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E. Fuchs,1 P. D. Jarvis,2 G. Rudolph,1 and M. Schmidt1
1Institute for Theoretical Physics, University of Leipzig, P.O. Box 100 920,
D-4109 Leipzig, Germany
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(Received 28 March 2018; accepted 1 August 2018; published online 23 August 2018)

We construct the Hilbert space costratification of G = SU(2)-quantum gauge theory
on a finite spatial lattice in the Hamiltonian approach. We build on previous work [F.
Fürstenberg, G. Rudolph, and M. Schmidt, J. Geom. Phys. 119, 66–81 (2017)], where
we have implemented the classical gauge orbit strata on the quantum level within a
suitable holomorphic picture. In this picture, each element τ of the classical stratifica-
tion corresponds to the zero locus of a finite subset {pi} of the algebraR of G-invariant
representative functions on GN

C . Viewing the invariants as multiplication operators p̂i

on the Hilbert space H, the union of their images defines a subspace of H whose
orthogonal complement Hτ is the element of the costratification corresponding to τ.
To construct Hτ , one has to determine the images of the p̂i explicitly. To accomplish
this goal, we construct an orthonormal basis in H and determine the multiplication
law for the basis elements; that is, we determine the structure constants of R in this
basis. This part of our analysis applies to any compact Lie group G. For G = SU(2),
the above procedure boils down to a problem in combinatorics of angular momen-
tum theory. Using this theory, we obtain the union of the images of the operators p̂i

as a subspace generated by vectors whose coefficients with respect to our basis are
given in terms of Wigner’s 3nj symbols. The latter are further expressed in terms of 9j
symbols. Using these techniques, we are also able to reduce the eigenvalue problem
for the Hamiltonian of this theory to a problem in linear algebra. Published by AIP
Publishing. https://doi.org/10.1063/1.5031115

I. INTRODUCTION

This paper is a continuation of our previous one,11 where we have derived the defining rela-
tions for the orbit type strata of G = SU(2)-lattice gauge theory. It is part of a program which aims
at developing a non-perturbative approach to the quantum theory of gauge fields in the Hamilto-
nian framework with special emphasis on the role of non-generic gauge orbit types. The starting
point is a finite-dimensional Hamiltonian lattice approximation of the theory, which on the clas-
sical level leads to a finite-dimensional Hamiltonian system with symmetries. The corresponding
quantum theory is obtained via canonical quantization. It is best described in the language of C∗-
algebras with a field algebra which (for a pure gauge theory) may be identified with the algebra
of compact operators on the Hilbert space of square-integrable functions over the product GN

of N copies of the gauge group manifold G, where N is the number of off-tree links for a cho-
sen maximal lattice tree. Correspondingly, the observable algebra is obtained via gauge symmetry
reduction. We refer to Refs. 23, 25, 26, and 34 for the study of this algebra, including its superse-
lection structure. For first steps toward the construction of the thermodynamical limit, see Refs. 13
and 14.

If the gauge group is non-Abelian, then the action of the symmetry group in the corresponding
classical Hamiltonian system necessarily has more than one orbit type. Correspondingly, the reduced
phase space obtained by symplectic reduction is a stratified symplectic space32,34,36 rather than a
symplectic manifold as in the case with one orbit type.1 The stratification is given by the orbit type
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strata. It consists of an open and dense principal stratum and several secondary strata. Each of these
strata is invariant under the dynamics with respect to any invariant Hamiltonian. For case studies, we
refer to Refs. 6, 7, and 9.

To study the influence of the classical orbit type stratification on the quantum level, we use
the concept of costratification of the quantum Hilbert space as developed by Huebschmann.20 A
costratification is given by a family of closed subspaces, one for each stratum. Loosely speaking, the
closed subspace associated with a certain classical stratum consists of the wave functions which are
optimally localized at that stratum in the sense that they are orthogonal to all states vanishing at that
stratum. The vanishing condition can be given sense in the framework of holomorphic quantization,
where wave functions are true functions and not just classes of functions. In Ref. 22, we have
constructed this costratification for a toy model with gauge group SU(2) on a single lattice plaquette.
As physical effects, we have found a nontrivial overlap between distant strata and, for a certain range
of the coupling, a very large transition probability between the ground state of the lattice Hamiltonian
and one of the two secondary strata.

In the present paper, we deal with the theory with gauge group G = SU(2) for an arbitrary
finite lattice. In this case, there are non-trivial relations characterizing the classical gauge orbit strata
which, in a first step, should be implemented on the quantum level. This problem has been solved
in Ref. 11 using the above mentioned holomorphic picture. In this picture, each element τ of the
stratification corresponds to the zero locus of a finite subset {p1, . . ., pr} of the algebra R of G-
invariant representative functions on GN

C , where GC denotes the complexification of G. Viewing the
invariants pi as multiplication operators p̂i on the Hilbert space H, the union of their images defines a
subspace of H whose orthogonal complement Hτ is, by definition, the element of the costratification
corresponding to τ. Thus, to construct Hτ , one has to determine the images of the p̂i explicitly. To
accomplish this goal, we construct an orthonormal basis in H and determine the structure constants
of the algebra R with respect to that basis. This part of our analysis applies to any compact Lie
group G. So, assuming that we are given the classical stratification for some Lie group G in terms
of the classical invariants pi, with the above result at our disposal, we can in principle determine the
operators p̂i as well as their images in H in terms of linear combinations of the elements of the chosen
basis.

For G = SU(2), our procedure boils down to a problem in combinatorics of angular momentum
theory. For the latter, we refer to Refs. 4, 5, 28, 37, and 41. Using this theory, we obtain the union
of the images of the operators p̂i as a subspace of H generated by vectors whose coefficients with
respect to our basis are given in terms of Wigner’s 3nj symbols. The latter is further expressed in
terms of 9j symbols. For these symbols, there exist nowadays efficient calculators; that is, the above
coefficients can be calculated explicitly. Using the same techniques, we are also able to reduce the
eigenvalue problem for the Hamiltonian of this theory to a problem in linear algebra.

The paper is organized as follows. In Sec. II, we explain the model. To keep the presentation self-
contained, in Sec. III, we present the basics of stratified quantum gauge theory for arbitrary compact
gauge groups as developed in detail in Ref. 11. Moreover, we construct a basis of H consisting of
G-invariant representative functions and derive the multiplication law in R. In Sec. IV, we turn to the
study of the case G = SU(2). We describe the orbit type strata, analyze the zero loci in terms of the
above basis, and obtain the images of the multiplication operators p̂i in terms of linear combinations
of the basis elements. As a consequence, the costrata are given by systems of linear equations with
real coefficients built from 3nj symbols. We illustrate the result for the special case N = 2. Finally, we
discuss the eigenvalue problem for the Hamiltonian in terms of the above basis. The text is completed
by Appendixes A and B containing the proofs of two technical results.

II. THE MODEL

Let G be a compact Lie group and let g be its Lie algebra. Later on, we will specify G = SU(2),
but for the time being, this is not necessary. Let Λ be a finite spatial lattice and let Λ0, Λ1, and Λ2

denote, respectively, the sets of lattice sites, lattice links, and lattice plaquettes. For the links and
plaquettes, let there be chosen an arbitrary orientation. In lattice gauge theory with gauge group G in
the Hamiltonian approach, gauge fields (the variables) are approximated by their parallel transporters
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along links and gauge transformations (the symmetries) are approximated by their values at the lattice
sites. Thus, the classical configuration space is the space GΛ

1
of mappings Λ1 → G, the classical

symmetry group is the group GΛ
0

of mappingsΛ0→G with pointwise multiplication, and the action
of g ∈GΛ

0
on a ∈GΛ

1
is given by

(g · a)(`)B g(x)a(`)g(y)−1, (2.1)

where ` ∈ Λ1 and x, y denote the starting point and the endpoint of `, respectively. The classical phase
space is given by the associated Hamiltonian G-manifold,1,35 and the reduced classical phase space
is obtained from that by symplectic reduction.32,35,36 We do not need the details here. Dynamics is
ruled by the classical counterpart of the Kogut-Susskind lattice Hamiltonian; see Subsection IV F.
When identifying T∗G with G× g, and thus T∗GΛ

1
with GΛ

1
× gΛ

1
, by means of left-invariant vector

fields, the classical Hamiltonian is given by

H(a, E)=
g2

2δ

N∑
`∈Λ1

‖E(`)‖2 −
1

g2δ

∑
p∈Λ2

(
tr a(p) + tr a(p)

)
, (2.2)

where a ∈GΛ
1
, g denotes the coupling constant, δ denotes the lattice spacing, and a(p) denotes the

product of a(`) along the boundary of the plaquette p in the induced orientation. The trace is taken
in some chosen unitary representation. Unitarity ensures that the Hamiltonian does not depend on
the choice of plaquette orientations. Finally, E ∈ gΛ

1
is the classical colour electric field (canonically

conjugate momentum).
When discussing orbit types in continuum gauge theory, it is convenient to first factorize with

respect to the free action of pointed gauge transformations, thus arriving at an action of the compact
gauge group G on the quotient manifold. This preliminary reduction can also be carried out in the
case of lattice gauge theory under consideration. In fact, given a lattice site x0, it is not hard to see
that the normal subgroup

{g ∈GΛ
0

: g(x0)= 1}, (2.3)

where1denotes the unit element of G, acts freely on GΛ
1
. Hence, one may pass to the quotient manifold

and the residual action by the quotient Lie group of GΛ
0

with respect to this normal subgroup. Clearly,
the quotient Lie group is naturally isomorphic to G. The quotient manifold can be identified with
a direct product of copies of G, and the quotient action can be identified with the action of G by
diagonal conjugation as follows. Choose a maximal tree T in the graph Λ1 and define the tree gauge
of T to be the subset

{a ∈GΛ
1

: a(`)= 1 ∀ ` ∈ T }
of GΛ

1
. One can readily see that every element of GΛ

1
is conjugate under GΛ

0
to an element in the

tree gauge of T and that two elements in the tree gauge of T are conjugate under GΛ
0

if they are
conjugate under the action of G via constant gauge transformations. This implies that the natural
inclusion mapping of the tree gauge into GΛ

1
descends to a G-equivariant diffeomorphism from that

tree gauge onto the quotient manifold of GΛ
1

with respect to the action of the subgroup (2.3). Finally,
by choosing a numbering of the off-tree links in Λ1, we can identify the tree gauge of T with the
direct product of N copies of G, where N denotes the number of off-tree links. This number does not
depend on the choice of T. Then, the action of G on the tree gauge via constant gauge transformations
translates into the action of G on GN by diagonal conjugation,

g · (a1, . . . , aN )= (ga1g−1, . . . , gaN g−1). (2.4)

As a consequence of these considerations, for the discussion of the role of orbit types, we may pass
from the original large Hamiltonian system with symmetries, given by the configuration space GΛ

1
,

the symmetry group GΛ
0
, and the action (2.1), to the smaller Hamiltonian system with symmetries

given by the configuration space
QBGN ,

the symmetry group G, and the action of G on Q given by diagonal conjugation (2.4). This is the system
we will discuss here. As before, the classical phase space is given by the associated Hamiltonian
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G-manifold and the reduced classical phase space is obtained from that by symplectic reduction. One
can show that the latter is isomorphic, as a stratified symplectic space, to the reduced classical phase
space defined by the original Hamiltonian system with symmetries.

We will need the following information about the classical phase space. As a space, it is given
by the cotangent bundle

T∗Q≡T∗GN .

It is a general fact that the action of G on Q naturally lifts to a symplectic action on T∗Q (consisting
of the corresponding ‘point transformations’ in the language of canonical transformations) and that
the lifted action admits a momentum mapping

µ : T∗Q→ g∗, µ(p)(A) := p(A∗),

where p ∈ T∗Q, A ∈ g, and A∗ denotes the Killing vector field defined by A. An easy calculation shows
that under the global trivialization

T∗GN �GN × gN (2.5)

induced by left-invariant vector fields and an invariant scalar product on g, the lifted action is given
by diagonal conjugation,

g · (a1, . . . , aN , A1, . . . , AN )=
(
ga1g−1, . . . , gaN g−1, Ad(g)A1, . . . , Ad(g)AN

)
, (2.6)

and the associated momentum mapping is given by

µ(a1, . . . , aN , A1, . . . , AN )=
N∑

i=1

Ad(ai)Ai − Ai, (2.7)

see, e.g., Ref. 35, Sec. 10.7. The reduced phase spaceP is obtained from T∗GN by singular symplectic
reduction at µ = 0. That is, P is the set of orbits of the lifted action of G on the invariant subset µ�1(0)
⊂ T∗Q, endowed with the quotient topology induced from the relative topology on this subset. In
lattice gauge theory, the condition µ = 0 corresponds to the Gauß law constraint. As a matter of
fact, the action of G on µ�1(0) has the same orbit types as that on Q. By definition, the orbit type
strata of P are the connected components of the subsets of P of elements with a fixed orbit type.
They are called strata because they provide a stratification of P.32,36 By the procedure of symplectic
reduction, the orbit type strata of P are endowed with symplectic manifold structures. The bundle
projection T∗Q→ Q induces a mapping P→Q/G. This mapping is surjective because µ is linear on
the fibres of T∗Q and hence µ�1(0) contains the zero section of T∗Q. It need not preserve the orbit type
though.

