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We construct the Hilbert space costratification of G = SU(2)-quantum gauge theory
on a finite spatial lattice in the Hamiltonian approach. We build on previous work [F.
Fiirstenberg, G. Rudolph, and M. Schmidt, J. Geom. Phys. 119, 66-81 (2017)], where
we have implemented the classical gauge orbit strata on the quantum level within a
suitable holomorphic picture. In this picture, each element 7 of the classical stratifica-
tion corresponds to the zero locus of a finite subset {p; } of the algebra R of G-invariant
representative functions on Gg. Viewing the invariants as multiplication operators p;
on the Hilbert space #, the union of their images defines a subspace of H whose
orthogonal complement H, is the element of the costratification corresponding to 7.
To construct H,, one has to determine the images of the p; explicitly. To accomplish
this goal, we construct an orthonormal basis in 4 and determine the multiplication
law for the basis elements; that is, we determine the structure constants of ‘R in this
basis. This part of our analysis applies to any compact Lie group G. For G = SU(2),
the above procedure boils down to a problem in combinatorics of angular momen-
tum theory. Using this theory, we obtain the union of the images of the operators p;
as a subspace generated by vectors whose coefficients with respect to our basis are
given in terms of Wigner’s 3nj symbols. The latter are further expressed in terms of 9j
symbols. Using these techniques, we are also able to reduce the eigenvalue problem
for the Hamiltonian of this theory to a problem in linear algebra. Published by AIP
Publishing. https://doi.org/10.1063/1.5031115

I. INTRODUCTION

This paper is a continuation of our previous one,!' where we have derived the defining rela-
tions for the orbit type strata of G = SU(2)-lattice gauge theory. It is part of a program which aims
at developing a non-perturbative approach to the quantum theory of gauge fields in the Hamilto-
nian framework with special emphasis on the role of non-generic gauge orbit types. The starting
point is a finite-dimensional Hamiltonian lattice approximation of the theory, which on the clas-
sical level leads to a finite-dimensional Hamiltonian system with symmetries. The corresponding
quantum theory is obtained via canonical quantization. It is best described in the language of C*-
algebras with a field algebra which (for a pure gauge theory) may be identified with the algebra
of compact operators on the Hilbert space of square-integrable functions over the product GV
of N copies of the gauge group manifold G, where N is the number of off-tree links for a cho-
sen maximal lattice tree. Correspondingly, the observable algebra is obtained via gauge symmetry
reduction. We refer to Refs. 23, 25, 26, and 34 for the study of this algebra, including its superse-
lection structure. For first steps toward the construction of the thermodynamical limit, see Refs. 13
and 14.

If the gauge group is non-Abelian, then the action of the symmetry group in the corresponding
classical Hamiltonian system necessarily has more than one orbit type. Correspondingly, the reduced
phase space obtained by symplectic reduction is a stratified symplectic space3>343% rather than a
symplectic manifold as in the case with one orbit type.! The stratification is given by the orbit type
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strata. It consists of an open and dense principal stratum and several secondary strata. Each of these
strata is invariant under the dynamics with respect to any invariant Hamiltonian. For case studies, we
refer to Refs. 6, 7, and 9.

To study the influence of the classical orbit type stratification on the quantum level, we use
the concept of costratification of the quantum Hilbert space as developed by Huebschmann.? A
costratification is given by a family of closed subspaces, one for each stratum. Loosely speaking, the
closed subspace associated with a certain classical stratum consists of the wave functions which are
optimally localized at that stratum in the sense that they are orthogonal to all states vanishing at that
stratum. The vanishing condition can be given sense in the framework of holomorphic quantization,
where wave functions are true functions and not just classes of functions. In Ref. 22, we have
constructed this costratification for a toy model with gauge group SU(2) on a single lattice plaquette.
As physical effects, we have found a nontrivial overlap between distant strata and, for a certain range
of the coupling, a very large transition probability between the ground state of the lattice Hamiltonian
and one of the two secondary strata.

In the present paper, we deal with the theory with gauge group G = SU(2) for an arbitrary
finite lattice. In this case, there are non-trivial relations characterizing the classical gauge orbit strata
which, in a first step, should be implemented on the quantum level. This problem has been solved
in Ref. 11 using the above mentioned holomorphic picture. In this picture, each element 7 of the
stratification corresponds to the zero locus of a finite subset {py, ..., p,} of the algebra R of G-
invariant representative functions on G¥, where G¢ denotes the complexification of G. Viewing the
invariants p; as multiplication operators p; on the Hilbert space 7, the union of their images defines a
subspace of H whose orthogonal complement . is, by definition, the element of the costratification
corresponding to 7. Thus, to construct H,, one has to determine the images of the p; explicitly. To
accomplish this goal, we construct an orthonormal basis in H and determine the structure constants
of the algebra R with respect to that basis. This part of our analysis applies to any compact Lie
group G. So, assuming that we are given the classical stratification for some Lie group G in terms
of the classical invariants p;, with the above result at our disposal, we can in principle determine the
operators p; as well as their images in H in terms of linear combinations of the elements of the chosen
basis.

For G = SU(2), our procedure boils down to a problem in combinatorics of angular momentum
theory. For the latter, we refer to Refs. 4, 5, 28, 37, and 41. Using this theory, we obtain the union
of the images of the operators p; as a subspace of H generated by vectors whose coefficients with
respect to our basis are given in terms of Wigner’s 3nj symbols. The latter is further expressed in
terms of 95 symbols. For these symbols, there exist nowadays efficient calculators; that is, the above
coefficients can be calculated explicitly. Using the same techniques, we are also able to reduce the
eigenvalue problem for the Hamiltonian of this theory to a problem in linear algebra.

The paper is organized as follows. In Sec. II, we explain the model. To keep the presentation self-
contained, in Sec. III, we present the basics of stratified quantum gauge theory for arbitrary compact
gauge groups as developed in detail in Ref. 11. Moreover, we construct a basis of H consisting of
G-invariant representative functions and derive the multiplication law in R. In Sec. IV, we turn to the
study of the case G = SU(2). We describe the orbit type strata, analyze the zero loci in terms of the
above basis, and obtain the images of the multiplication operators p; in terms of linear combinations
of the basis elements. As a consequence, the costrata are given by systems of linear equations with
real coefficients built from 3nj symbols. We illustrate the result for the special case N = 2. Finally, we
discuss the eigenvalue problem for the Hamiltonian in terms of the above basis. The text is completed
by Appendixes A and B containing the proofs of two technical results.

