;(0)E;(0)

leAL

Here,

37



is the Casimir operator (negative of the group Laplacian) of SU(2)" and

W= (W(p)+W(p)),

peA?

where W (p) is the quantum counterpart (multiplication operator on H) of tra(p),
called the Wilson loop operator. For details, see [20], [14], [27]. Recall that the rep-
resentative functions of spin j on SU(2) are eigenfunctions of the Casimir operator
of SU(2) corresponding to the eigenvalu

¢ =455 +1).

It follows that the invariant representative functions (Xl){ p are eigenfunctions of
¢ corresponding to the eigenvalues N

€ =€t e (4.28)

Let us analyze 2J. For that purpose, for our regular cubic lattice, we define a
standard tree as follows. By a line we mean a maximal straight line consisting of
lattice links. First, choose a lattice site xy and a line L; through xzy. Next, choose
a second line Ly through xy perpendicular to L; and add all lines parallel to Ls in
the plane spanned by L; and L,. Finally, add all lines perpendicular to that plane.
Let B be such a standard tree. Since a(¢) = 1 for every ¢ € B!, we can decompose
2 into three sums[1 Tt is easy to check that there exists an orientation and a
numbering of the off-tree links such that for every plaquette with four off-tree links
(all of these plaquettes are parallel to the plane spanned by the lines Ly and Ls),
the boundary links are numbered and oriented consistently, meaning that for one
of the two possible orientations of the plaquette, they carry the induced boundary
orientation, and that their numbers increase in that direction. Then,

2 = Z tr(ar,as,az,ay,) + tr(a,, as, a;,a,,)
{p:pnB=0}

+ Z tr(a,,as,) + tr(a,,as,)

{p: [pnB|=2}

+ Z tr(a,,) + tr(a,,).

{p: [pnNB|=3}

To find the matrix elements of H with respect to the basis functions {(Xl){ s We
have to find the corresponding expansion of 20. The sequences j occuring here

10See [18], [8]
1 Note that, for the standard tree, no plaquettes having 3 off-tree links occur.
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will have at most four nonzero entries, so we can use the notation introduced in
Section 3] given by writing j = (ji71,...,jx7%) if j has entries 0 except for j; at
the places r;, i = 1,..., k. The function T, (a) = tr(a,) coincides with the basis
function (XZ)Z,L’ with j = (3r). Omitting the irrelevant indices j,1,!’, we thus have
TT’ - X(%T’) .
The function T,4(a) := tr(a.as) is a linear combination of the basis functions (Xj)gl’
with j = (37, 4s). As in Section 3] we may omit the irrelevant labels [, I'. Using
(A1d), the orthogonality relation for the matrix entry functions given by (@I7)

and the normalization condition ) - (C’,?ﬂffmm) = 1, we obtain

v

— 1=y
()T = (1) L
Thus,
G
T.s = 7 (X(;T,2S)) - 5 (X(ér,2s)) :

Finally, the function T}, (a) := tr(a,asa;a,) is a linear combination of the basis
functions (Xl)i’ with j = (37, 35, Et,; ). Here, the sequences [ € R(j,j) have
entries I' = ... ="' =0, " = =rt= = === =
Pl=kandi*=--- =1V =3, Where [ =0,1and k € (I,}) so that j € (k,3).
That is, they are labeled by two intermediate spins [, k, so that in our notation
we may replace the labels [ and [ by (I,k) and (I', k'), respectively. Expressing
these basis functions in terms of matrix entry functions according to Proposition
and using once again the orthogonality relation (417), we obtain

<(X(é7’, 72“))(116) (l/,k’)|T7’stu — Z Z

3 m=—j mp+- +mu m
lll

C2? ol Y
My, Ms,Mpr+Ms ~ Mr+Ms,Mt,Mr+ms+my mr+ms+mt7mu7m
11y 110
! ULk

Cﬁﬂjymrymr‘f’muCmr+mu7m57mr+ms+muCmr+ms+mu7mt7
Evaluation yields
_ 1 0 0 0
Trstu = 8 (X(%r,,%u))(o%)(o%) s (X(%r, lu))(ll)(ol) 8 (X(%r,,%u))(o )(1%)
1 0 3 1
- g(Xgr,...,%u))(l%)(l%) =% Witredo >>(o H(03) —sx
1 1
~ W XGrnedn)agon T 5