Remark 2.1. The tree gauge need not be invariant under time evolution with respect to a
gauge-invariant Hamiltonian (e.g., the Kogut-Susskind lattice Hamiltonian), but every motion in
the full configuration space GΛ

1
can be transformed by a time-dependent gauge transformation

to the tree gauge. Thus, up to time-dependent gauge transformations, the tree gauge is invariant
under time evolution. This is reflected in the isomorphism of the reduced phase spaces mentioned
above. �

III. STRATIFIED QUANTUM THEORY

A. Quantization and reduction

To construct the quantum theory of the reduced system, one may either first reduce the classical
system and then quantize or first quantize and then reduce the quantum system. Here, we follow
the second strategy; that is, we carry out geometric (Kähler) quantization on T∗GN and subsequent
reduction. Let gC denote the complexification of g and let GC denote the complexification of G. This
is a complex Lie group having G as its maximal compact subgroup. It is unique up to isomorphism.
For G = SU(n), we have GC =SL(n,C) . By restriction, the exponential mapping
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exp : gC→GC

of GC and multiplication in GC induce a diffeomorphism

G × g→GC, (a, A) 7→ a exp(iA), (3.1)

which is equivariant with respect to the action of G on G × g by

g · (a, A) :=
(
gag−1, Ad(g)A

)
and the action of G on GC by conjugation. For G = SU(n), this diffeomorphism amounts to the
inverse of the polar decomposition. By applying this diffeomorphism to each copy, we obtain a
diffeomorphism

GN × gN→GN
C , (a1, . . . , aN , A1, . . . , AN ) 7→

(
a1 exp(iA1), . . . , aN exp(iAN )

)
.

By composing the latter with the global trivialization (2.5), we obtain a diffeomorphism

T∗GN→GN
C (3.2)

which, due to (2.6), is equivariant with respect to the lifted action of G on T∗GN and the action of
G on GN

C by diagonal conjugation. Via this diffeomorphism, the complex structure of GN
C and the

symplectic structure of T∗GN combine to a Kähler structure. Half-form Kähler quantization on GN
C

yields the Hilbert space
HL2(GN

C , dν~)

of holomorphic functions on GN
C which are square-integrable with respect to the measure

dν~ = e−κ/~ η ε, (3.3)

where
κ(a1eiA1 , . . . , aN eiAN )= |A1 |

2 + · · · + |AN |
2

is the Kähler potential on GN
C ,

η(a1eiA1 , . . . , aN eiAN )=

√
det

sin
(
ad(A1)

)
ad(A1)

· · ·

√
det

sin
(
ad(AN )

)
ad(AN )

is the half-form correction, and

ε(a1eiA1 , . . . , aN eiAN )= da1 · · · daN dA1 · · · dAN

is the Liouville measure on T∗GN . Reduction then yields the closed subspace

H=HL2(GN
C , dν~)

G

of G-invariants as the Hilbert space of the reduced system.

Remark 3.1. The above result belongs to Hall.16 Alternatively, the Hilbert space HL2(GN
C , dν)

is obtained via the Segal-Bargmann transformation for compact Lie groups.15 In more detail, the
Segal-Bargmann transformation

Φ : L2(GN )→HL2(GN
C , dν~)

is a unitary isomorphism, which restricts to a unitary isomorphism of the subspaces of
invariants. �

B. Orbit type costratification

Following Huebschmann,20 we define the subspaces associated with the orbit type strata of P to
be the orthogonal complements of the subspaces of functions vanishing on those strata. To accom-
plish this idea, we first clarify how to interpret elements of H as functions on P. In the case N = 1
discussed in Refs. 22 and 19, this is readily done by observing that P � TC/W , where T is a maximal
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torus in G and W is the corresponding Weyl group, and using the isomorphism HL2(GC, dν)G

�HL2(TC, dνT )W ; see Sec. 3.1 of Ref. 22. Here, the measure dνT is obtained from dν by inte-
gration over the conjugation orbits in GC, thus yielding an analog of Weyl’s integration formula for
HL2(GN

C , dν). In the general case, the argument is as follows.
First, we construct a quotient of GN

C on which the elements of H define functions. Consider the
action of GC on GN

C by diagonal conjugation. For a ∈GN
C , let GC · a denote the corresponding orbit.

Since GC is not compact, GC · a need not be closed. If a holomorphic function on GN
C is invariant

under the action of G by diagonal conjugation, then it is also invariant under the action of GC by
diagonal conjugation; i.e., it is constant on the orbit GC · a for every a ∈GN

C . Being continuous, it is

then constant on the closure GC · a. As a consequence, it takes the same value on two orbits whenever
their closures intersect. This motivates the following definition. Two elements a, b ∈GN

C are said to
be orbit closure equivalent if there exist c1, . . . , cr ∈GN

C such that

GC · a ∩ GC · c1 ,∅, GC · c1 ∩ GC · c2 ,∅, . . . , GC · cr ∩ GC · b,∅.

Clearly, orbit closure equivalence defines an equivalence relation on GN
C , indeed. Let GN

C//GC denote
the topological quotient. The notation is motivated by the fact that the quotient provides a categorical
quotient of GN

C by GC in the sense of geometric invariant theory.30 By construction, the elements of
H descend to continuous functions on GN

C//GC.
In Ref. 11, we have explained in some detail how the orbit closure quotient GN

C//GC is related
to the reduced phase space P. This discussion is based on the observation that, via the equivariant
diffeomorphism (3.2), the momentum mapping may be viewed as a mapping

µ : GN
C→ g∗

and, thus,Pmay be viewed as the quotient of µ−1(0) ⊂GN
C by the action of G. In this language, µ�1(0)

turns out to be a Kempf-Ness set.24 Using this fact, one can prove the following.

Theorem 3.2. The natural inclusion mapping µ−1(0)→GN
C induces a homeomorphism

P→GN
C//GC. (3.4)

For the proof, see Ref. 17.
As a by-product of the proof, one finds that two points a, b ∈GN

C are orbit closure equivalent if
and only if

GC · a ∩ GC · b ∩ µ
−1(0),∅. (3.5)

As a result, via the homeomorphism (3.4), the elements of H can be interpreted as functions on P.
By virtue of this interpretation, to a given orbit type stratum Pτ ⊂P, there corresponds the closed
subspace

Vτ B {ψ ∈H :ψ�Pτ = 0}.

We define the subspace Hτ associated with Pτ to be the orthogonal complement of Vτ in H. Then,
we have the orthogonal decomposition

Hτ ⊕ Vτ =H.

Remark 3.3. Since holomorphic functions are continuous, one has

Vτ = {ψ ∈H :ψ�Pτ
= 0}. (3.6)

First, since the principal stratum is dense in P, this implies that the subspace associated with that
stratum coincides with H. Thus, in the discussion of the orbit type subspaces below, the principal
stratum may be ignored. Second, recall that in a stratification, the strata satisfy the condition of



083505-7 Fuchs et al. J. Math. Phys. 59, 083505 (2018)

the frontier, which means that if Pσ ∩ Pτ ,∅, then Pσ ⊂Pτ . In view of this, (3.6) implies that if
Pσ ∩ Pτ ,∅, then Vτ ⊂ Vσ and hence Hσ ⊂Hτ . The family of orthogonal projections

Hτ→Hσ whenever Pσ ∩ Pτ ,∅

makes the family of closed subspaces Hτ into a costratification in the sense of Huebschmann.20 �

In order to analyze the condition ψ�Pτ = 0, it is convenient to work with those subsets of GN
C

which under the natural projection GN
C→GN

C//GC and the homeomorphism (3.4) correspond to the
orbit type strata of P. For a given orbit type stratum Pτ , denote this subset by (GN

C)τ . That is, (GN
C)τ

consists of the elements a of GN
C whose orbit closure equivalence class belongs to the image of Pτ

under the homeomorphism (3.4). In other words, a ∈ (GN
C)τ if and only if it is orbit closure equivalent

to some element of µ�1(0) whose G-orbit belongs to Pτ . Clearly,

Vτ = {ψ ∈H :ψ�(GN
C)τ = 0}. (3.7)

C. Characterization of costrata in terms of relations

To conclude the general discussion, we describe how to construct Vτ and Hτ using defining
relations for the orbit type strata Pτ .

Let R(GN ) denote the commutative algebra of representative functions on GN and let
RBR(GN )G be the subalgebra of G-invariant elements. Since GN

C is the complexification of the
compact Lie group GN , the proposition and Theorem 3 in Sec. 8.7.2 of Ref. 33 imply that R(GN )
coincides with the coordinate ring of GN

C , viewed as a complex affine variety, and that R(GN ) coin-
cides with the algebra of representative functions on GN

C . As a consequence, R coincides with the
algebra of G-invariant representative functions on GN

C , where the relation is given by restriction and
analytic continuation, respectively.

Recall that an ideal I ⊂R is called a radical ideal if for all f ∈R satisfying f n ∈ I for some n,
one has f ∈ I. Moreover, given a subset R ⊂R, one defines the zero locus of R by

{a ∈GN
C : f (a)= 0 for all f ∈ R} ⊂GN

C .

It coincides with the zero locus of the ideal in R generated by R.

Proposition 3.4. Let Pτ be an orbit type stratum and let Rτ be a subset of R satisfying

1. The zero locus of Rτ coincides with the topological closure of (GN
C)τ .

2. The ideal generated by Rτ in R is a radical ideal.

Then,Vτ is obtained by intersectingHwith the ideal generated algebraically by Rτ in the algebra
Hol(GN

C)G of G-invariant holomorphic functions on GN
C .

For the proof, see Ref. 11.
By Hilbert’s basis theorem, finite subsets Rτ ⊂R satisfying conditions 1 and 2 of Proposition

3.4 exist. Given Rτ , Proposition 3.4 implies the following explicit characterization of the subspaces
Vτ and Hτ in terms of multiplication operators. For f ∈R, let f̂ :H→H denote the operator of
multiplication by f.

Corollary 3.5. Let Pτ be an orbit type stratum and let Rτ = {p1, . . ., pr} be a finite subset of R
satisfying conditions 1 and 2 of Proposition 3.4. Then,

Vτ = im(p̂1) + · · · + im(p̂r), Hτ = ker
(
p̂†1

)
∩ · · · ∩ ker

(
p̂†r

)
. �

In what follows, we will refer to conditions 1 and 2 of Proposition 3.4 as the zero locus condition
and the radical ideal condition, respectively.
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D. The commutative algebra R

By Proposition 3.4 and Corollary 3.5, the costratification of the quantum Hilbert spaceH is given
by a family of finite subsets Rτ ⊂R satisfying conditions 1 and 2. Each of these subsets consists of
a finite set of G-invariant polynomials on GN

C . To construct the costratification explicitly, one has
to find the images of the multiplication operators defined by these invariant polynomials. This can
be achieved by choosing an orthonormal basis in H and by finding the structure constants of the
multiplication law in R in that basis.

By Remark 3.1, we can first consider the Hilbert space L2(GN )G and use the theory of compact
Lie groups. For the convenience of the reader and to fix the notation, we recall some basics; see,
e.g., Ref. 31 or 12 for details. Below, all representations are assumed to be continuous and unitary
without further notice. Let Ĝ denote the set of isomorphism classes of finite-dimensional irreps of G.
Given a finite-dimensional unitary representation (H, π) of G, let C(G)π ⊂R(G) denote the subspace
of representative functions and let χπ ∈ C(G)π be the character of π, defined by χπ(a)B tr

(
π(a)

)
.

The same notation will be used for the Lie group GN .
The elements of Ĝ will be labeled by the corresponding highest weight λ relative to some

chosen Cartan subalgebra and some chosen dominant Weyl chamber. Assume that for every λ ∈ Ĝ a
concrete unitary irrep (Hλ, πλ) of highest weight λ in the Hilbert space Hλ has been chosen. Given
λ = (λ1, . . . , λN ) ∈ ĜN , we define a representation (Hλ, πλ) of GN by

Hλ =

N⊗
i=1

Hλi , πλ(a)=
N⊗

i=1

πλi (ai), (3.8)

where a= (a1, . . . , aN ). This representation is irreducible and we have

C(GN )πλ �
N⊗

i=1

C(G)πλi ,

isometrically with respect to the L2-norms. Using this, together with the Peter-Weyl theorem for G,
we obtain that

⊕
λ∈ĜN C(GN )πλ is dense in L2(GN , dN a). Since

⊕
λ∈ĜN C(GN )πλ ⊂

⊕
π∈ĜN C(GN )π ,

this implies

Lemma 3.6. Every irreducible representation of GN is equivalent to a product representation
(Hλ, πλ) with λ ∈ ĜN . If (Hλ, πλ) and (Hλ′ , πλ′) are isomorphic, then λ = λ ′. ◽

Given λ ∈ ĜN , let πd
λ denote the representation of G on Hλ defined by

πd
λ(a)B πλ(a, . . . , a). (3.9)

This representation will be referred to as the diagonal representation induced by πλ. It is reducible
and has the isotypical decomposition

Hλ =
⊕
λ∈Ĝ

Hλ,λ

into uniquely determined subspaces Hλ,λ. Recall that these subspaces may be obtained as the images
of the orthogonal projectors

PλB dim(Hλ)
∫
G

χπλ (a) πλ(a) da (3.10)

on Hλ. These projectors commute with one another and with πd
λ. If an isotypical subspace Hλ,λ is

reducible, we can further decompose it in a non-unique way into irreducible subspaces of isomorphism
type λ. Let mλ(λ) denote the number of these irreducible subspaces (the multiplicity of πλ in πd

λ)
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and let Ĝλ denote the subset of Ĝ consisting of the highest weights λ such that mλ(λ)> 0. This way,
we obtain a unitary G-representation isomorphism

ϕλ : Hλ →
⊕
λ∈Ĝλ

mλ(λ)⊕
k=1

Hλ. (3.11)

Let

pr
λ

λ,k :
⊕
λ∈Ĝλ

mλ(λ)⊕
k=1

Hλ→Hλ, i
λ

λ,k : Hλ→
⊕
λ∈Ĝλ

mλ(λ)⊕
k=1

Hλ,

denote the natural projections and injections of the direct sum, respectively. For every λ ∈ Ĝλ and

every k, l = 1, . . . , mλ(λ) , define a G-representation endomorphism A
λ,λ
k,l of πd

λ by

A
λ,λ
k,l B

1
√

dim(Hλ)
ϕ−1
λ ◦ i

λ

λ,k ◦ pr
λ

λ,l ◦ ϕλ (3.12)

and a G-invariant function (χλ)λk,l on GN by

(χλ)λk,l(a)B
√

dim(Hλ) tr
(
πλ(a)A

λ,λ
k,l

)
. (3.13)

Proposition 3.7. The family of functions
{
(χλ)λk,l : λ ∈ ĜN , λ ∈ Ĝλ, k, l = 1, . . . , mλ(λ)

}

constitutes an orthonormal basis in L2(GN )G.