Il. THE MODEL

Let G be a compact Lie group and let g be its Lie algebra. Later on, we will specify G = SU(2),
but for the time being, this is not necessary. Let A be a finite spatial lattice and let A°, A!, and A?
denote, respectively, the sets of lattice sites, lattice links, and lattice plaquettes. For the links and
plaquettes, let there be chosen an arbitrary orientation. In lattice gauge theory with gauge group G in
the Hamiltonian approach, gauge fields (the variables) are approximated by their parallel transporters
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along links and gauge transformations (the symmetries) are approximated by their values at the lattice
sites. Thus, the classical configuration space is the space GN' of mappings A' — G, the classical
symmetry group is the group G of mappings A” — G with pointwise multiplication, and the action
of ge G onaeGN is given by

(g~ a)()=ga)gy) ", 2.1

where £ € A! and x, y denote the starting point and the endpoint of £, respectively. The classical phase
space is given by the associated Hamiltonian G-manifold,"*> and the reduced classical phase space
is obtained from that by symplectic reduction.’?>3¢ We do not need the details here. Dynamics is
ruled by the classical counterpart of the Kogut-Susskind lattice Hamiltonian; see Subsection IV F.
When identifying T*G with G x g, and thus T*G*' with GA' x g™', by means of left-invariant vector
fields, the classical Hamiltonian is given by

2 N

8 2
H(a,E)==— EO|” -
(a,E) 26[;1” Ol

-%— }:(uaqn+¢rmpﬂ, 2.2)
8%0 peN?

where a € G, g denotes the coupling constant, § denotes the lattice spacing, and a(p) denotes the
product of a(€) along the boundary of the plaquette p in the induced orientation. The trace is taken
in some chosen unitary representation. Unitarity ensures that the Hamiltonian does not depend on
the choice of plaquette orientations. Finally, E € gA] is the classical colour electric field (canonically
conjugate momentum).

When discussing orbit types in continuum gauge theory, it is convenient to first factorize with
respect to the free action of pointed gauge transformations, thus arriving at an action of the compact
gauge group G on the quotient manifold. This preliminary reduction can also be carried out in the
case of lattice gauge theory under consideration. In fact, given a lattice site x, it is not hard to see
that the normal subgroup

g€ G g(xo) =1}, 2.3)

where 1 denotes the unitelement of G, acts freely on GM'.Hence, one may pass to the quotient manifold
and the residual action by the quotient Lie group of GM’ with respect to this normal subgroup. Clearly,
the quotient Lie group is naturally isomorphic to G. The quotient manifold can be identified with
a direct product of copies of G, and the quotient action can be identified with the action of G by
diagonal conjugation as follows. Choose a maximal tree 7'in the graph A! and define the tree gauge
of Tto be the subset
{aeGN :a(t)=1V(eT)

of G'. One can readily see that every element of GM s conjugate under G™’ to an element in the
tree gauge of 7 and that two elements in the tree gauge of 7 are conjugate under GN' if they are
conjugate under the action of G via constant gauge transformations. This implies that the natural
inclusion mapping of the tree gauge into GM' descends to a G-equivariant diffeomorphism from that
tree gauge onto the quotient manifold of GM' with respect to the action of the subgroup (2.3). Finally,
by choosing a numbering of the off-tree links in A', we can identify the tree gauge of 7 with the
direct product of N copies of G, where N denotes the number of off-tree links. This number does not
depend on the choice of 7. Then, the action of G on the tree gauge via constant gauge transformations
translates into the action of G on GV by diagonal conjugation,

g (at,...,an)=(ga1g ™", ...,gang ™). 2.4)

As a consequence of these considerations, for the discussion of the role of orbit types, we may pass
from the original large Hamiltonian system with symmetries, given by the configuration space G’\],
the symmetry group GM’, and the action (2.1), to the smaller Hamiltonian system with symmetries
given by the configuration space

0:=G",
the symmetry group G, and the action of G on Q given by diagonal conjugation (2.4). This is the system
we will discuss here. As before, the classical phase space is given by the associated Hamiltonian
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G-manifold and the reduced classical phase space is obtained from that by symplectic reduction. One
can show that the latter is isomorphic, as a stratified symplectic space, to the reduced classical phase
space defined by the original Hamiltonian system with symmetries.

We will need the following information about the classical phase space. As a space, it is given
by the cotangent bundle

T*Q=T*G".

It is a general fact that the action of G on Q naturally lifts to a symplectic action on T*Q (consisting
of the corresponding ‘point transformations’ in the language of canonical transformations) and that
the lifted action admits a momentum mapping

w:T'Q—g"  up)A) :=p@A.),

where p € T*Q, A € g, and A, denotes the Killing vector field defined by A. An easy calculation shows
that under the global trivialization

TGN =GN x gV (2.5)

induced by left-invariant vector fields and an invariant scalar product on g, the lifted action is given
by diagonal conjugation,

g-(ar,...,an,Ar .., AN) = (ga1g™}, ..., gang™ ', Ad(9)A1, ..., Ad(2)Ay), (2.6)

and the associated momentum mapping is given by

N
par, . ..,an,Ar, ..., An) = ) Ad(apA; - A;, 2.7
i=1

see, e.g., Ref. 35, Sec. 10.7. The reduced phase space P is obtained from T*G" by singular symplectic
reduction at y = 0. That is, P is the set of orbits of the lifted action of G on the invariant subset ™ 10)
c T*Q, endowed with the quotient topology induced from the relative topology on this subset. In
lattice gauge theory, the condition u = O corresponds to the Gaul} law constraint. As a matter of
fact, the action of G on y~'(0) has the same orbit types as that on Q. By definition, the orbit type
strata of P are the connected components of the subsets of P of elements with a fixed orbit type.
They are called strata because they provide a stratification of P.32-*% By the procedure of symplectic
reduction, the orbit type strata of P are endowed with symplectic manifold structures. The bundle
projection T*Q — Q induces a mapping P — Q/G. This mapping is surjective because y is linear on
the fibres of T*Q and hence 1! (0) contains the zero section of T*Q. It need not preserve the orbit type
though.