1 1 1 1
- Q—ﬁ(X(%r,...,%u))(lg)(ll) _6<X(%r,...,%u))(1%)(1%) 1 3<X(%r,...,%u))(1g)(1%)
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Now, consider the eigenvalue problem for H. Expanding

v=> xs, W= Wia+x),
J I

and using ([£20)), as well as the fact that {xx|xX7xs) = (XrXK|XJ) = Cf)x implies
Xixs = Cigxx

we can write the eigenvalue equation in the form

2
Z{(g—éw—c‘:) 55_%21/{/[ (CEI‘FC}]K)}W]:O’ (4.29)

JeT Iel

for all K € Z. Here, we have written €; for the eigenvalue of the Casimir operator
¢ corresponding to the eigenfunction y s, given by (4.28]). Thus, we are left with
a homogeneous system of linear equations for the eigenfunction coefficients 7.
The eigenvalues £ are determined by the requirement that the determinant of this
system must vanish. Note that the sum over [ in (£.29) is finite, because there
are only finitely many nonvanishing WZ. Moreover, by Remark 12 also the sum
over J is finite for every fixed K. Thus, we have reduced the eigenvalue problem
for the Hamiltonian to a problem in linear algebra. Combining this with well-
known asymptotic properties of 3nj symbols, see [5] (Topic 9), [2] and further
references therein, we obtain an algebraic setting which allows for a computer
algebra supported study of the spectral properties of H. This will be done in a
future work.

5 Summary and outlook

In this paper we have constructed the Hilbert space costratification for SU(2)
lattice gauge theory. This work is based on the results obtained in [11], where
we have implemented the defining relations for the orbit type strata on quantum
level. Here, the main technical tool is the calculus of invariant representative
functions for representations of SU(2) combined with recoupling theory for angular
momenta. We have already explained in the introduction how the results of this
paper fit into our long-term programme for studying non-perturbative aspects of
non-abelian quantum gauge theories. Here, let us outline some perspectives:

1. It will be a challenge to extend our results to the case of the gauge group
SU(3). On the classical level, we have some preliminary results, see e.g. the
case studies in [6], [7] and [9].
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2. In [10], one of us has developed another approach towards the study of cos-
tratifications for arbitrary compact Lie groups. The starting point in [10]
was the observation that the vanishing subspaces corresponding to the clas-
sical strata may be viewed as intersections of one-point vanishing subspaces.
The orthogonal complements of the latter were shown to be one-dimensional
and, for each of these spaces, a spanning (holomorphic and square integrable)
vector wy was constructed. Finally, passing to the Hilbert space of invariant
functions was accomplished by using the projection operator P defined by
averaging over the compact group manifold. As a result, each element of
the costratification was characterized as the closure of the span of {Pw,},
with ¢ running over a complete set of representatives of the set of orbits be-
longing to the stratum under consideration. Moreover, for the point strata,
the spanning vectors w, turned out to be proportional to the coherent states
in the sense of Hall [I5], [I6]. For the other strata, up until now, this ap-
proach has not led to such an explicit characterization of the corresponding
elements of the costratification. It will be interesting to combine the calculus
developed in this paper with the methods of [10]. This will possibly lead to
a characterization of the full costratification in terms of coherent like states.

3. In Subsection [4.6] we have formulated the eigenvalue problem of the quantum
Hamiltonian H in terms of invariant representative functions. We have shown
that, in this language, it boils down to a problem in linear algebra. As already
explained there, this can serve as a starting point for a study of the spectral
properties of H. In particular, it should be possible to investigate the role of
the coherent states addressed in the previous point, see the toy model in [22].

A Proof of Corollary (3.8

For every A € G, we choose a scalar product in H, invariant under w, and an

orthonormal basis {e} : 7 =1,...,dim(H,)}. For every \ € G™, the vectors
e%:ze?f@---@ei‘g, r= (..., rY), r'=1,...,dim(Hy),

form an orthonormal basis in H, wrt. the natural scalar product in the tensor
product of Hilbert spaces. Define holomorphic functions

netGe = C, o [ (a) = /dim(H)) (exlma(a)ey)

where \ € CAJ, r,s=1,...,dim(H)), and

%é : Gg — C, %é(g) =4 /dim(H)) <e%|7ré(g)e§> ,
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where A € GN and 1, s € [1,{1,...,dim(Hy)}. We have