Proof. Note that for every λ ∈ ĜN , the mapping

Tλ : End(Hλ)→C(GN )πλ , Tλ(A)(a)B
√

dim Hλ tr
(
πλ(a)A

)
, (3.14)

is a unitary G-representation isomorphism with respect to the scalar product on End(Hλ) defined by
〈A��B〉 = tr(A∗B) and the induced endomorphism representation on End(Hλ), given by assigning to g
∈ G the automorphism

A 7→ πd
λ(g) A πd

λ(g)−1

of End(H). Being a representation isomorphism, Tλ restricts to a unitary Hilbert space isomorphism
of the subspaces of G-invariant elements, End(Hλ)G→C(GN )G

πλ
. Now, End(Hλ)G consists precisely

of the representation endomorphisms of πd
λ. Hence, Schur’s lemma implies that it is spanned by

the endomorphisms A
λ,λ
k,l with λ ∈ Ĝλ and k, l = 1, . . . , mλ(λ) . Using pr

λ

λ,k ◦ i
λ

λ′,k′ = δλλ′δkk′ idHλ , we
compute 〈

A
λ,λ
k,l

��A
λ,λ′

k′,l′
〉
= δλλ′ δkk′ δll′ .

It follows that the endomorphisms A
λ,λ
k,l with λ ∈ Ĝλ and k, l = 1, . . . , mλ(λ) form an orthonormal

basis in End(Hλ)G and hence that their images under Tλ, i.e., the functions (χλ)λk,l, form an orthonor-

mal basis in C(GN )G
πλ

. Thus, the family given in the proposition yields an orthonormal basis in

R=R(GN )G.
It remains to show that R is dense in L2(GN , dN a)G. This follows from the Peter-Weyl theorem

for GN by applying the averaging operator
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PG : L2(GN , dN a)→L2(GN , dN a)G, PG( f )(a)=
∫
G

f (ga1g−1, . . . , gaN g−1) dg

and observing that the image of a dense subset under a surjective continuous mapping is dense. ◽

By analytic continuation, the irreps πλ of G induce irreps πCλ of GC, the irreps πλ of GN induce
irreps πCλ of GN

C , and the functions (χλ)λk,l on GN induce holomorphic functions (χCλ )λk,l on GN
C . Then,

(3.8), (3.9), and (3.13) hold with πλ, πλ, and (χλ)λk,l replaced by, respectively, πCλ , πCλ , and (χCλ )λk,l.

Corollary 3.8. The family of functions
{
(χCλ )λk,l : λ ∈ ĜN , λ ∈ Ĝλ, k, l = 1, . . . , mλ(λ)

}

constitutes an orthogonal basis in H. The norms are

‖(χCλ )λk,l ‖
2 =

N∏
r=1

Cλr , Cλr = (~π)dim(G)/2e~ |λ
r+ρ |2 , (3.15)

where ρ denotes half the sum of the positive roots. The expansion coefficients of f ∈H with respect
to this basis are given by the scalar products 〈(χλ)λk,l |f�GN〉 in L2(GN )G.

Proof. See Appendix A. The last statement follows from the fact that two elements ofH coincide
if and only if their restrictions to GN coincide. Since the functions (χλ)λk,l form an orthonormal basis

in L2(GN )G, we have f�GN =
∑
λ,λ,k,l〈(χλ)λk,l |f�GN 〉 (χλ)λk,l. Since (χλ)λk,l = (χCλ )λk,l�GN , this yields the

assertion. ◽

Remark 3.9. The orthonormal basis of invariant representative functions provided by Proposi-
tion 3.7 is a special case of a spin network basis in the sense of Baez.3 It is special in so far as
from the very beginning we have fixed a tree gauge, which reduces the group of local gauge trans-
formations to the action of G. Moreover, our basis above clearly corresponds to a fixed graph (a
finite regular cubic lattice). In this situation, we are able to provide a more explicit presentation of
the basis elements in terms of appropriate functions. We refer to Ref. 3 for comments on various
applications of spin networks in mathematical physics. In particular, over the years, spin network
states have become an important tool in loop quantum gravity; see Ref. 39 and further references
therein. �

Now, let us turn to the discussion of the multiplication structure of the G-invariant representative
functions (χCλ )λk,l. We assume that a unitary G-representation isomorphism (3.11) has been chosen

for every λ ∈ ĜN and every N. Denote

dλB dim Hλ, dλB dim Hλ.

Writing

(χCλ1
)λ1
k1,l1

(a) (χCλ2
)λ2
k2,l2

(a)

=
√

dλ1 dλ2 tr
((

A
λ1,λ1

k1,l1
⊗ A

λ2,λ2

k2,l2

)
◦

(
πλ1 (a) ⊗ πλ2 (a)

))
, (3.16)

we see that in order to expand the product (χCλ1
)λ1
k1,l1
· (χCλ2

)λ2
k2,l2

in terms of the basis functions (χCλ )λk,l,

a reasonable strategy is to decompose the GN -representation πλ1
⊗ πλ2

into GN -irreps λ and then
relate these GN -irreps to the basis functions using the chosen G-representation isomorphisms ϕλ.
To implement this, we define two different unitary G-representation isomorphisms of the diagonal
representation πd

λ1
⊗ πd

λ2
with an orthogonal direct sum of G-irreps. The first one, Φλ1λ2

, is adapted
to the tensor product on the right-hand side of (3.16). It is defined by
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Φλ1λ2
: Hλ1 ⊗ Hλ2

ϕλ1 ⊗ϕλ2
−→

⊕
λ1,λ2

*.
,

mλ1 (λ1)⊕
i1=1

mλ2 (λ2)⊕
i2=1

(
Hλ1 ⊗ Hλ2

)+/
-

(3.17)

φλ1λ2
−→

⊕
λ1,λ2

*.
,

mλ1 (λ1)⊕
i1=1

mλ2 (λ2)⊕
i2=1

*.
,

⊕
λ

mλ1,λ2 (λ)⊕
i=1

Hλ
+/
-

+/
-
, (3.18)

where φλ1λ2
acts on each summand Hλ1 ⊗ Hλ2 as ϕ(λ1,λ2). Let pr

λ1,λ2
λ1,λ2,i1,i2,λ,i and i

λ1,λ2
λ1,λ2,i1,i2,λ,i denote

the natural projection and injection operators of the direct sum (3.18), respectively. We have

ϕ(λ1,λ2) ◦

(
pr
λ1
λ1,i1
⊗ pr

λ2
λ2,i2

)
=

*.
,

∑
λ

m(λ1,λ2)(λ)∑
i=1

i(λ1,λ2)
λ,i ◦ pr

λ1,λ2
λ1,λ2,i1,i2,λ,i

+/
-
◦ φλ1λ2

, (3.19)

φλ1λ2
◦

(
i
λ1
λ1,i1
⊗ i

λ2
λ2,i2

)
=

*.
,

∑
λ

m(λ1,λ2)(λ)∑
i=1

i
λ1,λ2
λ1,λ2,i1,i2,λ,i ◦ pr(λ1,λ2)

λ,i
+/
-
◦ ϕ(λ1λ2). (3.20)

The second unitary G-representation isomorphism, Ψλ1λ2
, is adapted to the definition of the basis

functions (χλ)λk,l. It is defined by

Ψλ1λ2
: Hλ1

⊗ Hλ2

ψ1
λ1λ2
−→

⊕
λ

*.
,

mλ1,λ2 (λ)⊕
i=1

Hλ
+/
-

(3.21)

ψ2
λ1λ2
−→

⊕
λ

*.
,

mλ1,λ2 (λ)⊕
i=1

*.
,

⊕
λ

mλ(λ)⊕
k=1

Hλ
+/
-

+/
-
, (3.22)

where ψ1
λ1λ2

is some unitary GN -representation isomorphism, provided by Lemma 3.6, and ψ2
λ1λ2

is
the G-representation isomorphism acting on each summand Hλ as ϕλ. Moreover, mλ1,λ2

(λ) is the

multiplicity of the GN -irrep Hλ in Hλ1
⊗ Hλ2

. Let pr
λ1,λ2
λ,i and i

λ1,λ2
λ,i be the natural projections and

injections, respectively, of the direct sum (3.21), and let pr
λ1,λ2
λ,i,λ,k and i

λ1,λ2
λ,i,λ,k be the natural projections

and injections, respectively, of the direct sum (3.22), respectively. We have

ψ2
λ1λ2
◦ i

λ1,λ2
λ,i =

*.
,

∑
λ

mλ(λ)∑
k=1

i
λ1,λ2
λ,i,λ,k ◦ pr

λ

λ,k
+/
-
◦ ϕλ, (3.23)

ϕλ ◦ pr
λ1,λ2
λ,i =

*.
,

∑
λ

mλ(λ)∑
k=1

i
λ

λ,k ◦ pr
λ1,λ2
λ,i,λ,k

+/
-
◦ ψ2

λ1λ2
. (3.24)

By construction, Ψλ1λ2
◦ Φ−1

λ1λ2
is a unitary automorphism of a direct sum of G-irreps Hλ. Hence,

Schur’s lemma implies that

pr
λ1,λ2
λ,i,λ,k ◦

(
Ψλ1,λ2

◦ Φ−1
λ1,λ2

)
◦ i

λ1,λ2
λ1,λ2,i1,i2,λ′,i′ = δλλ′ U

λ1,λ2;λ,i,λ,k
λ1,λ2,i1,i2,i′ idHλ , (3.25)

pr
λ1,λ2
λ1,λ2,i1,i2,λ′,i′ ◦

(
Φλ1λ2

◦ Ψ−1
λ1λ2

)
◦ i

λ1,λ2
λ,i,λ,k = δλλ′ U

λ1,λ2;λ,i,λ,k
λ1,λ2,i1,i2,i′ idHλ , (3.26)

with certain coefficients U
λ1,λ2;λ,i,λ,k
λ1,λ2,i1,i2,i′ .

Proposition 3.10. In terms of the basis functions, the multiplication in R is given by
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(χCλ1
)λ1
k1,l1
· (χCλ2

)λ2
k2,l2

=

√
dλ1 dλ2
dλ1 dλ2

∑
λ

mλ1,λ2 (λ)∑
n=1

∑
λ

mλ(λ)∑
k,l=1

m(λ1,λ2)(λ)∑
j=1

√
dλ
dλ

U
λ1,λ2;λ,n,λ,k
λ1,λ2,k1,k2,j U

λ1,λ2;λ,n,λ,l
λ1,λ2,l1,l2,j (χCλ )λk,l.

The same formula holds true for the basis functions (χλ)λk,l on GN .

Proof. It suffices to prove the assertion for the basis functions (χλ)λk,l on GN . In the proof, we
will use the shorthand notation

z≡
1√

dλ1
dλ2

(χλ1
)λ1
k1,l1

(a) (χλ2
)λ2
k2,l2

(a), Φ≡Φλ1λ2
, Ψ≡Ψλ1λ2

.

Using (3.16) and the fact that ψ1
λ1λ2

is a GN -representation isomorphism, we may rewrite

z= tr*.
,

*.
,

⊕
λ

mλ1,λ2 (λ)⊕
i=1

πλ(a)+/
-
◦ ψ1

λ1λ2
◦

(
A
λ1,λ1

k1,l1
⊗ A

λ2,λ2

k2,l2

)
◦ (ψ1

λ1λ2
)−1+/

-
.

Since ⊕
λ

mλ1,λ2 (λ)⊕
i=1

πλ(a)=
∑
λ

mλ1,λ2 (λ)∑
i=1

i
λ1,λ2
λ,i ◦ πλ(a) ◦ pr

λ1,λ2
λ,i ,

this can be further rewritten as

z=
∑
λ

mλ1,λ2 (λ)∑
i=1

tr
(
πλ(a) ◦ pr

λ1,λ2
λ,i ◦ ψ1

λ1λ2
◦

(
A
λ1,λ1

k1,l1
⊗ A

λ2,λ2

k2,l2

)
◦ (ψ1

λ1λ2
)−1 ◦ i

λ1,λ2
λ,i

)
.