Remark 2.1. The tree gauge need not be invariant under time evolution with respect to a
gauge-invariant Hamiltonian (e.g., the Kogut-Susskind lattice Hamiltonian), but every motion in
the full configuration space GM' can be transformed by a time-dependent gauge transformation
to the tree gauge. Thus, up to time-dependent gauge transformations, the tree gauge is invariant
under time evolution. This is reflected in the isomorphism of the reduced phase spaces mentioned
above. /

lll. STRATIFIED QUANTUM THEORY
A. Quantization and reduction

To construct the quantum theory of the reduced system, one may either first reduce the classical
system and then quantize or first quantize and then reduce the quantum system. Here, we follow
the second strategy; that is, we carry out geometric (Kihler) quantization on T*G" and subsequent
reduction. Let g denote the complexification of g and let G¢ denote the complexification of G. This
is a complex Lie group having G as its maximal compact subgroup. It is unique up to isomorphism.
For G = SU(n), we have G¢ = SL(n, C) . By restriction, the exponential mapping
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exp: gc — Ge
of G¢ and multiplication in G¢ induce a diffeomorphism
Gxg—Gt,  (a,A) aexp(iA), (3.1
which is equivariant with respect to the action of G on G X g by
g (a.A4):= (gag™', Ad(9)A)

and the action of G on G¢ by conjugation. For G = SU(n), this diffeomorphism amounts to the
inverse of the polar decomposition. By applying this diffeomorphism to each copy, we obtain a
diffeomorphism

GNxg" > Gy, (a1,....an,A1,...,Ay) > (a1 exp(idy), . . ., ay exp(iAy)).
By composing the latter with the global trivialization (2.5), we obtain a diffeomorphism
T'G" > GY (3.2)

which, due to (2.6), is equivariant with respect to the lifted action of G on T* G" and the action of
G on Gg by diagonal conjugation. Via this diffeomorphism, the complex structure of chv and the
symplectic structure of T*G" combine to a Kihler structure. Half-form Kéhler quantization on Gf(\:'
yields the Hilbert space

HL*(GY., dvy)

of holomorphic functions on Gg which are square-integrable with respect to the measure
dvp=e*"pe, (3.3)

where
i iA 2 2
k(are”, ... ane"™V)=|A1|" +-- - +|Ap]|

is the Kihler potential on GY,

i Any sin (ad(Ap)) sin (ad(Ay))
T](ale 5o, ANE )—\/detw' \/det —ad(AN)

is the half-form correction, and
slare™, ... aye”¥)=da ---day dA; ---dAy
is the Liouville measure on T*G" . Reduction then yields the closed subspace
H=HL*(GY,dv;)°¢
of G-invariants as the Hilbert space of the reduced system.

Remark 3.1. The above result belongs to Hall.!¢ Alternatively, the Hilbert space HL>(GY, dv)

is obtained via the Segal-Bargmann transformation for compact Lie groups.'> In more detail, the
Segal-Bargmann transformation

@ : L2(GY) = HLA(GY, dvy)
is a unitary isomorphism, which restricts to a unitary isomorphism of the subspaces of
invariants. ¢
B. Orbit type costratification

Following Huebschmann,?® we define the subspaces associated with the orbit type strata of P to
be the orthogonal complements of the subspaces of functions vanishing on those strata. To accom-
plish this idea, we first clarify how to interpret elements of H as functions on P. In the case N = 1
discussed in Refs. 22 and 19, this is readily done by observing that P = T¢c /W, where T is a maximal
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torus in G and W is the corresponding Weyl group, and using the isomorphism HL?*(G¢,dv)¢
EHLZ(Tc,dVT)W; see Sec. 3.1 of Ref. 22. Here, the measure dvy is obtained from dv by inte-
gration over the conjugation orbits in G¢, thus yielding an analog of Weyl’s integration formula for
HL*(GY,dv). In the general case, the argument is as follows.

First, we construct a quotient of G%’ on which the elements of H define functions. Consider the
action of G¢ on Gg by diagonal conjugation. For a € Gg, let G¢ - a denote the corresponding orbit.
Since G¢ is not compact, G¢ - a need not be closed. If a holomorphic function on Gg is invariant
under the action of G by diagonal conjugation, then it is also invariant under the action of G¢ by
diagonal conjugation; i.e., it is constant on the orbit G¢ - a for every a € Gg . Being continuous, it is
then constant on the closure G¢ - a. As a consequence, it takes the same value on two orbits whenever
their closures intersect. This motivates the following definition. Two elements a, b € Gg are said to
be orbit closure equivalent if there exist ¢, ...,c, € Gg such that

Gc-gﬂGc-glig, G(C'leGC'ing, RN Gc~grﬂG(c-é¢®.

Clearly, orbit closure equivalence defines an equivalence relation on GY indeed. Let Gg //Gc denote
the topological quotient. The notation is motivated by the fact that the quotient provides a categorical
quotient of G%’ by Gc in the sense of geometric invariant theory.>° By construction, the elements of
H descend to continuous functions on G //Gc.

In Ref. 11, we have explained in some detail how the orbit closure quotient Gg //Gc is related
to the reduced phase space P. This discussion is based on the observation that, via the equivariant
diffeomorphism (3.2), the momentum mapping may be viewed as a mapping

p:GE—g'

and, thus, P may be viewed as the quotient of ' (0) C G by the action of G. In this language, 1~ (0)
turns out to be a Kempf-Ness set.?* Using this fact, one can prove the following.

Theorem 3.2. The natural inclusion mapping u~'(0) — Gg induces a homeomorphism
P— GY//Gc. (3.4)

For the proof, see Ref. 17.
As a by-product of the proof, one finds that two points a, b € Gg are orbit closure equivalent if
and only if

Gc-anGe-bnu (0. (3.5)

As a result, via the homeomorphism (3.4), the elements of H can be interpreted as functions on P.
By virtue of this interpretation, to a given orbit type stratum P, C P, there corresponds the closed
subspace

Vei= (W eH upp, =0},

We define the subspace H. associated with P, to be the orthogonal complement of V; in H. Then,
we have the orthogonal decomposition

He @V =H.
Remark 3.3. Since holomorphic functions are continuous, one has
Ve={y ety p =0} (3.6)

First, since the principal stratum is dense in P, this implies that the subspace associated with that
stratum coincides with 4. Thus, in the discussion of the orbit type subspaces below, the principal
stratum may be ignored. Second, recall that in a stratification, the strata satisfy the condition of
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the frontier, which means that if P, N P, # @, then P, C P;. In view of this, (3.6) implies that if
Po N Pr # @, then V; c V> and hence H, C H,. The family of orthogonal projections

H, — H, whenever P, N P, # @
makes the family of closed subspaces . into a costratification in the sense of Huebschmann.”’ ¢

In order to analyze the condition ¢ p, =0, it is convenient to work with those subsets of Gg
which under the natural projection Gg - Gg //Gc and the homeomorphism (3.4) correspond to the
orbit type strata of P. For a given orbit type stratum P, denote this subset by (Gg )r. That is, (G{g )r
consists of the elements a of G%’ whose orbit closure equivalence class belongs to the image of P
under the homeomorphism (3.4). In other words, a € (Gg)T if and only if it is orbit closure equivalent
to some element of x~!(0) whose G-orbit belongs to P;. Clearly,

Ve ={y €My, =0). 3.7

C. Characterization of costrata in terms of relations

To conclude the general discussion, we describe how to construct V; and H, using defining
relations for the orbit type strata P;.