N

E%é(g) - H r);i,si(ai) .

i=1

By this relation, the natural unitary isomorphism HL*(GY) = (HL*(Gc ))®N
and the holomorphic Peter-Weyl theorem [21] for G, the functions f2, form an
orthogonal basis in HL?(G¥) and have the norms

N
A |12
||f£§|| HH rt st :HC)\'
i=1
Using the basis vectors ei in H) to compute the trace, we find the expansion

X,\ kl_z<)\’A>\)\ 2\> . (A-l)

Using this, orthogonality of the functions fé and orthonormality of the endomor-

phisms Akl , we obtain

(ORI = 6w 3 (2] 427 ) (2] AR ) HCM

r,s

st ((422) 42%) T

frmnd 5A7A/ 5)\)\/ 5kk! 5”/ HC)\z .
i=1

This yields the assertion. O

B Proof of Lemma (4.4

Proof. The proof is by induction over N. In the case N = 2, the reduction scheme
([@8) boils down to (AI0) and the reduction scheme (A7) boils down to (&9,
where ji = ji, jo = J3, Js = J'5 Ja = Ji, Js = J3» J6 = J°, jr = li, js = I3 and
jo = (2. Hence, by definition, the scalar product of the corresponding ladder basis
elements yields the recoupling coefficient
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and by (4.8]), this coincides with Ui, 4, (4,L;1;,1;) in the case at hand. This proves
the assertion for N = 2.

Now, let N > 2 be given and assume that the assertion holds for N — 1. In what
follows, for any given sequence x = (z!,...,2"), we denote z := (x!,..., 2V71).
Recall that in Hil ® Hiz’ we have the orthonormal basis vectors |l1’12? L, Ly, m)
defined by the reduction scheme (LG) and [j,,7,;j, [, m) defined by the reduction

scheme (4.7). Consider the following reduction scheme:

(B.1)

It leads to irreducible subspaces labeled by ki, ko, k, j,1. Let |ki, ko; k, 7;1,m) de-
note the elements of the corresponding orthonormal ladder basis. Using this basis
to plug a unit into (4.8]), we obtain

(lalaél)lelN) = Z <117‘12;17Lm|]\€171§2;kaj;lN7m> X
kik2k,j

U;

J1:d

ne X <]§,17]§,2; ka]v lN7m|.21712;£17£2; lN7m> . (BQ)

To compute <il,l'2;i, Lmlky, kos k, 3, 1V, m), we view Hj ®@Hj as the tensor prod-
uct (HZI ® Hp) ® (Hj{v ® Hjé\r) and expand both arguments with respect to
appropriately chosen product bases,
N-LNN
dpdydsbm)y = > Chida ingaidi Lma) @ 51,3555, ma)
mi+mao=m
|E1,E2; k;’];lN,m> = Z Crlffl,i]rrfgm |11712§E1,E2§k,m1> ® |J{Va]év§],m2>-

mi1+mo=m

In view of (48], this yields
<21712;ia L m|,k2171<22§ ka]a ZN7m> = 5ZN*17/€ 5jN,j Ull,l2 (i),lJ El)]ﬁ?a k) . (Bg)

To compute the scalar product (El,]@;k:,j;lN,m|il,12;£1,12;lN,m>, we observe
that the vectors |ky, ko; k, j; IV, m) are ladder basis elements in the tensor produc

Hllv,]il ® H,];Qv,]@ ® Hj{\f ® H]é\f

12See ([@2) for the notation Hj, j, etc. .
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defined by the reduction scheme E9) with j; = kY1, jo = k21, js = k, ju = j¥V,
Js = J5 jo = j and jo = I, whereas |j, j i Ly, Lo; I, m) are ladder basis elements
in the tensor product

Hj, © Hjy gy @ Hyy @ Hyy

defined by the reduction scheme ([EI0) with j; = (1, jo = 1Y, 5y = 3N, js = 5¥,
gr =1, js = 1YY and jy = IV. Therefore,

A

<,k217,]§,2; k7j§lNamu.l?iQ;leLQ;lNam) - 5]31,11 5@2&2 j{V ]év ]
NN N

Plugging this and (B.3)) into (B.2]) and taking the sum, we obtain

li\f—l lé\f—l lel

Up, g, ol = | 08 3 ™ | Vs (350012) -
ooy N

Thus, the induction assumption implies that the assertion holds for N. O
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