By (3.23) and (3.24),

i
λ1,λ2
λ,i =

∑
λ

mλ(λ)∑
k=1

(ψ2
λ1λ2

)−1 ◦ i
λ1,λ2
λ,i,λ,k ◦ pr

λ

λ,k ◦ ϕλ,

pr
λ1,λ2
λ,i =

∑
λ

mλ(λ)∑
k=1

ϕ−1
λ ◦ i

λ

λ,k ◦ pr
λ1,λ2
λ,i,λ,k ◦ ψ

2
λ1λ2

.

Plugging this in, we obtain

z=
∑
λ

mλ1,λ2 (λ)∑
i=1

∑
λ,λ′

mλ(λ)∑
k=1

mλ(λ′)∑
l=1

tr
(
πλ(a) ◦ ϕ−1

λ ◦ i
λ

λ,k ◦ pr
λ1,λ2
λ,i,λ,k ◦

(
Ψ ◦ Φ−1

)
◦ Φ ◦

(
A
λ1,λ1

k1,l1
⊗ A

λ2,λ2

k2,l2

)
◦ Φ−1 ◦

(
Φ ◦ Ψ−1

)
◦ i

λ1,λ2
λ,i,λ,k ◦ pr

λ

λ,k ◦ ϕλ
)
.

Using (3.19) and (3.20), we find

Φ ◦

(
A
λ1,λ1

k1,l1
⊗ A

λ2,λ2

k2,l2

)
◦ Φ−1 =

1√
dλ1 dλ2

∑
λ
′′

m(λ1,λ2)(λ′′)∑
j=1

i
λ1,λ2

λ1λ2,k1k2,λ′′ ,j
◦ pr

λ1,λ2

λ1,λ2,l1,l2,λ′′ ,j
.

Together with (3.25) and (3.26), this yields, after taking the sums over λ ′ and λ ′′,

z=
1√

dλ1 dλ2

∑
λ

mλ1,λ2 (λ)∑
i=1

∑
λ

mλ(λ)∑
k,l=1

m(λ1,λ2)(λ)∑
j=1

U
λ1,λ2;λ,i,λ,k
λ1,λ2,k1,k2,λ,j U

λ1,λ2;λ,i,λ,l
λ1,λ2,l1,l2,λ,j

tr
(
πλ(a) ◦ ϕ−1

λ ◦ i
λ

λ,k ◦ pr
λ

λ,k ◦ ϕλ
)
.
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The assertion now follows from (3.12) and (3.13). ◽

Remark 3.11. Note that the coefficients U in Proposition 3.10 depend on the unitary G-
representation isomorphisms Φλ1λ2

and Ψλ1λ2
. In Subsection IV A, we will see that for G = SU(2),

these isomorphisms are uniquely determined by the choice of a unitary G-representation isomor-
phism ϕλ for every λ ∈ ĜN and that the coefficients U boil down to recoupling coefficients of angular
momentum theory. �

IV. THE MODEL FOR G = SU(2)

A. The commutative algebra R for G = SU(2)

As observed in Sec. III, to fix concrete basis functions (χλ)λij , we have to fix the unitary G-
representation isomorphisms ϕλ entering their definition. As a consequence, we obtain concrete
formulae for the unitary operators in the multiplication law of the above algebra, expressed in terms
of SU(2)-recoupling coefficients. This relates the algebra structure to the combinatorics of recoupling
theory of angular momentum as provided in Refs. 4, 5, 28, and 41.

In the case of G = SU(2), the highest weights λ of irreps correspond 1–1 to spins j = 0, 1
2 , 1, 3

2 , . . . .
We will use the common notation Dj for πj. Thus, (H j, Dj) is the standard SU(2)-irrep of spin j,
spanned by the orthonormal ladder basis {|j, m〉 : m=−j,−j + 1, . . ., j} which is unique up to a phase.
Accordingly, every sequence λ of highest weights corresponds to a sequence j of spins. We write

Dj
≡ πj for the corresponding irrep of SU(2)N and D

j

d ≡ π
d
j for the induced diagonal representation

of SU(2). To fix the G-representation isomorphisms

ϕj : Hj→
⊕

j

mj( j)⊕
i=1

Hj, (4.1)

we choose the following reduction scheme for tensor products of N irreps of SU(2). Given nonnegative
half integers s1, s2, denote

〈s1, s2〉B {|s1 − s2 |, |s1 − s2 | + 1, |s1 − s2 | + 2, . . . , s1 + s2}

and recall that the representation space Hs1 ⊗ Hs2 decomposes into unique irreducible subspaces
(Hs1 ⊗ Hs2 )s of spin s ∈ 〈s1, s2〉. We start with decomposing Hj1 ⊗ Hj2 into the unique irreducible
subspaces (Hj1 ⊗ Hj2 )l2 with l2 ∈ 〈 j1, j2〉. Then, we decompose the invariant subspaces

(Hj1 ⊗ Hj2 )l2 ⊗ Hj3 ⊂Hj1 ⊗ Hj2 ⊗ Hj3

into unique irreducible subspaces

((Hj1 ⊗ Hj2 )l2 ⊗ Hj3 )l3 , l3 ∈ 〈l2, j3〉.

Iterating this, we end up with a decomposition of Hj into unique irreducible subspaces

Hj,l B (· · · ((Hj1 ⊗ Hj2 )l2 ⊗ Hj3 )l3 · · · ⊗ HjN )lN , (4.2)

where l = (l1, . . . , lN ) is a sequence of nonnegative half integers satisfying l1 = j1 and li ∈ 〈li�1, ji〉

for i = 2, 3, . . ., N. Let us denote the totality of such sequences by R(j) . Moreover, denote

〈 j〉B {j :∃ l ∈ R(j) s. th. j = lN }, R(j, j)= {l ∈ R(j) : lN = j}.

Then, mj( j)= |R(j, j)| and hence mj( j), 0 if and only if j ∈ 〈 j〉, and the isotypical component of type
j of Hj is given by the direct sum of the subspaces Hj,l with l ∈ R(j, j) .

Remark 4.1. Reduction schemes for N-fold tensor products of SU(2)-irreps of spins j1, . . ., jN

can be visualized by binary trees with N terminal points ◦ labeled by j1, . . ., jN and with N � 1 internal
points • which have two incoming lines and, except for the last one, one outgoing line. The terminal
points represent the tensor factors and the internal points represent the intermediate reduction steps
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given by the irreducible subspaces in the tensor product of the incoming irreps. The last internal point
represents the final irreducible subspace obtained by the reduction scheme. Every labeling of the
internal points which is admissible in the sense that every internal label l belongs to 〈l1, l2〉, where
l1 and l2 label the starting points of the incoming lines, corresponds to a unique such final subspace.
The binary tree of the reduction scheme used here is

and admissible internal labelings are given by the sequences l ∈ R(j) . �

To define the isomorphism ϕj, we choose ladder bases in the irreducible subspaces Hj,l. Denote

their elements by |j, l, m
〉
, where m = �lN , �lN + 1, . . ., lN . Then,

{|j, l, m
〉

: l ∈ R(j), m=−lN ,−lN + 1, . . . , lN }

is an orthonormal basis in Hj. Any other choice of ladder basis would yield the same basis vectors but
multiplied by a phase which depends on l only. For given j ∈ 〈 j〉, we can use the sequences l ∈ R(j, j)
to label the copies of H j in the direct sum decomposition of the target space of ϕj. As a consequence,

the natural projections and injections related with this decomposition read pr
j

j,l and i
j

j,l, respectively,

the basis functions read (χj)
j
l,l′

, and the endomorphisms appearing in their definition read A
j,j

l,l′
. We

define ϕj by

ϕj(|j, l, m
〉
)B i

j

j,l(|j, m
〉
),

where |j, m〉 denotes the elements of the orthonormal ladder basis in H j. Using (3.12) and the relation

pr
j

j,l ◦ i
j

j′,l′
= δl,l′ idHj , for j ∈ 〈 j〉, l, l′ ∈ R(j, j) , and l′′ ∈ R(j), we compute

A
j,j

l,l′
(|j, l′′, m

〉
)=

1√
dj

(ϕj)
−1 ◦ i

j

j,l ◦ pr
j

j,l′
◦ ϕj(|j, l′′, m

〉
)=

δl′,l′′√
dj
|j, l, m

〉
.

This implies

A
j,j

l,l′
=

1√
dj

j∑
m=−j

|j, l, m
〉
〈 j, l′, m|, l, l′ ∈ R(j, j), (4.3)

and

(χj)
j
l,l′

(a)=

√
dj

dj

j∑
m=−j

〈j, l′, m|Dj(a)|j, l, m
〉
, l, l′ ∈ R(j, j). (4.4)

For later use, we express these functions in terms of the matrix entry functions Dji
mi ,m′i

, i = 1, . . ., N.

For spins s1, s2, s and spin projections m1, m2, m, let
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Cs1,s2,s
m1,m2,m B

〈
〈s1, m1 | ⊗ 〈s2, m2 | ��s1, s2; s, m

〉
denote the Clebsch-Gordan coefficients. Here, |s1, s2; s, m〉 denote the elements of the ladder basis
in the irreducible subspace of spin s in Hs1 ⊗Hs2 whenever s ∈ 〈s1, s2〉 and the zero vector otherwise.

Proposition 4.2. We have

(χj)
j
l,l′

(a)=

√
dj

dj

j∑
m=−j

∑
m

∑
m′

C(j, l, m) C(j, l′, m′) Dj1
m′1,m1

(a1) · · ·DjN
m′N ,mN

(aN ),

where
∑

m means the sum over all sequences m= (m1, . . . , mN ) such that

mi =−ji, . . . , ji for i= 1, . . . , N , m1 + · · · + mN =m,

and where
C(j, l, m)=Cj1,j2,l2

m1,m2,m1+m2
Cl2,j3,l3

m1+m2,m3,m1+m2+m3
· · ·ClN−1,jN ,lN

m1+· · ·+mN−1,mN ,m.

Proof. Using the tensor basis in Hj, given by the vectors

|j, m
〉
B |j1, m1

〉
⊗ · · · ⊗ |jN , mN

〉
, mi =−ji, . . . , ji, i= 1, . . . , N ,

formula (4.4) can be rewritten as

(χj)
j
l,l′
=

√
dj

dj

j∑
m=−j

∑
m

∑
m′
〈j, l′, m|j, m′〉〈j, m|j, l, m〉Dj1

m′1,m1
(a1) · · ·Dj1

m′N ,mN
(aN ).

To compute the scalar products, we expand |j, l, m
〉

with respect to |j, m
〉
. Denote j

˜
B (j1, . . . , jN−1)

and l
˜
B (l1, . . . , lN−1) and consider the irreducible subspace Hj

˜
,l
˜

of Hj
˜

with its ladder basis {|j
˜
, l
˜
, m

〉
:

m=−lN−1, . . . , lN−1}. By construction, Hj,l is the irreducible subspace of spin lN in Hj
˜
,l
˜
⊗ HjN and

|j, l, m
〉

are the elements of the ladder basis in that subspace. Hence,

|j, l, m
〉
=

lN−1∑
nN=−lN−1

jN∑
mN=−jN

ClN−1,jN ,lN

nN ,mN ,m |j
˜
, l
˜
, nN

〉
⊗ |jN , mN

〉
.

Iterating this argument, we find that the expansion of |j, l, m
〉

is given by∑
mi ,ni

ClN−1,jN ,lN

nN ,mN ,m ClN−2,jN−1,lN−1

nN−1,mN−1,nN
· · ·Cl1,j2,l2

n2,m2,n3
|j1, n2

〉
⊗ |j2, m2

〉
⊗ · · · ⊗ |jN , mN

〉
,

where the sum runs over ni = �li�1, . . ., li�1 and mi = �ji, . . ., ji for i = 2, . . ., N. Putting m1 = n2 and
taking into account that the Clebsch-Gordan coefficients vanish unless the first two spin projections
add up to the third one, we find that in the sum over n3, . . ., nN , only the terms with

n3 =m1 + m2, n4 =m1 + · · · + m3, . . . , nN =m1 + · · · + mN−1

survive. As a result, we obtain

|j, l, m
〉
=

∑
m

C(j, l, m) |j, m
〉
.

Plugging this into the above formula for (χj)
j
l,l′

and taking into account that the Clebsch-Gordan

coefficients are real, we obtain the assertion. ◽

Next, we compute the coefficients U in the multiplication law for the basis functions given by
Proposition 3.10. For this purpose, we have to determine the unitary G-representation isomorphisms
Φj

1
,j

2
and Ψj

1
,j

2
introduced in Subsection III D.
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First, consider Φj
1
,j

2
. Recall that Φj

1
,j

2
= φj

1
,j

2
◦

(
ϕj

1
⊗ ϕj

2

)
. Here, φj

1
,j

2
is given by a unitary

G-representation isomorphism

Hj1 ⊗ Hj2→
⊕

j∈〈j1,j2〉

Hj (4.5)

for every pair j1, j2 with j1 ∈ 〈 j1
〉 and j2 ∈ 〈 j2

〉. Since the multiplicities are 1 here, we may omit the
corresponding index in our notation. Another consequence is that the isomorphism (4.5) is determined
up to a phase on every H j. We choose these phases in accordance with the standard choice of the
Clebsch-Gordan coefficients so that (4.5) is given by these coefficients. Then, Φj

1
,j

2
is uniquely

determined by the choice of ϕj for every j and hence by the choice of the reduction scheme for N-fold
tensor products of SU(2)-irreps. To write it down explicitly, we decompose Hj

1
⊗Hj

2
into irreducible

subspaces according to the following reduction scheme:

(4.6)

This leads to irreducible subspaces labeled by l1 ∈ R(j
1
), l2 ∈ R(j

2
), and l ∈ 〈lN

1 , lN
2 〉. In each subspace,

we choose an orthonormal ladder basis and denote its elements by |j
1
, j

2
; l1, l2; l, m

〉
, m = �l, . . ., l.