Let 2(GY) denote the commutative algebra of representative functions on GV and let
R :=9R(G")" be the subalgebra of G-invariant elements. Since Gg is the complexification of the
compact Lie group GV, the proposition and Theorem 3 in Sec. 8.7.2 of Ref. 33 imply that R(G")
coincides with the coordinate ring of G¥, viewed as a complex affine variety, and that SR(G") coin-
cides with the algebra of representative functions on Gg. As a consequence, R coincides with the
algebra of G-invariant representative functions on G¥, where the relation is given by restriction and
analytic continuation, respectively.

Recall that an ideal Z c R is called a radical ideal if for all f € R satisfying f"* € Z for some n,
one has f € Z. Moreover, given a subset R C R, one defines the zero locus of R by

{aeGY:f(a)=0forall f R} C G}.
It coincides with the zero locus of the ideal in R generated by R.

Proposition 3.4. Let Pr be an orbit type stratum and let Ry be a subset of R satisfying

1. The zero locus of R coincides with the topological closure of (Gg)T.
2. The ideal generated by R, in R is a radical ideal.

Then, V; is obtained by intersecting H with the ideal generated algebraically by R in the algebra
Hol(Gg)G of G-invariant holomorphic functions on G%’ .

For the proof, see Ref. 11.

By Hilbert’s basis theorem, finite subsets R, C R satisfying conditions 1 and 2 of Proposition
3.4 exist. Given R, Proposition 3.4 implies the following explicit characterization of the subspaces
V: and H, in terms of multiplication operators. For f € R, let f : H{ — H denote the operator of
multiplication by f.

Corollary 3.5. Let P; be an orbit type stratum and let R = {p1, . .., p,} be a finite subset of R
satisfying conditions 1 and 2 of Proposition 3.4. Then,

Ve =im(py) + - - - +im(p,), HTzker(ﬁi)ﬂ---ﬂker(ﬁI). m]

In what follows, we will refer to conditions 1 and 2 of Proposition 3.4 as the zero locus condition
and the radical ideal condition, respectively.
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D. The commutative algebra R

By Proposition 3.4 and Corollary 3.5, the costratification of the quantum Hilbert space H is given
by a family of finite subsets R, C R satisfying conditions 1 and 2. Each of these subsets consists of
a finite set of G-invariant polynomials on Gfé’. To construct the costratification explicitly, one has
to find the images of the multiplication operators defined by these invariant polynomials. This can
be achieved by choosing an orthonormal basis in H and by finding the structure constants of the
multiplication law in R in that basis.

By Remark 3.1, we can first consider the Hilbert space L?>(G") and use the theory of compact
Lie groups. For the convenience of the reader and to fix the notation, we recall some basics; see,
e.g., Ref. 31 or 12 for details. Below, all representations are assumed to be continuous and unitary
without further notice. Let G denote the set of isomorphism classes of finite-dimensional irreps of G.
Given a finite-dimensional unitary representation (H, r) of G, let C(G), C R(G) denote the subspace
of representative functions and let y, € C(G), be the character of &, defined by y,(a) =tr (n(a)).
The same notation will be used for the Lie group GV.

The elements of G will be labeled by the corresponding highest weight A relative to some
chosen Cartan subalgebra and some chosen dominant Weyl chamber. Assume that for every 1 € G a
concrete unitary irrep (H a, ) of highest weight 4 in the Hilbert space H, has been chosen. Given

A= (/11, ..., ) e GN, we define a representation (Hy, ) of GY by
N N
Hi: ®H/1i, ni(c_z)=®7r/li(ai), (38)
i=1 i=1
where a = (ay, . . ., ay). This representation is irreducible and we have
N

C(G")ry = Q) CG)r,

i=1

isometrically with respect to the L2-norms. Using this, together with the Peter-Weyl theorem for G,
we obtain that @B , _av C(G")x, isdensein L*(G", dVa). Since P, av C(GM)n, € P = C(GM)n,

meGN
this implies

Lemma 3.6. Every irreducible representation of GV is equivalent to a product representation
(Hp,mp) with A € GN. If (Hy, ) and (Hy, my) are isomorphic, then A= ]

Given A € GV, let ﬂﬁ denote the representation of G on H, defined by

ﬂi(d) =ma,...,a). 3.9

This representation will be referred to as the diagonal representation induced by ;. It is reducible
and has the isotypical decomposition
Ha= (D Ha

into uniquely determined subspaces H, 3. Recall that these subspaces may be obtained as the images
of the orthogonal projectors

P, = dim(H,) / X, (@) ma(a) da (3.10)
G

on H,. These projectors commute with one another and with nfll. If an isotypical subspace H)p , is
reducible, we can further decompose it in a non-unique way into irreducible subspaces of isomorphism
type A. Let m,(4) denote the number of these irreducible subspaces (the multiplicity of 7, in ﬂjli)
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and let G 1 denote the subset of G consisting of the highest weights A such that m,(4) > 0. This way,
we obtain a unitary G-representation isomorphism

ma ()

e2:Hy > P P Ha. G.11)

/1664 k=1

Let
ma() ma(d)

prik:@ @H,,AH/I, iik:H/l_’@ @H,l,

/leai k=1 /le(A?i k=1

denote the natural projections and injections of the direct sum, respectively. For every A € (Aii and

every k,l=1,...,ma(1) , define a G-representation endomorphism Afl’l of ni by
1 1 | 2
AT = —— oiy, opr;, o 3.12
kil \ /dlm(H,l) (’Di Ak P A1 Pa ( )

and a G-invariant function ( y 4)? ,on GN by

D (@ 1= Jdim(Hy) tr(ma@AL). (3.13)

Proposition 3.7. The family of functions
[l 2€GY, A€Gy, ki=1,....ma()}

constitutes an orthonormal basis in L2(GN)C.