Then,
{
|j

1
, j

2
; l1, l2; l, m

〉
: l1 ∈ R(j

1
), l2 ∈ R(j

2
), l ∈ 〈lN

1 , lN
2 〉, m=−l, . . . , l

}

is an orthonormal basis in Hj
1
⊗ Hj

2
, and Φj

1
,j

2
is given by

Φj
1
,j

2

(
|j

1
, j

2
; l1, l2; l, m

〉)
= i

j
1
,j

2

lN
1 ,lN

2 ,l1,l2,l
(|l, m

〉
),

where i
j
1
,j

2

lN
1 ,lN

2 ,l1,l2,j
denotes the natural injection associated with the decomposition (3.18) (here, by our

specific choice of notation, the labels lN
1 and lN

2 are actually redundant).
Now, consider the unitary G-representation isomorphism Ψj

1
,j

2
. Denote 〈 j

1
, j

2
〉=

∏N
i=1〈j

i
1, ji

2〉.

Recall that Ψj
1
,j

2
=ψ2

j
1
,j

2
◦ ψ1

j
1
,j

2
, where

ψ1
j
1
,j

2
: Hj

1
⊗ Hj

2
→

⊕
j∈〈 j

1
,j

2
〉

Hj

is a unitary GN -representation isomorphism and ψ2
j
1
,j

2
acts on every summand Hj as ϕj. Since for

every factor of GN , ψ1
j
1
,j

2
boils down to an isomorphism of the type (4.5), the multiplicities are 1

as well and so we may omit the corresponding index in our notation. This also implies that ψ1
j
1
,j

2
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is unique up to a phase for every factor of GN and the corresponding irreducible factor of Hj. As

before, we choose these phases so that ψ1
j
1
,j

2
is given by the appropriate Clebsch-Gordan coefficients.

Then, Ψj
1
,j

2
, like Φj

1
,j

2
, is uniquely determined by the choice of the reduction scheme for N-fold

tensor products of SU(2)-irreps. To write it down explicitly, we decompose Hj
1
⊗Hj

2
into irreducible

subspaces according to the following reduction scheme:

(4.7)

This leads to irreducible subspaces labeled by j ∈ 〈 j
1
, j

2
〉 and l ∈ R(j). In each subspace, we choose

an orthonormal ladder basis and denote its elements by |j
1
, j

2
; j, l, m

〉
, m = �lN , . . ., lN . Then,

{
|j

1
, j

2
; j, l, m

〉
: j ∈ 〈 j

1
, j

2
〉, l ∈ R(j), m=−lN , . . . , lN

}

is an orthonormal basis in Hj
1
⊗ Hj

2
, and Ψj

1
,j

2
is given by

Ψj
1
,j

2

(
|j

1
, j

2
; j, l, m

〉)
= i

j
1
,j

2

j,lN ,l
(|lN , m

〉
),

where i
j
1
,j

2

j,lN ,l
denotes the natural injection associated with the decomposition (3.22) (where, by our

specific choice of notation, the label lN is redundant).

Proposition 4.3. In the case of G = SU(2), the multiplication law for the basis functions (χCj )j
l,l′

reads

(χCj
1
)j1
l1,l′1
· (χCj

2
)j2
l2,l′2
=

√
dj1 dj2

dj1 dj2

∑
j∈〈 j

1
,j

2
〉

∑
j∈〈j1,j2〉

∑
l,l′∈R(j,j)

√
dj

dj

Uj
1
,j

2
(j, l; l1, l2) Uj

1
,j

2
(j, l′; l′1, l′2) (χCj )j

l,l′
,

where

Uj
1
,j

2
(j, l; l1, l2)= 〈j

1
, j

2
; j, l, m|j

1
, j

2
; l1, l2; j, m〉 (4.8)

for every j ∈ 〈 j
1
, j

2
〉, j ∈ 〈 j1, j2〉, and l ∈ R(j, j) and for any admissible m.

The coefficients

Uj
1
,j

2
(j, l; l1, l2)= 〈j

1
, j

2
; j, l, m|j

1
, j

2
; l1, l2; j, m〉

are the recoupling coefficients for the reduction schemes (4.6) and (4.7). Up to normalization, they
are given by what is known as 3(2N � 1)j symbols; see Topic 12 in Ref. 5 for details.
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Proof. By Proposition 3.10, it suffices to compute the coefficients Uj
1
,j

2
(j, l; l1, l2). According to

(3.25), they are defined by

pr
j
1
,j

2
j,j,l ◦ Ψj

1
,j

2
◦ Φ−1

j
1
,j

2
◦ i

j
1
,j

2
j1,j2,l1,l2,j =Uj

1
,j

2
(j, l; l1, l2) idHj ,

where j ∈ 〈 j
1
, j

2
〉, j ∈〈 j1, j2〉, and l ∈ R(j, j) . Evaluating the left-hand side on a ladder basis vector

|j, m〉 and plugging in a unit, we calculate

pr
j
1
,j

2
j,j,l ◦ Ψj

1
,j

2
◦ Φ−1

j
1
,j

2
◦ i

j
1
,j

2
j1,j2,l1,l2,j

(
|j, m

〉)
= pr

j
1
,j

2
j,j,l ◦ Ψj

1
,j

2

(
|j

1
, j

2
; l1, l2; j, m

〉)
=

∑
j′,l′
〈j

1
, j

2
; j′, l′, m|j

1
, j

2
; l1, l2; j, m〉 pr

j
1
,j

2
j,j,l ◦ Ψj

1
,j

2

(
|j

1
, j

2
; j′, l′, m

〉)
=

∑
j′,l′
〈j

1
, j

2
; j′, l′, m|j

1
, j

2
; l1, l2; j, m〉 pr

j
1
,j

2
j,j,l ◦ i

j
1
,j

2

j′,l′N ,l′
(
|l′N , m

〉)
= 〈j

1
, j

2
; j, l, m|j

1
, j

2
; l1, l2; j, m〉 |j, m

〉
.

This yields (4.8). The multiplication law follows then by observing that the coefficients Uj
1
,j

2
(j, l; l1, l2)

are real. ◽

The recoupling coefficients Uj
1
,j

2
(j, l; l1, l2) can be expressed in terms of the recoupling coeffi-

cients for N = 2, that is, for a tensor product of four SU(2)-irreps as follows. Given four spins j1, j2,
j4, j5, the tensor product Dj1 ⊗ Dj2 ⊗ Dj4 ⊗ Dj5 can be decomposed, on the one hand, into irreducible
subspaces labeled by j3, j6, j9 according to the following reduction scheme:

(4.9)

Let {|(j1, j2), (j4, j5); j3, j6; j9, m〉: m = �j9, . . ., j9} be the ladder bases in these subspaces
chosen in accordance with the definition of the Clebsch-Gordan coefficients. (The notation for
the basis elements corresponds to the general notation used here, specified to N = 2; the con-
ventional notation is |((j1j2)j3, (j4j5)j6)j9, m〉.) On the other hand, this tensor product can be
decomposed into irreducible subspaces labeled by j7, j8, j9 according to the following reduction
scheme:

(4.10)

Let {|(j1, j2), (j4, j5); (j7, j8), j9, m〉: m = �j9, . . ., j9} be the ladder bases in these subspaces, again
chosen in accordance with the definition of the Clebsch-Gordan coefficients (i.e., |((j1j4)j7, (j2j5)j8)j9,
m〉 in the conventional notation). It is common to denote the recoupling coefficients between these
two reduction schemes by
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*..
,

j1 j2 j3
j4 j5 j6
j7 j8 j9

+//
-
B 〈(j1, j2), (j4, j5); j3, j6; j9, m|(j1, j2), (j4, j5); (j7, j8), j9, m〉

(the right-hand side does not depend on m). These coefficients are related with Wigner’s 9j symbols
via

*..
,

j1 j2 j3
j4 j5 j6
j7 j8 j9

+//
-
=

√
(2j3 + 1)(2j6 + 1)(2j7 + 1)(2j8 + 1)




j1 j2 j3
j4 j5 j6
j7 j8 j9




.

Lemma 4.4. The recoupling coefficients Uj
1
,j

2
(j, l; l1, l2) are given by

Uj
1
,j

2
(j, l; l1, l2)=

N∏
i=2

*...
,

li−1
1 li−1

2 li−1

ji
1 ji

2 ji

li
1 li

2 li

+///
-

,

where l1
1 B j1

1 , l1
2 B j1

2 , and l1Bj1.

Proof. See Appendix B. ◽

For general recursion formulae for 3nj symbols, see Ref. 41. Since there exist efficient calculators
for 9j symbols, provided, e.g., by the Python library SymPy29 or online by Anthony Stone’s Wigner
coefficient calculator,38 Lemma 4.4 provides an explicit knowledge of the multiplication law in the
commutative algebra R for SU(2)N .

B. The orbit type strata

Recall that for G = SU(2), we have GC =SL(2,C) , g= su(2) and gC = sl(2,C) . For convenience,
we keep the notation G and GC. Let Z denote the center of G. Clearly, this is also the center of GC. Let
T ⊂ G denote the subgroup of diagonal matrices, and let t be its Lie algebra. Clearly, T is a maximal
toral subgroup isomorphic to U(1).

Let us briefly recall the orbit type strata Pτ of P in terms of subsets (GN
C)τ of GN

C . For details,
see Ref. 11. First, one determines the orbit types of the lifted action of G on T∗GN . There are three of
them and these can be labeled by G, T, and Z, where Z is the principal orbit type. The corresponding
orbit type subsets of GN × gN are as follows.

(G) An element (a, A) ∈GN × gN has orbit type G if and only if

(a, A) ∈ ZN × {0}N .

(T ) An element (a, A) ∈GN × gN has orbit type T if and only if it is conjugate to an element of the
subset (

TN × tN
)
\
(
ZN × {0}N

)
.

Since conjugation by an element of G commutes with taking commutators, for every element
(a, A) of orbit type T, the entries (a1, . . ., aN , A1, . . ., AN ) commute pairwise. Conversely, if for
an element (a, A) all its entries commute pairwise, then they are simultaneously diagonalizable
and hence they belong to the orbit type T.

(Z) An element (a, A) ∈GN × gN has orbit type Z if and only if it does not have orbit type T or G,
i.e., if and only if it is not conjugate to an element of TN × tN , that is, if and only if not all
entries of (a, A) commute pairwise.

Next, one intersects the orbit type subsets with the momentum level set µ�1(0), takes the quo-
tient of µ�1(0) with respect to the G-action, and passes to connected components. This yields the
following.

(G) There exist 2N orbit type strata of orbit type G, each of which consists of a single point rep-
resenting the (trivial) orbit of an element of ZN ×{0}N . Since such an element is of the
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form (ν11, . . . , νN1, 0, . . . , 0) for some sequence of signs ν = (ν1, . . . , νN ), we denote the
corresponding stratum by Pν .

(T ) Since ZN ×{0}N consists of finitely many points and TN × tN has dimension at least 2, the
complement (TN × tN ) \ (ZN × {0}N ) is connected. Since the subset of P of orbit type T is the
image of the subset

(TN × tN ) \ (ZN × {0}N ) ⊂ µ−1(0)

under the natural projection µ−1(0)→P, it is connected, too. Hence, it forms an orbit type
stratum. We denote this stratum by PT .

(Z) Since g∗ has dimension 3, the level set µ�1(0) generically has dimension 2N · 3 � 3 = 3(2N �

1). On the other hand, since T has dimension 1 and the elements of TN × tN have stabilizer
T under the action of G, the subset of GN × gN of orbit type T has dimension 2N · 1 + (3 �

1) = 2(N + 1). Hence, if the orbit type Z occurs in P, i.e., if N ≥ 2, then the subset of µ�1(0)
generated from TN × tN by the action of G has codimension

3(2N − 1) − 2(N + 1)= 4N − 5 ≥ 3.

Therefore, its complement is connected. Since the complement coincides with the subset of
µ�1(0) of orbit type Z, the subset of P of this orbit type is connected. Hence, it forms an orbit
type stratum. We denote this stratum by PZ .

One can visualize the set of strata and their partial ordering by a Hasse diagram; see Ref. 11.
Finally, one transports the above results to GN

C , that is, for each of the above strata, one finds the
subset (GN

C)τ of GN
C . It suffices to do this for every sequence of signs ν = (ν1, . . . , νN ) and for T. Let

TC ⊂GC denote the subgroup of diagonal matrices. One obtains the following.