Proof. Note that for every 1 € GV, the mapping

Tp:End(Hy) = C(GV)ry,  Ta(A)a) = Jdim Hy tr (ma(@A), (3.14)

is a unitary G-representation isomorphism with respect to the scalar product on End(H,) defined by
(A|B) = tr(A*B) and the induced endomorphism representation on End(H,), given by assigning to g
€ G the automorphism

A ri(@Ari(®
of End(H). Being a representation isomorphism, 7, restricts to a unitary Hilbert space isomorphism

of the subspaces of G-invariant elements, End(H 4)6 — C(GN )%. Now, End(H i)G consists precisely

of the representation endomorphisms of ﬂf{. Hence, Schur’s lemma implies that it is spanned by

. . = . 1 .2 .
the endomorphisms A;,’l with A€ Gy and k,[=1,...,my(1) . Using Py Ciy = OavOuidy,, we
compute
A, A
(Al 1A% ) = 8ax Sk O

It follows that the endomorphisms Af[’l with 1 € (Aii and k,I=1,...,m (1) form an orthonormal
basis in End(H 4)6 and hence that their images under T}, i.e., the functions (y i)g,z’ form an orthonor-
mal basis in C(GV )%. Thus, the family given in the proposition yields an orthonormal basis in
R =R(GY)C. -

It remains to show that R is dense in L>(G",d"a)C. This follows from the Peter-Weyl theorem
for GV by applying the averaging operator
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Pg:L*(GY,d"a) - LA(GY,dV )%, PG(f)(a) = /f(gcng“, ...,gang ) dg

and observing that the image of a dense subset under a surjective continuous mapping is dense. 0O

By analytic continuation, the irreps 74 of G induce irreps ﬂf of G, the irreps my of G" induce
irreps 7€ 1 of GN and the functions (y /l)k ,on G" induce holomorphic functions (y 1 )/l on GN Then,

(3.8), (3.9), and (3.13) hold with 7,, 7, and ()(,,)k[ replaced by, respectively, ”,1 , ”,1’ and ()( )

Corollary 3.8. The family of functions
{xDiy : 2€GY, 1€Gy, kI=1,....m(D)

constitutes an orthogonal basis in H. The norms are

H r 2
”(/\//l )k 1”2 l_[ C,{V C/lr — (hﬂ')dlm(c)/zehl/l +ol , (315)

where p denotes half the sum of the positive roots. The expansion coefficients of f € H with respect
to this basis are given by the scalar products «Xi)fszN) in L2(GN)C.

Proof. See Appendix A. The last statement follows from the fact that two elements of H coincide
if and only if their restrictions to GV coincide. Since the functions ( y ,1)]/} ; form an orthonormal basis

in L2(GM)C, we have figx = S0kl frov) (xp- Since (rad = (e v, this yields the
assertion. O

Remark 3.9. The orthonormal basis of invariant representative functions provided by Proposi-
tion 3.7 is a special case of a spin network basis in the sense of Baez.® It is special in so far as
from the very beginning we have fixed a tree gauge, which reduces the group of local gauge trans-
formations to the action of G. Moreover, our basis above clearly corresponds to a fixed graph (a
finite regular cubic lattice). In this situation, we are able to provide a more explicit presentation of
the basis elements in terms of appropriate functions. We refer to Ref. 3 for comments on various
applications of spin networks in mathematical physics. In particular, over the years, spin network
states have become an important tool in loop quantum gravity; see Ref. 39 and further references
therein. ¢

Now, let us turn to the discussion of the multiplication structure of the G-invariant representative

functions (y 1 )k I We assume that a unitary G-representation isomorphism (3.11) has been chosen

forevery A € G" and every N. Denote
d/l :=dimH,l, dAZdImHi
Writing

e, @ (XL, @

- /dﬂdﬁtr(( o A”—”Z)o(@(c_z)ca@(g))), (3.16)

we see that in order to expand the product ( §%3 1 )k1 I 6% 1 ) ko in terms of the basis functions ( y 1 )k P

a reasonable strategy is to decompose the GN -representation 7y, ® 7y, into GN-irreps A and then
relate these G"-irreps to the basis functions using the chosen G-representation isomorphisms ¢ 2
To implement this, we define two different unitary G-representation isomorphisms of the diagonal
representation Jrf{ ® 7r with an orthogonal direct sum of G-irreps. The first one, @, ,,, is adapted

to the tensor product on the right-hand side of (3.16). It is defined by
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m, (A1) ma, (A2)

a0, Hay ® Hy, ¢£ﬂpiz @ @ (Ha, ® Hy,) (3.17)
A\ i=l =l
¢/11/12 ma, (A1) ma, (A2) ma; ., ()
D DD D (3.18)
A2\ =1 =1
where ¢, 1, acts on each summand H,, ® Hy, as ¢a,.1,)- Let priy i inipa and iy jz’” .2, denote

the natural pI‘O]eCtIOI‘I and injection operators of the direct sum (3.18), respectlvely We have

mea;,a,)(A)
P.2) © (P Ty ® pr%,iz) = Z Z 5{lll - prﬁiﬁ;h,iz,l,i °© ¢4142’ (3.19)
a i=1
mea,a,)(A)
¢4142 °© (iﬁl,il ® :lli 12) = Z Z :lli’:llj inian i © prEl/,lil,/IZ) 0 P 12)- (3.20)
A i=1

The second unitary G-representation isomorphism, ¥, ,,, is adapted to the definition of the basis
functions (y 4)£ ;- Itis defined by

wle ma;a, (D)
W, Hy ® Hy —> @ Hy (3.21)
1 i=1
wiliz ma; ., (D) ma ()
25 @ @ EBEBHA , (3.22)
A i=1 A k=1

where /11 4 is some unitary G" -representation isomorphism, provided by Lemma 3.6, and wﬁ L 1s
FAS EA 122
the G-representation isomorphism acting on each summand H, as ¢,. Moreover, my, 4, (4) is the

multiplicity of the GV-irrep H, in H, 2, ® Hp,. Let plril’i2 and ii"i2 be the natural projections and

injections, respectively, of the direct sum (3.21), and let plrz1 Tk and 1;‘ ;Zk

and injections, respectively, of the direct sum (3.22), respectively. We have

be the natural projections

ma(d)

Wi o= D0 D) i o b o en, (3.23)
A k=1
ma(d)

1.4
@0 pr;‘l 4 _ Z Z o przl.;fk o l//i e (3.24)

A k=1

By construction, ¥y 4, © CD/’ll L 1s a unitary automorphism of a direct sum of G-irreps H,. Hence,
T 122
Schur’s lemma implies that

4 Ak 1450k .
Pry o (W g, 0 @7 4 ) 01975 vy =0 U0 d, (3.25)
A _1 A A ALk .
I 22 71’ 2 cA RFAp RTAL
PP iy i (q)iliz oWl ) o iy = Uy idu, (3.26)
Ao i Ak
with certain coefficients U* 2 .
/l /12 11 12l

Proposition 3.10. In terms of the basis functions, the multiplication in 'R is given by
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(X,l )kl I (X,Iz)kz L

may 2, () ma () m a,)() [
dildiz Z Z Z Z d) Ud]?dz;isns/hk Uil,dz;iyns/l,l( (:)/]
dada, dy T A1k kg T AL AL Xk
T =l A ki=l =1

The same formula holds true for the basis functions (x 1 ,1)’1 on GV.

Proof. It suffices to prove the assertion for the basis functions (y 4)1/} ; on GV . In the proof, we
will use the shorthand notation

1
— (), @ ()2 @,
Jd 2 d o

Using (3.16) and the fact that lﬂ/ll L isa G" -representation isomorphism, we may rewrite
122

Z q)E(Diliz’ \PETL&Z.

ma, 2, (A

A1 Ay -
@ EB ma(a) o'/’éléz o (A;]l’lll ®A 2) o (d’ildz) 1
R

Since
may 2, (D) ma; 1, ()

.4 ;.4
B P mw=), >, i eom@opi®
Bl i=1 2 =l B

this can be further rewritten as

m @D
Z Aiz: t A/l /lz 1 -1 Apd,
z= r(ma(a) o Pf ‘/’/1 4, '® © (wiliz) °Lui )

By (3.23) and (3.24),
Apd N 2 =1 AnA,
i 2=Z Z a,a,) : o1k p PRAZY
7

A4 < 1A
Apdy 4 4
Pra _Z Z Pa o ° r/lz/lk W/uz
1

Plugging this in, we obtain

may 2, (4D ma () ma(a")

z=Z Z Z Z (”ﬂ(“)o%l 0‘/1 opr/l /lk (WO(D )

A =l A k=1 =1

A,,41 -1 1.4, A
O(DO(Akllzl A )O(D O((DO‘P ) l/zlz/zkopr/l,kOSO&)'

Using (3.19) and (3.20), we find

Mg,y (A" )
A, 5,42 - A,,1
®o (A*‘ ® A% ) ol == 3 i oprdid
kl,ll kz,lz ’d/l]d/lz /1“ j—] /11/12 k1k2 /l J p /11,/12,[1,[2,/1 J

Together with (3.25) and (3.26), this yields, after taking the sums over A’ and 1"/,
ma, 2, (A ma(A) m;,a,)(A) [
#Z PIEDND I IR eIl s
d/lld/lz e ] = /ll /12 kl k2 Aj ~ ALA,01L,0 A

- .A A
(ma@) 0 ¢ 0y 0Py 0 0a).
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The assertion now follows from (3.12) and (3.13). ]

Remark 3.11. Note that the coefficients U in Proposition 3.10 depend on the unitary G-
representation isomorphisms @, » and ¥, . In Subsection IV A, we will see that for G = SU(2),
these isomorphisms are uniquely determined by the choice of a unitary G-representation isomor-
phism ¢, for every 4 € G" and that the coefficients U boil down to recoupling coefficients of angular
momentum theory. ¢

IV. THE MODEL FOR G = SU(2)
A. The commutative algebra R for G = SU(2)

As observed in Sec. III, to fix concrete basis functions (y 4);}, we have to fix the unitary G-
representation isomorphisms ¢, entering their definition. As a consequence, we obtain concrete
formulae for the unitary operators in the multiplication law of the above algebra, expressed in terms
of SU(2)-recoupling coefficients. This relates the algebra structure to the combinatorics of recoupling
theory of angular momentum as provided in Refs. 4, 5, 28, and 41.

In the case of G =SU(2), the highf;st weights A of irreps c'orrespond 1-1 to spinsj =0, %, 1, %, e
We will use the common notation D for n;. Thus, (H;, IV) is the standard SU(2)-irrep of spin j,
spanned by the orthonormal ladder basis {|j,m) :m=—j,—j + 1,...,j} which is unique up to a phase.
Accordingly, every sequence A of highest weights corresponds to a sequence j of spins. We write
Di= nj for the corresponding irrep of SU2)" and DIZI = nj‘.l for the induced diagonal representation

of SU(2). To fix the G-representation isomorphisms

m;(j)

¢ H—> P P ;. @.1)
7=

we choose the following reduction scheme for tensor products of N irreps of SU(2). Given nonnegative
half integers s1, 52, denote

(s1,82) ={lsy = s2l, st —s2| + 1, sy — 82| +2,. .., 51 + 52}

and recall that the representation space H;, ® Hy, decomposes into unique irreducible subspaces
(Hs, ® Hy,)s of spin s € (51, s2). We start with decomposing H;1 ® Hj> into the unique irreducible
subspaces (Hj ® Hp2)p with 1% € (j', j*). Then, we decompose the invariant subspaces

(Hp ® Hp)p ® Hj; CHj ® Hp ® Hj,
into unique irreducible subspaces
(Hp ® Hp)p ® Hpp, P e ).
Iterating this, we end up with a decomposition of Hj into unique irreducible subspaces

I_I[»l =(-- ((I'Ijl ® I‘Ijz)lz ®Hj)p ® [‘]jN)lN, “4.2)

where [=(I',...,IV) is a sequence of nonnegative half integers satisfying /' = j! and I' € (I'~!, j)
fori=2,3,...,N. Let us denote the totality of such sequences by R(j) . Moreover, denote

()={:ALeR()s. th.j=I"}, RG.j) = {LeR(): 1" =j}.

Then, m;(j) = |R(j,j)| and hence m;(j) # 0 if and only if j € (j), and the isotypical component of type
j of Hj is given by the direct sum of the subspaces H;; with [ € R(j, j) .

Remark 4.1. Reduction schemes for N-fold tensor products of SU(2)-irreps of spins j', ..., j¥
can be visualized by binary trees with N terminal points o labeled by j', . . ., /" and with N — 1 internal
points e which have two incoming lines and, except for the last one, one outgoing line. The terminal
points represent the tensor factors and the internal points represent the intermediate reduction steps
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given by the irreducible subspaces in the tensor product of the incoming irreps. The last internal point
represents the final irreducible subspace obtained by the reduction scheme. Every labeling of the
internal points which is admissible in the sense that every internal label / belongs to (', I?), where
I' and [? label the starting points of the incoming lines, corresponds to a unique such final subspace.
The binary tree of the reduction scheme used here is

j! 5

l3 7N
IN-1 /
[
lN
and admissible internal labelings are given by the sequences [ € R(j) . ¢

To define the isomorphism ¢;, we choose ladder bases in the irreducible subspaces H;,;. Denote
their elements by |j, I, m), where m = =1V, IV + 1, ..., IV Then,

(Ui Lmy:LeRG),m==IN, 1" +1,..., IV}

is an orthonormal basis in H;. Any other choice of ladder basis would yield the same basis vectors but
multiplied by a phase which depends on [ only. For given j € ( J),» we can use the sequences [ € R(j, /)
to label the copies of H; in the direct sum decomposition of the target space of <p,~ As a consequence,

the natural projections and injections related with this decomposition read pr and 1 respectively,

the basis functions read ( X.i); r and the endomorphisms appearing in their deﬁn1t10n read A/ 2 We

define ¢; by

gilj.Lm)) =1 (lj.m)).

where I], m) denotes the elements of the orthonormal ladder basis in H;. Using (3.12) and the relation

pr* o1 _611/1de forj€(j), L,I'€R(,j), and " € R(j), we compute

W | A o or.
AL (.1 my) = ﬁ(‘ﬁf;) toi opr, o @l m)) = N . L m).
This implies
i J
A= Z Lm)G.Uoml, LI €RGL)), 4.3)
and
. d )
W) @=\7 D Gl mD@l.Lm). LI €RG.j). 4.4)
Ll i =
For later use, we express these functions in terms of the matrix entry functions D’ e i=1,...,N.