Theorem 4.5. Let a ∈GN
C . Then,

1. a ∈ (GN
C)ν if and only if a is orbit closure equivalent to (ν11, . . . , νN1) ,

2. a ∈ (GN
C)T if and only if a is orbit closure equivalent to an element of TN

C \ ZN .

C. Zero locus and radical ideal conditions

In this subsection, for the strata τ found above, we recall from Ref. 11 the finite subsets Rτ of
R having the corresponding orbit type subset (GN

C)τ as their zero locus and satisfying the radical
ideal condition. Since τ = Z corresponds to the principal stratum and hence HZ =H, it suffices to
discuss the secondary strata τ = ν and τ = T. For this purpose, we define the following G-invariant
representative functions:

pT
rs(a)B tr

(
[ar , as]

2) , 1 ≤ r < s ≤N ,

pT
rst(a)B tr

(
[ar , as]at

)
, 1 ≤ r < s < t ≤N .

For the strata labeled by sequences of signs ν, one obtains the following.

Theorem 4.6. The subset (GN
C)ν ⊂GN

C is the set of common zeros of the GC-invariant functions
pT

rs with 1 ≤ r < s ≤ N, pT
rst with 1 ≤ r < s < t ≤ N, and

p
ν
r (a)B tr(ar) − νr2, r = 1, . . . , N .

Remark 4.7. Instead of using Theorem 4.6, one can construct the subspace Hν associated with
the stratum Pν directly as follows. Let {ψα: α ∈ A} be an orthonormal basis of H which contains
a constant function ψ0. Clearly, the basis provided by Proposition 3.7 is of that type. Since for a
continuous invariant function ψ, the condition to vanish on (GN

C)ν is equivalent to the condition
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ψ(ν11, . . . , νN1)= 0, the vanishing subspace Vν of the stratum Pν , given by (3.7), is spanned by the
elements

ψα − ψα(ν11, . . . , νN1) 1, α ∈ A, α , 0,

where 1 denotes the constant function with value 1. One proves that Hν is spanned by the single
element

ψν =
1

Cν

∑
β∈A

ψβ(ν11, . . . , νN1)ψβ ,

where Cν is a normalization constant. See Remark 5.4 in Ref. 11 for the details. ◽

By this remark, checking the radical ideal condition is relevant for the stratum PT only.

Theorem 4.8. The topological closure (GN
C)T is the set of common zeros of the G-invariant

representative functions

pT
rs, 1 ≤ r < s ≤N , pT

rst , 1 ≤ r < s < t ≤N . (4.11)

The ideal in R generated by these functions is a radical ideal.

The proof of the radical ideal condition is the hard part of Ref. 11.
For the construction of the subspace HT associated with the stratum T, it will be convenient to

express the functions pT
rs and pT

rst in terms of the basis functions (χCj )j
l,l′

introduced in Sec. IV A. It

will turn out that the functions pT
rs are linear combinations of basis functions with j having entries jr at

r, js at s, and 0 elsewhere. For such a sequence, we write j = (jrr, jss) . The corresponding sequences

l ∈ R(j) have entries l1 = · · · = lr�1 = 0, lr = · · · = ls�1 = jr , and ls = · · · = lN = j, where j ∈ 〈jr ,
js〉. Hence, for given j, there is only one sequence l in R(j, j) so that we may omit the labels l and l′

in the notation. In a similar way, the functions pT
rst will turn out to be linear combinations of basis

functions with j having entries jr at r, js at s, jt at t, and 0 elsewhere. For such a sequence, we write

j = (jrr, jss, jt t) . Here, the sequences l ∈ R(j) have entries l1 = · · · = lr�1 = 0, lr = · · · = ls�1 = jr ,

ls = · · · = lt�1 = l, and lt = · · · = lN = j, where l ∈ 〈jr , js〉 and j ∈ 〈l, js〉. That is, they are labeled
by a single intermediate spin l so that in our notation we may replace the labels l and l′ by l and l′,
respectively.

Lemma 4.9. The functions pT
rs and pT

rst on GN
C are given by

pT
rs = (χC(1r,0s))

1 + (χC(0r,1s))
1 + (χC(1r,1s))

0 −
2
√

3
(χC(1r,1s))

1 − 3, (4.12)

pT
rst =

√
3

2

(
(χC

( 1
2 r, 1

2 s, 1
2 t)

)
1
2
0,1 − (χC

( 1
2 r, 1

2 s, 1
2 t)

)
1
2
1,0

)
. (4.13)

Proof. According to the last statement of Corollary 3.8, the expansion coefficients of pT
rs and pT

rst

with respect to the basis {(χCj )j
l,l′
} in H coincide with the expansion coefficients of their restrictions

to GN with respect to the basis {(χj)
j
l,l′
} in L2(GN )G. Hence, it suffices to determine the latter. By an

abuse of notation, in what follows, pT
rs and pT

rst mean the restrictions to GN .
First, consider pT

rs. We have

pT
rs = 2 tr

(
(aras)

2) − 2 tr(a2
r a2

s ).

For the second term, we use a=D
1
2 (a) and D

1
2 ⊗ D

1
2 =D0 ⊕ D1 to calculate
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tr(a2
r a2

s )=
∑

mi=±
1
2

D
1
2
m1m2

(ar)D
1
2
m2m3

(ar)D
1
2
m3m4

(as)D
1
2
m4m1

(as)

=
∑

mi=±
1
2

〈
〈 1

2 , m1 | ⊗ 〈
1
2 , m2 |

����D
1
2 (ar) ⊗ D

1
2 (ar)

����|
1
2 , m2

〉
⊗ | 12 , m3

〉〉
·

〈
〈 1

2 , m3 | ⊗ 〈
1
2 , m4 |

����D
1
2 (as) ⊗ D

1
2 (as)

����|
1
2 , m4

〉
⊗ | 12 , m1

〉〉
=

∑
mi=±

1
2

1∑
jr ,js=0

jr∑
nr ,n′r=−jr

js∑
ns,n′s=−js

C
1
2

1
2 jr

m1m2nr
C

1
2

1
2 jr

m2m3n′r
C

1
2

1
2 js

m3m4n′s
C

1
2

1
2 js

m4m1ns
Djr

nrn′r
(ar) Djs

nsn′s
(as).

Hence,

tr(a2
r a2

s )=
1∑

jr ,js=0

jr∑
nr ,n′r=−jr

js∑
ns,n′s=−js

Rjr js
nrn′r ,nsn′s

Djr
nrn′r

(ar) Djs
nsn′s

(as), (4.14)

Rjr js
nrn′r ,ns,n′s

B
∑

mi=±
1
2

C
1
2

1
2 jr

m1m2nr
C

1
2

1
2 jr

m2m3n′r
C

1
2

1
2 js

m3m4ns
C

1
2

1
2 js

m4m1n′s
.

A similar calculation for the first term of pT
rs, using the relations

Cj1j2j
m1m2m = (−1)j1+j2−jCj2j1j

m2m1m,
∑

m1,m2

Cj1j2j
m1m2mCj1j2j′

m1m2m′ = δjj′δmm′ ,

yields

tr
(
(aras)

2) = 1∑
jr ,js=0

jr∑
nr ,n′r=−jr

js∑
ns,n′s=−js

Sjr js
nrn′r ,nsn′s

Djr
nrn′r

(ar) Djs
nsn′s

(as), (4.15)

Sjr js
nrn′r ,nsn′s

B (−1)1−jr δjr jsδnrn′sδn′rns .

From (4.14) and (4.15), we conclude that pT
rs is a linear combination of the basis functions (χ(jrr,jss))j

with jr , js = 0, 1 and j ∈ 〈jr , js〉. To compute the expansion coefficients, we use Proposition 4.2 to
write

(χ(jrr,jss))
j =

√
djr djs

dj

j∑
m=−j

∑
nr +ns=m
n′r +n′s=m

Cjr jsj
nrnsmCjr jsj

n′rn′sm Djr
nrn′r

(ar) Djs
nsn′s

(as) (4.16)

and compute the scalar products 〈(χ(jrr,jss))j |pT
rs〉 using the orthogonality relation

〈Dj
m1m2
|Dj′

m′1m′2
〉=

1
dj
δjj′δm1m′1

δm2m′2
. (4.17)

This results in

〈(χ(jrr,jss))
j |pT

rs〉=
2√

djr djs dj

j∑
m=−j

∑
nr +ns=m
n′r +n′s=m

Cjr jsj
nrnsmCjr jsj

n′rn′sm(Sjr js
nrn′r ,ns,n′s

− Rjr js
nrn′r ,ns,n′s

).

Computation of the right-hand side for jr , js = 0, 1 and j ∈ 〈jr , js〉 yields (4.12). For computations
involving products of Clebsch-Gordan coefficients, one may use, for example, the Clebsch-Gordan
coefficient function of Mathematica40 or the class sympy.physics.quantum.cg.CG provided by the
Python library SymPy.29

For pT
rst , we proceed in an analogous way. Writing
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pT
rst(a)=

∑
mi=±

1
2

(
D

1
2
m1m2

(ar)D
1
2
m2m3

(as) − D
1
2
m1m2

(as)D
1
2
m2m3

(ar)
)
D

1
2
m3m1

(at),

we see that pT
rst is a linear combination of the basis functions (χ( 1

2 r, 1
2 s, 1

2 t))
j
ll′ with admissible j, l, and

l′, i.e., with j = 1
2 and l, l′ = 0, 1 or with j = 3

2 and l = l′ = 1 (five functions altogether). According to
Proposition 4.2,

(χ( 1
2 r, 1

2 s, 1
2 t))

j
ll′ = 2

√
2
dj

j∑
m=−j

∑
nr +ns+nt=m
n′r +n′s+n′t=m

C
1
2

1
2 l

nr ,ns,nr+ns
C

l 1
2 j

nr+ns,nt ,m

C
1
2

1
2 l′

n′r ,n′s,n′r+n′s
C

l′ 1
2 j

n′r+n′s,n′t ,m
D

1
2
nrn′r

(ar) D
1
2
nsn′s

(as) D
1
2
ntn′t

(at).

Using the orthogonality relation (4.17), we thus obtain

〈(χ( 1
2 r, 1

2 s, 1
2 t))

j
ll′ |p

T
rst〉=

1

2
√

2dj

j∑
m=−j

∑
nr+ns+nt=m

C
1
2

1
2 l

nr ,ns,nr+ns
C

l 1
2 j

nr+ns,nt ,m(
C

1
2

1
2 l′

nt ,nr ,nr+nt
C

l′ 1
2 j

nr+nt ,ns,m − C
1
2

1
2 l′

ns,nt ,ns+nt
C

l′ 1
2 j

ns+nt ,nr ,m

)
.

Now, (4.13) follows by computing the right-hand side for the values of j, l, and l′ given above. ◽

D. The costratification

According to Theorem 4.8 and Corollary 3.5, the subspaces VT and HT associated with the
stratum PT are given by

VT =
∑

1≤r<s≤N

im
(
p̂T

rs
)

+
∑

1≤r<s<t≤N

im
(
p̂T

rst
)

(4.18)

and

HT =
⋂

1≤r<s≤N

ker
(
p̂T

rs
)†
∩

⋂
1≤r<s<t≤N

ker
(
p̂T

rst
)†, (4.19)

where the adjoint is taken with respect to the L2-scalar product 〈·, ·〉 defined by the measure ν~ given
by (3.3).

To derive VT from (4.18) and HT from (4.19) explicitly, we simplify the notation by collecting
the data j, j, l, and l′ labeling the basis functions in a multi-index

I B
(
j; j; l; l′

)
.

LetIdenote the totality of all these multi-indices. According to Proposition 4.3, the structure constants
of multiplication, defined by

χCI1
· χCI2

=
∑
I ∈I

CI
I1I2

χCI , (4.20)

are given by

CI
I1I2
=

√√
dj

1
dj

2
dj

dj1 dj2 dj
Uj

1
,j

2
(j, l; l1, l2) Uj

1
,j

2
(j, l′; l′1, l′2), (4.21)

where Ii =
(
j
i
; ji; li; l′i

)
and I =

(
j; j; l; l′

)
. According to (4.18), the subspace VT is spanned by the

functions pT
rs χ

C
I with 1 ≤ r < s ≤ N, I ∈ I, and the functions pT

rst χ
C
I with 1 ≤ r < s ≤ N, I ∈ I. We

expand

pT
rs =

∑
K ∈I

(pT
rs)

K χCK , pT
rst =

∑
K ∈I

(pT
rst)

K χCK , (4.22)
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where the coefficients (pT
rs)

K and (pT
rst)

K are given by Lemma 4.9. Then,

pT
rs χ

C
I =

∑
J∈I

AJ
I (r, s) χCJ , AJ

I (r, s)B
∑
K ∈I

(pT
rs)

K CJ
KI ,

pT
rst χ

C
I =

∑
J∈I

BJ
I (r, s, t) χCJ , BJ

I (r, s)B
∑
K ∈I

(pT
rst)

K CJ
KI .