For spins s1, 52, s and spin projections my, my, m, let
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Coilomm =51, m1| ® (s2,ma| |51, 5255, m)

denote the Clebsch-Gordan coefficients. Here, Is1, s2; s, m) denote the elements of the ladder basis
in the irreducible subspace of spin s in H;, ® Hy, whenever s € (s1, 52) and the zero vector otherwise.

Proposition 4.2. We have

)@=

N

CG,1'\m) D)), , @)---Dl . (ay),

where Y., means the sum over all sequences m = (my, . ..,my) such that

mi=—j',....j fori=1,...,N, mp+---+my=m,

and where
12J3,]3 IN_IJN,ZN

C

my,my,mi+my my+mo,my,my+mo+ms T S my+my -y myme

G lmy=Cl7
Proof. Using the tensor basis in H;, given by the vectors

lz;m>:= l]13m1>®® UN’mN>9 mi:_ji7~~-’jia i:]7~~-aN7

formula (4.4) can be rewritten as

Xy = Z 22 G Lemlim )G, ml, LDl | (@)Dl | (ax).

m=—j m m

To compute the scalar products, we expand |j, /, m) with respect to |j, m). Denote i =( 1., jN _1)

and [:=(I',...,/N"!) and consider the irreducible subspace Hj,; of H; with its ladder basis {[/, , my:
m=—IN"1 ... IN"1}. By construction, Hj; is the irreducible subspace of spin /¥ in H;; ® Hy and

lj, I, m) are the elements of the ladder basis in that subspace. Hence,

[Nl

U, L. m) = Z Z Chvrihin . Lnw) @ Y, muv).

ny==IN"1 my=—jN

Iterating this argument, we find that the expansion of |j, , m) is given by

lN 1 N ZN lN ZJNfl’lel ZIJZ,IZ .1 2 N
Z CnN my,m nN,l,mN,l,nN e an,mz,m l] ’n2> ® l] ,Wl2> ®-® l] ’mN>’

m;,n;
where the sum runs over n; = —I'"', .., "1 and m; = —ji, .. .,ji fori=2,..., N.Putting m; =ny and
taking into account that the Clebsch-Gordan coefficients vanish unless the first two spin projections
add up to the third one, we find that in the sum over ns, .. ., ny, only the terms with

ny=mp+mpy, ng=my+---+msz, ..., nNy=mp+---+my_

survive. As a result, we obtain

j.Lmy=>" CG.Lm) j,m).

Plugging this into the above formula for ( Xj)i , and taking into account that the Clebsch-Gordan
coefficients are real, we obtain the assertion. o

Next, we compute the coefficients U in the multiplication law for the basis functions given by
Proposition 3.10. For this purpose, we have to determine the unitary G-representation isomorphisms
@; j, and ¥; ; introduced in Subsection III D.
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First, consider (I)j;l g Recall that (I)leZQ = ¢l1iz ) ((’011 ® <pz2). Here, ¢zli2 is given by a unitary
G-representation isomorphism

H; ® Hy,— P H, 4.5)
JE€G12)

for every pair ji, jo with jj € J_'l) and jp € ]_'2). Since the multiplicities are 1 here, we may omit the
corresponding index in our notation. Another consequence is that the isomorphism (4.5) is determined
up to a phase on every H;. We choose these phases in accordance with the standard choice of the
Clebsch-Gordan coefﬁ01ents so that (4.5) is given by these coefficients. Then, d)j i is uniquely
determined by the choice of @ for every J and hence by the choice of the reduction scheme for N-fold
tensor products of SU(2)-irreps. To write it down explicitly, we decompose H,l ® Hi2 into irreducible
subspaces according to the following reduction scheme:

it gt j3 3

l 4.6)
This leads to irreducible subspaces labeled by [, € R(Z | ). Ly € R(Zz), andle IV, 172V ». In each subspace,
we choose an orthonormal ladder basis and denote its elements by []_'1 , ]_'2; 1,0, my,m=-I,...,1
Then,

{Udy Lo Ly lom) sy €RG), L €RG), Le (Y1), m=—1,...1}

is an orthonormal basis in H{-1 ® Hj;2, and CIDZ1 i is given by

©; (U dyi Ly s, m>)—1;Nlel 1,0,

where 1;}\, ZZN 1L _ denotes the natural injection associated with the decomposition (3.18) (here, by our

specific ch01ce of notation, the labels 111\' and 112V are actually redundant).
Now, consider the unitary G-representation isomorphism ‘I‘L b Denote ( ]_ . ]_'2) = ]—[fi 1<ji’ jé).
A 2 1
Recall that \Pf,l J z,//] i oY, iy , Where

v, H @ H, > (D H
o J€Gipdy)

is a unitary G"-representation isomorphism and zﬁz . acts on every summand H j as ;. Since for
2
every factor of GV, wl j boils down to an 1somorphlsm of the type (4.5), the multiplicities are 1

as well and so we may omlt the corresponding index in our notation. This also implies that % j
-122
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is unique up to a phase for every factor of GV and the corresponding irreducible factor of H;. As
before, we choose these phases so that wl . is given by the appropriate Clebsch-Gordan coefficients.
Then, '¥; ; , like ®@; ; , is uniquely determlned by the choice of the reduction scheme for N-fold

tensor products of SU(2)-irreps. To write it down explicitly, we decompose H; j ® H; i, into irreducible
subspaces according to the following reduction scheme:

it Js 3 J3

4.7)
This leads to irreducible subspaces labeled by j € (j . j2) and / € R(j). In each subspace, we choose
an orthonormal ladder basis and denote its elements by [jl R j2; Jyl,m), m= —N, ..., IN. Then,
.. L. .. . _ N N
{U,ody5dsbom) = j € o) LERG), m==I",... 1V}

is an orthonormal basis in I-Ijl ® sz, and ‘{{,-l i, is given by
¥ (04,00 Lm)) —r;N (2 m),

where 1"1N2 ; denotes the natural injection associated with the decomposition (3.22) (where, by our

specific choice of notation, the label IV is redundant).