Thus, VT is spanned by the functions∑
J∈I

AJ
I (r, s) χCJ , r < s,

∑
J∈I

BJ
I (r, s, t) χCJ , r < s < t, I ∈ I. (4.23)

It remains to determine the coefficients AJ
I (r, s) and BJ

I (r, s, t). Recall the notation (j1r1, j2r2, . . .) for
a sequence of spins having entries j1 at place r1, j2 at place r2, etc., and 0 elsewhere. In addition, we
introduce the notation

(
j1 |

s1
r1

, j2 |
s2
r2

, . . .
)

for a sequence of spins having entries j1 at places r1, . . ., s1,
j2 at places r2, . . ., s2, etc., and 0 elsewhere. From Lemma 4.9, we obtain

Theorem 4.10. The vanishing subspace VT is spanned by the functions (4.23), with the
coefficients AJ

I (r, s) and BJ
I (r, s, t) given by

AJ
I (r, s) = CJ

I ,
(
(1r,0s);1;(1 |Nr );(1 |Nr )

) + CJ

I ,
(
(0r,1s);1;(1 |Ns );(1 |Ns )

)
+ CJ

I ,
(
(1r,1s);0;(1 |s−1

r );(1 |s−1
r )

) − 2
√

3
CJ

I ,
(
(1r,1s);1;(1 |Nr );(1 |Nr )

) − 3 δJ
I ,

BJ
I (r, s, t) =

√
3

2
CJ

I ,
(
(1

2 r, 1
2 s, 1

2 t); 1
2 ;(1

2 |
s−1
r ,0t−1

s , 1
2 |

N
t );(1

2 |
s−1
r ,1 |t−1

s , 1
2 |

N
t )
)

−

√
3

2
CJ

I ,
(
(1

2 r, 1
2 s, 1

2 t); 1
2 ;(1

2 |
s−1
r ,1t−1

s , 1
2 |

N
t );(1

2 |
s−1
r ,0 |t−1

s , 1
2 |

N
t )
) .

By taking the orthogonal complement, we obtain

Corollary 4.11. The subspace HT associated with the stratum PT consists of the vectors ϕ=
ϕJ χCJ whose coefficients ϕJ are determined by the system of linear equations∑

J∈I
ÂJ

I (r, s) ϕJ = 0, r < s,
∑
J∈I

B̂J
I (r, s, t) ϕJ = 0, r < s < t, I ∈ I,

where ÂJ
I (r, s)=AJ

I (r, s) ‖ χCJ ‖
2 and B̂J

I (r, s, t)=BJ
I (r, s, t) ‖ χCJ ‖

2, with the norm ‖ χCJ ‖
2 given by

(3.15).

Remark 4.12. For given multi-indices I1 = (j
1
; j1; l1; l′1) and I2 = (j

2
; j2; l2; l′2), the range of I3 =

(j
3
; j3; l3; l′3) for which the structure constant CI3

I1I2
is nonzero is given by

j3 ∈ 〈j1, j2〉, j3 ∈ 〈j1, j2〉, l3, l′3 ∈ R(j3, j3).

In particular, the range is finite. Hence, the sums in Corollary 4.11 are finite. Furthermore, for fixed
I1 and I3, the range of I2 is finite, too, because j2 and j2 are bounded by

|j i
1 − j i

2 | ≤ ji
3, i= 1, . . . , N , |j1 − j2 | ≤ j3

and the range of the sequences l2, l′2 of intermediate spins is given by R(j2, j2). Since CI3
I1I2
=CI3

I2I1
, for

fixed I2 and I3, the range of I1 is bounded as well.
To find the coefficients ϕJ , one has to rewrite the defining equations into recurrence relations

and to use the asymptotic behaviour of the norms. This will be discussed elsewhere. �
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To summarize, the costratification for G = SU(2) consists of the Hilbert subspaces

Hν , HT , HZ =H,

together with their orthogonal projectors. Here, Hν is given by Remark 4.7 and HT is given by
Theorem 4.11. By Lemma 7 of Ref. 10, the orthogonal projector onto the vanishing subspaces of the
point strata is given by

Pν( f )B f − f (ν11, . . . , νN1) 1,

where 1 denotes the constant function on GN
C with value one. Thus, the projector onto Hν is idH−Pν .

There are various approaches to the construction of the orthogonal projector for the T -stratum. One
of them consists in applying the Schmidt orthogonalization procedure to the family (4.23). This will
be studied in future work.

E. The case N = 2

To illustrate the general result, let us discuss the case N = 2. Here, for given j = (j1, j2) and

j ∈ 〈 j〉 ≡ 〈j1, j2〉, the set R(j, j) consists of the single sequence l = ( j) . Hence, the labels l and l′ are

redundant and the basis functions may be denoted by (χC
(j1,j2)

)j. Moreover, the isotypical components

of Hj =Hj1 ⊗ Hj2 are irreducible and the endomorphisms A
j,j

l,l′
boil down to orthogonal projectors

A(j1,j2),j. Thus, the basis functions are given by

(χ(j1,j2))
j(a1, a2)=

√
dj1 dj2

dj
tr

(
A(j1,j2),j ◦

(
Dj1

(a1) ⊗ Dj2
(a2)

))
.

By (3.15),

‖(χC(j1,j2))
j ‖

2
= (~π)3e~

(
(2j1+1)2+(2j2+1)2

)
. (4.24)

According to Lemma 4.4, the recoupling coefficients U are given by

Uj
1
,j

2
(j, j; j1, j2)=

*...
,

j1
1 j1

2 j1

j2
1 j2

2 j2

j1 j2 j

+///
-

.

Hence, by Proposition 4.3, the multiplication law reads

(χCj
1
)j1 · (χCj

2
)j2 =

∑
j1∈〈j11 ,j12 〉

j2∈〈j21 ,j22 〉

∑
j∈〈j1,j2〉



j1
1 j1

2 j1

j2
1 j2

2 j2

j1 j2 j


(χCj )j

, (4.25)

where


j1
1 j1

2 j1

j2
1 j2

2 j2

j1 j2 j


=

√
dj1

1
dj2

1
dj1

2
dj2

2
dj

dj1 dj2 dj1 dj2

*...
,

j1
1 j1

2 j1

j2
1 j2

2 j2

j1 j2 j

+///
-

2

is the structure constant C
(j;j)

(j
1
;j1),(j

2
;j2). In terms of Wigner’s 9j symbols,



j1 j2 j3
j4 j5 j6
j7 j8 j9


=

√√√ 9∏
i=1

dji




j1 j2 j3
j4 j5 j6
j7 j8 j9




2

.

By the analysis of Subsection IV B, we have the following orbit types and strata.

(G) The stabilizer is G = SU(2). The corresponding subset of P consists of (the trivial orbits of)
the points
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(
(a, b), (A, B)

)
=

(
± 1,±1

)
, (0, 0)

)
.

Hence, this subset decomposes into the four strata P±±.
(T ) The stabilizer is a torus. The corresponding stratum PT consists of the orbits of the points(

(a1, a2), (A1, A2)
)
,

((
± 1,±1, (0, 0)

)
for which a1, a2, A1, A2 commute pairwise.

(Z) The stabilizer is the center of SU(2). The corresponding stratum P0 consists of the orbits of
the points

(
(a1, a2), (A1, A2)

)
for which a1, a2, A1, A2 do not commute pairwise.

To these strata, there correspond the following closed subspaces of H.

(Z) As in the general case, the subspace H0 associated with the principal stratum P0 coincides
with H.

(G) The subspaces H±± associated with the strata P±± can be constructed as outlined in Remark
4.7. Since P±± corresponds to (±1,±1) ∈GC ×GC, the subspace V±± is spanned by the functions

(χC(j1,j2))
j − (χC(j1,j2))

j(±1,±1) 1

and the subspace H±± is spanned by the single vector

ψ±± =
1

N±±

∑
j1,j2

∑
j∈〈j1,j2〉

(χC
(j1,j2)

)j(±1,±1) (χC(j1,j2))
j.

(T ) The subspace HT associated with the stratum PT is defined by the single function

pT (a1, a2)= tr
(
[a1, a2]2) .

By Lemma 4.9,

pT = (χC(1,0))
1 + (χC(0,1))

1 + (χC(1,1))
0 −

2
√

3
(χC(1,1))

1 − 3. (4.26)

As a consequence, the vanishing subspace VT is spanned by the vectors∑
J∈I

AJ
I χ

C
J , I ∈ I,

where according to Theorem 4.10, the coefficients AJ
I are given by

AJ
I =



1 i1 j1

0 i2 j2

1 i j


+



0 i1 j1

1 i2 j2

1 i j


+



1 i1 j1

1 i2 j2

0 i j


−

2
√

3



1 i1 j1

1 i2 j2

1 i j


− 3δJ

I

with L = (i; i) and J = (j; j) . Finally, Corollary 4.11 implies that HT consists of the functions

ϕ= ϕJ χCJ whose coefficients ϕJ are determined by the system of linear equations∑
J∈I

ÂJ
I ϕ

J = 0, I ∈ I,

where ÂJ
I =AJ

I ‖ χ
C
J ‖

2 and ‖ χCJ ‖
2 is given by (4.24).

F. The eigenvalue problem for the Hamiltonian

Recall the classical Hamiltonian

H(a, E)=
g2

2δ

∑
`∈Λ1

‖E(`)‖2 −
1

g2δ

∑
p∈Λ2

(
tr a(p) + tr a(p)

)
,

given by (2.2). Here, a(p) = a(`1)a(`2)a(`3)a(`4), where the links `1, . . ., `4, in this order, form the
boundary of p and are endowed with the boundary orientation. The quantum Hamiltonian, obtained via
canonical quantization in the tree gauge, is called the Kogut-Susskind Hamiltonian (more precisely,
its pure gauge part),
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H =
g2

2δ
C −

1

g2δ
W. (4.27)

Here,
CB

∑
`∈Λ1

Eij(`)Eji(`)

is the Casimir operator (negative of the group Laplacian) of SU(2)N and

WB
∑
p∈Λ2

(W (p) + W (p)∗),

where W (p) is the quantum counterpart (multiplication operator on H) of tr a(p), called the Wilson
loop operator. For details, see Refs. 26, 14, and 27. Recall that the representative functions of spin j
on SU(2) are eigenfunctions of the Casimir operator of SU(2) corresponding to the eigenvalue

ε j = 4j(j + 1),

see Refs. 8 and 18. It follows that the invariant representative functions (χj)
j
l,l′

are eigenfunctions of

C corresponding to the eigenvalues

ε j = ε j1 + · · · + ε jN . (4.28)

Let us analyze W. For this purpose, for our regular cubic lattice, we define a standard tree as follows.
By a line, we mean a maximal straight line consisting of lattice links. First, choose a lattice site x0

and a line L1 through x0. Next, choose a second line L2 through x0 perpendicular to L1 and add all
lines parallel to L2 in the plane spanned by L1 and L2. Finally, add all lines perpendicular to that
plane. Let B be such a standard tree. Since a(`)= 1 for every ` ∈ B1 and since there are no plaquettes
having 3 off-tree links, we can decompose W into three sums. It is easy to check that there exists
an orientation and a numbering of the off-tree links such that for every plaquette with four off-tree
links (all of these plaquettes are parallel to the plane spanned by the lines L1 and L2), the boundary
links are numbered and oriented consistently, meaning that for one of the two possible orientations
of the plaquette, they carry the induced boundary orientation and that their numbers increase in that
direction. Then,

W=
∑

{p: p∩B=∅}

tr(arp asp atp aup ) + tr(arp asp atp aup )

+
∑

{p: |p∩B |=2}

tr(arp asp ) + tr(arp asp )

+
∑

{p: |p∩B |=3}

tr(arp ) + tr(arp ).

To find the matrix elements of H with respect to the basis functions {(χj)
j
l,l′
}, we have to find the

corresponding expansion of W. The sequences j occuring here will have at most four nonzero entries,
so we can use the notation introduced in Sec. IV C, given by writing j = (j1r1, . . . , jkrk) if j has entries
0, except for ji at the places ri, i = 1, . . ., k. The function Tr(a)= tr(ar) coincides with the basis
function (χj)

j
l,l′

with j = ( 1
2 r) . Omitting the irrelevant indices j, l, l′, we thus have

Tr = χ( 1
2 r).

The function Trs(a)B tr(aras) is a linear combination of the basis functions (χj)
j
ll′

with j = ( 1
2 r, 1

2 s) .

As in Sec. IV C, we may omit the irrelevant labels l, l′. Using (4.16), the orthogonality relation for

the matrix entry functions given by (4.17) and the normalization condition
∑

m1,m2=±
1
2
(C

1
2

1
2 j

m1m2m)2 = 1,
we obtain

〈(χ( 1
2 r, 1

2 s))
j |Trs〉= (−1)1−j

√
dj

2
.

Thus,

Trs =

√
3

2
(χ( 1

2 r, 1
2 s))

1 −
1
2

(χ( 1
2 r, 1

2 s))
0
.
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Finally, the function Trstu(a)B tr(arasatau) is a linear combination of the basis functions (χj)
j
ll′

with

j = ( 1
2 r, 1

2 s, 1
2 t, 1

2 u) . Here, the sequences l ∈ R(j, j) have entries l1 = · · · = lr�1 = 0, lr = · · ·= ls−1 = 1
2 ,

ls = · · · = lt�1 = l, lt = · · · = lu�1 = k, and lu = · · · = lN = j, where l = 0, 1 and k ∈ 〈l, 1
2 〉 so that j ∈ 〈k, 1

2 〉.
That is, they are labeled by two intermediate spins l, k so that in our notation we may replace the
labels l and l′ by (l, k) and (l′, k ′), respectively. Expressing these basis functions in terms of matrix
entry functions according to Proposition 4.2 and using once again the orthogonality relation (4.17),
we obtain

〈(χ( 1
2 r,..., 1

2 u))
j
(l,k),(l′,k′) |Trstu〉=

1

4
√

dj

j∑
m=−j

∑
mr+· · ·+mu=m

C
1
2

1
2 l

mr ,ms,mr+ms
C

l 1
2 k

mr+ms,mt ,mr+ms+mt
C

k 1
2 j

mr+ms+mt ,mu,m

C
1
2

1
2 l′

mu,mr ,mr+mu
C

l′ 1
2 k′

mr+mu,ms,mr+ms+mu
C

k′ 1
2 j

mr+ms+mu,mt ,m.

Evaluation yields

Trstu =
1
8 (χ( 1

2 r,..., 1
2 u))

0
(0 1

2 )(0 1
2 )
−
√

3
8 (χ( 1

2 r,..., 1
2 u))

0
(1 1

2 )(0 1
2 )
−
√

3
8 (χ( 1

2 r,..., 1
2 u))

0
(0 1

2 )(1 1
2 )

− 1
8 (χ( 1

2 r,..., 1
2 u))

0
(1 1

2 )(1 1
2 )
−
√

3
8 (χ( 1

2 r,..., 1
2 u))

1
(0 1

2 )(0 1
2 )
− 1

8 (χ( 1
2 r,..., 1

2 u))
1
(1 1

2 )(0 1
2 )

− 1√
8
(χ( 1

2 r,..., 1
2 u))

1
(1 3

2 )(0 1
2 )

+ 3
8 (χ( 1

2 r,..., 1
2 u))

1
(0 1

2 )(1 1
2 )
− 1

8
√

3
(χ( 1

2 r,..., 1
2 u))

1
(1 1

2 )(1 1
2 )

− 1
2
√

6
(χ( 1

2 r,..., 1
2 u))

1
(1 3

2 )(1 1
2 )

+ 1√
6
(χ( 1

2 r,..., 1
2 u))

1
(1 1

2 )(1 3
2 )
− 1

4
√

3
(χ( 1

2 r,..., 1
2 u))

1
(1 3

2 )(1 3
2 )

+
√

5
4 (χ( 1

2 r,..., 1
2 u))

2
(1 3

2 )(1 3
2 )

.

Now, consider the eigenvalue problem for H. Expanding

ψ =
∑

J

ψJ χJ , W=
∑

I

W I (χI + χI ),

and using (4.20), as well as the fact that 〈χK | χI χJ〉= 〈χI χK | χJ〉=CJ
IK implies

χI χJ =CJ
IK χK ,

we can write the eigenvalue equation in the form

∑
J∈I




(
g2

2δ
εJ − E

)
δK

J −
1

g2δ

∑
I ∈I

W I
(
CK

IJ + CJ
IK

)

ψJ = 0, (4.29)

for all K ∈ I. Here, we have written εJ for the eigenvalue of the Casimir operator C corresponding
to the eigenfunction χJ , given by (4.28). Thus, we are left with a homogeneous system of linear
equations for the eigenfunction coefficients ψJ . The eigenvalues E are determined by the requirement
that the determinant of this system must vanish. Note that the sum over I in (4.29) is finite because
there are only finitely many nonvanishing W I . Moreover, by Remark 4.12, also the sum over J is finite
for every fixed K. Thus, we have reduced the eigenvalue problem for the Hamiltonian to a problem
in linear algebra. Combining this with the well-known asymptotic properties of 3nj symbols, see
Ref. 5 (Topic 9), Ref. 2, and further references therein, we obtain an algebraic setting which allows
for a computer algebra supported study of the spectral properties of H. This will be done in a future
work.

V. SUMMARY AND OUTLOOK

In this paper, we have constructed the Hilbert space costratification for SU(2) lattice gauge
theory. This work is based on the results obtained in Ref. 11, where we have implemented the
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defining relations for the orbit type strata on the quantum level. Here, the main technical tool is the
calculus of invariant representative functions for representations of SU(2) combined with recoupling
theory for angular momenta. We have already explained in the Introduction how the results of this
paper fit into our long-term programme for studying the non-perturbative aspects of non-Abelian
quantum gauge theories. Here, let us outline some perspectives:

1. It will be a challenge to extend our results to the case of the gauge group SU(3). On the classical
level, we have some preliminary results; see, e.g., the case studies in Refs. 6, 7, and 9.

2. In Ref. 10, one of us has developed another approach toward the study of costratifications for
arbitrary compact Lie groups. The starting point in Ref. 10 was the observation that the vanishing
subspaces corresponding to the classical strata may be viewed as intersections of one-point van-
ishing subspaces. The orthogonal complements of the latter were shown to be one-dimensional
and, for each of these spaces, a spanning (holomorphic and square integrable) vector wg was con-
structed. Finally, passing to the Hilbert space of invariant functions was accomplished by using
the projection operatorPdefined by averaging over the compact group manifold. As a result, each
element of the costratification was characterized as the closure of the span of

{
Pwg

}
, with g run-

ning over a complete set of representatives of the set of orbits belonging to the stratum under con-
sideration. Moreover, for the point strata, the spanning vectors wg turned out to be proportional
to the coherent states in the sense of Hall.15,16 For the other strata, up until now, this approach has
not led to such an explicit characterization of the corresponding elements of the costratification.
It will be interesting to combine the calculus developed in this paper with the methods of Ref. 10.
This will possibly lead to a characterization of the full costratification in terms of coherent like
states.

3. In Subsection IV F, we have formulated the eigenvalue problem of the quantum Hamiltonian
H in terms of invariant representative functions. We have shown that, in this language, it boils
down to a problem in linear algebra. As already explained there, this can serve as a starting
point for a study of the spectral properties of H. In particular, it should be possible to inves-
tigate the role of the coherent states addressed in the previous point; see the toy model in
Ref. 22.

APPENDIX A: PROOF OF COROLLARY 3.8

For every λ ∈ Ĝ, we choose a scalar product in Hλ invariant under πλ and an orthonormal basis
{eλr : r = 1, . . . , dim(Hλ)}. For every λ ∈ ĜN , the vectors

e
λ
r B eλ

1

r1 ⊗ · · · ⊗ eλ
N

rN , r = (r1, . . . , rN ), ri = 1, . . . , dim(Hλi ),

form an orthonormal basis in Hλ with respect to the natural scalar product in the tensor product of
Hilbert spaces. Define holomorphic functions

f λr,s : GC→C, f λr,s(a)B
√

dim(Hλ) 〈eλr |πλ(a)eλs 〉,

where λ ∈ Ĝ, r, s = 1, . . ., dim(Hλ), and

f
λ
r,s : GN

C→C, f
λ
r,s(a)B

√
dim(Hλ) 〈e

λ
r |πλ(a)e

λ
s 〉,

where λ ∈ ĜN and r, s ∈
∏N

r=1{1, . . . , dim(Hλr )}. We have

f
λ
r,s(a)=

N∏
i=1

f λ
i

ri ,si (ai).

By this relation, the natural unitary isomorphism HL2(GN
C)=

(
HL2(GC)

) ⊗N and the holomorphic

Peter-Weyl theorem21 for GC, the functions f
λ
r,s form an orthogonal basis in HL2(GN

C) and have the
norms
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‖f
λ
r,s‖

2 =

N∏
i=1

‖f λ
i

ri ,si ‖
2 =

N∏
i=1

Cλi .

Using the basis vectors e
λ

k in Hλ to compute the trace, we find the expansion

(χCλ )λk,l =
∑
r,s

〈
e
λ
s

��� A
λ,λ
k,l e

λ
r

〉
f
λ
r,s. (A1)

Using this, orthogonality of the functions f
λ
r,s, and orthonormality of the endomorphisms A

λ,λ
k,l , we

obtain

〈(χCλ )λk,l |(χ
C
λ′)

λ′

k′,l′〉= δλ,λ′
∑
r,s

〈
e
λ
s

��� A
λ,λ
k,l e

λ
r

〉〈
e
λ
s

��� A
λ,λ′

k′,l′ e
λ
r

〉 N∏
i=1

Cλi

= δλ,λ′ tr
((

A
λ,λ
k,l

)∗
A
λ,λ′

k′,l′

) N∏
i=1

Cλi

= δλ,λ′ δλλ′ δkk′ δll′

N∏
i=1

Cλi .

This yields the assertion. ◽

APPENDIX B: PROOF OF LEMMA 4.4

Proof. The proof is by induction over N. In the case N = 2, the reduction scheme (4.6) boils
down to (4.10) and the reduction scheme (4.7) boils down to (4.9), where j1 = j1

1 , j2 = j1
2 , j3 = j1, j4 = j2

1 ,
j5 = j2

2 , j6 = j2, j7 = l2
1 , j8 = l2

2 , and j9 = l2. Hence, by definition, the scalar product of the corresponding
ladder basis elements yields the recoupling coefficient

*...
,

j1
1 j1

2 j1

j2
1 j2

2 j2

l2
1 l2

2 l2

+///
-

,

and by (4.8), this coincides with Uj
1
,j

2
(j, l; l1, l2) in the case at hand. This proves the assertion for

N = 2.
Now, let N > 2 be given and assume that the assertion holds for N � 1. In what follows, for any

given sequence x = (x1, . . . , xN ), we denote x
˜
B (x1, . . . , xN−1). Recall that in Hj

1
⊗ Hj

2
, we have the

orthonormal basis vectors |j
1
, j

2
; l1, l2; l, m

〉
defined by the reduction scheme (4.6) and |j

1
, j

2
; j, l, m

〉
defined by the reduction scheme (4.7). Consider the following reduction scheme:

(B1)

It leads to irreducible subspaces labeled by k
˜1, k

˜2, k, j, l. Let |k
˜1, k

˜2; k, j; l, m
〉

denote the elements of
the corresponding orthonormal ladder basis. Using this basis to plug a unit into (4.8), we obtain

Uj
1
,j

2
(j, l; l1, l2; lN )=

∑
k
˜

1,k
˜

2,k,j

〈j
1
, j

2
; j, l, m|k

˜1, k
˜2; k, j; lN , m〉 × · · ·

· · · × 〈k
˜1, k

˜2; k, j; lN , m|j
1
, j

2
; l1, l2; lN , m〉. (B2)
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To compute 〈j
1
, j

2
; j, l, m|k

˜1, k
˜2; k, j; lN , m〉, we view Hj

1
⊗ Hj

2
as the tensor product

(
Hj

˜
1 ⊗ Hj

˜
2

)
⊗(

HjN
1
⊗ HjN

2

)
and expand both arguments with respect to appropriately chosen product bases,

|j
1
, j

2
; j, l, m

〉
=

∑
m1+m2=m

ClN−1jN lN

m1m2m |j
˜

1, j
˜

2; j
˜
, l
˜
, m1

〉
⊗ |jN

1 , jN
2 ; jN , m2

〉
,

|k
˜1, k

˜2; k, j; lN , m
〉
=

∑
m1+m2=m

Ck j lN

m1m2m |j
˜

1, j
˜

2; k
˜1, k

˜2; k, m1
〉
⊗ |jN

1 , jN
2 ; j, m2

〉
.

In view of (4.8), this yields

〈j
1
, j

2
; j, l, m|k

˜1, k
˜2; k, j; lN , m〉= δlN−1,k δjN ,j Uj

˜
1,j

˜
2

(
j
˜
, l
˜
; k
˜1, k

˜2, k
)
. (B3)

To compute the scalar product 〈k
˜1, k

˜2; k, j; lN , m|j
1
, j

2
; l1, l2; lN , m〉, we observe that the vectors

|k
˜1, k

˜2; k, j; lN , m
〉

are ladder basis elements in the tensor product

Hj
˜

1,k
˜

1 ⊗ Hj
˜

2,k
˜

2 ⊗ HjN
1
⊗ HjN

2

[for the notation Hj
˜

1,k
˜

1 , etc., see (4.2)] defined by the reduction scheme (4.9) with j1 = kN−1
1 , j2 = kN−1

2 ,

j3 = k, j4 = jN
1 , j5 = jN

2 , j6 = j, and j9 = lN , whereas |j
1
, j

2
; l1, l2; lN , m

〉
are ladder basis elements in the

tensor product

Hj
˜

1,l
˜

1 ⊗ Hj
˜

2,l
˜

2 ⊗ HjN
1
⊗ HjN

2

defined by the reduction scheme (4.10) with j1 = lN−1
1 , j2 = lN−1

2 , j4 = jN
1 , j5 = jN

2 , j7 = lN
1 , j8 = lN

2 , and
j9 = lN . Therefore,

〈k
˜1, k

˜2; k, j; lN , m|j
1
, j

2
; l1, l2; lN , m〉= δk

˜
1,l

˜
1 δk

˜
2,l

˜
2

*.
,

lN−1
1 lN−1

2 k
jN
1 jN

2 j
lN
1 lN

2 lN

+/
-
.

Plugging this and (B3) into (B2) and taking the sum, we obtain

Uj
1
,j

2
(j, l; l1, l2)= *.

,

lN−1
1 lN−1

2 lN−1

jN
1 jN

2 jN

lN
1 lN

2 lN

+/
-
Uj

˜
1,j

˜
2

(
j
˜
, l
˜
; l
˜1, l

˜2

)
.

Thus, the induction assumption implies that the assertion holds for N. ◽
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