Proposition 4.3. In the case of G =SU(2), the multiplication law for the basis functions ( )(](.(:)5 v
reads T

dil djz

g d;
(X./ (4 (X/ Ll = d:di Z Z Z _j

U2 e g, J€Gi2) LI ERG)

Ui, o1 1 1) Uy, G U5 15 1) O
where
Ui i, G L1 L) =G s bl )3 Ly s m) (4.8)
forevery j € (]_'1,]_'2),j € {j1,j2), and l €R(.)) and for any admissible m.

The coefficients
UZ]’ZZ(Z’Z;ZI’&) = ql’j-.Z;‘]-.’L mlzlaf_.z;llaéz;ja m>

are the recoupling coefficients for the reduction schemes (4.6) and (4.7). Up to normalization, they
are given by what is known as 3(2N — 1)j symbols; see Topic 12 in Ref. 5 for details.
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Proof. By Proposition 3.10, it suffices to compute the coefficients Ull i (Z, I;1,,1,). According to
(3.25), they are defined by

[ zl -1 J J _ - .
pr/j/llz o \PLJz o (I)] g, °f lelzl Ly UZI‘ZzQ’ L1, 1) idy;,
where j € <j1,j2),j €(j1, J2), and L€ R(j,j) . Evaluating the left-hand side on a ladder basis vector

lj, m) and plugging in a unit, we calculate

11, o -1 J ‘]2
pr”l Tf,plz O(D[IJ Julzl lJ(l] my)

I
=prj;l,'j ] 4, (l] ’] 1’ 2,],m>)

= Dy Lol L L PP 0 (Ui )
l’ll

.. .. j / N
= Dyl L ot o (0 m)
2

= od i bmlj s L Lsj.my [ m).

This yields (4.8). The multiplication law follows then by observing that the coefficients (le i G.51,,1)
are real. o

The recoupling coefficients U] i (J,L;1},1,) can be expressed in terms of the recoupling coeffi-
cients for N = 2, that is, for a tensor product of four SU(2)-irreps as follows. Given four spins jy, j2,
Ja, js, the tensor product D' @ D> @ D/* ® VS can be decomposed, on the one hand, into irreducible
subspaces labeled by js, jg, jo according to the following reduction scheme:

Ji J2  Ja Js

Jo (4.9)

Let {IG1, j2), Gas J5)s j3. J&3 Jo, m): m = —jo, ..., jo} be the ladder bases in these subspaces
chosen in accordance with the definition of the Clebsch-Gordan coefficients. (The notation for
the basis elements corresponds to the general notation used here, specified to N = 2; the con-
ventional notation is ((jij2)j3, (jaj5)j6)jo, m).) On the other hand, this tensor product can be
decomposed into irreducible subspaces labeled by j7, jg, jo according to the following reduction
scheme:

Ji Ja J2 s

J9 (4.10)

Let {11, j2)s G4, J5); (75 J8)s Jo, m): m = —jo, ..., jo} be the ladder bases in these subspaces, again
chosen in accordance with the definition of the Clebsch-Gordan coefficients (i.e., |((j1j4)j7, (2j5)i8)j9,
m) in the conventional notation). It is common to denote the recoupling coefficients between these
two reduction schemes by
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gt 2 J3

Ja Js Je [=(U1.)2)s GasJs)szsJesJo G, j2)s GasJs)s (7.78)s Jo, 1)

J1 Js Jo
(the right-hand side does not depend on m). These coefficients are related with Wigner’s 9j symbols
via

J1 Jj2 J3 J1 J2 J3
Ja s e |=V@is + DQ2ie + D@27+ DQ2js + D3 ja Js Js
J1 Js Jo J1 Js Jo

Lemma 4.4. The recoupling coefficients Ulez (,1:1,,1,) are given by
N li—l lé—l li—l

A ST | VA A |
i=2 li li li
1 2

where l% :=j%, lé :=j§, and I':=j".
Proof. See Appendix B. O

For general recursion formulae for 3nj symbols, see Ref. 41. Since there exist efficient calculators
for 9j symbols, provided, e.g., by the Python library SymPy?° or online by Anthony Stone’s Wigner
coefficient calculator,®® Lemma 4.4 provides an explicit knowledge of the multiplication law in the
commutative algebra R for SU@)V.

B. The orbit type strata

Recall that for G = SU(2), we have G¢c = SL(2,C), g =su(2) and g¢ = sl(2, C) . For convenience,
we keep the notation G and G¢. Let Z denote the center of G. Clearly, this is also the center of G¢. Let
T c G denote the subgroup of diagonal matrices, and let t be its Lie algebra. Clearly, T is a maximal
toral subgroup isomorphic to U(1).

Let us briefly recall the orbit type strata P, of P in terms of subsets (G%’ ) of Gg. For details,
see Ref. 11. First, one determines the orbit types of the lifted action of G on T*G . There are three of
them and these can be labeled by G, T, and Z, where Z is the principal orbit type. The corresponding
orbit type subsets of G x g/ are as follows.

(G) Anelement (a,A) € GV x gV has orbit type G if and only if
(@,A) e ZV x {0}

(T) Anelement (a,A) € GV x gV has orbit type T if and only if it is conjugate to an element of the

subset
(TV x )\ (2" x {0)Y).

Since conjugation by an element of G commutes with taking commutators, for every element
(a,A) of orbit type T, the entries (ay, . . ., ay, Ay, . . ., Ay) commute pairwise. Conversely, if for
an element (a, A) all its entries commute pairwise, then they are simultaneously diagonalizable
and hence they belong to the orbit type T.

(Z) Anelement (a,A) € GV x gV has orbit type Z if and only if it does not have orbit type T or G,
i.e., if and only if it is not conjugate to an element of TV x V, that is, if and only if not all
entries of (@, A) commute pairwise.

Next, one intersects the orbit type subsets with the momentum level set x~'(0), takes the quo-
tient of x~'(0) with respect to the G-action, and passes to connected components. This yields the
following.

(G) There exist 2 orbit type strata of orbit type G, each of which consists of a single point rep-
resenting the (trivial) orbit of an element of Z¥ x{0}". Since such an element is of the
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form (vi1,...,vn1,0,...,0) for some sequence of signs v=(vi,...,vy), we denote the
corresponding stratum by P, .

(T) Since ZV x{0}" consists of finitely many points and 7" x t" has dimension at least 2, the
complement (TV x tV) \ (ZVN x {0}") is connected. Since the subset of P of orbit type T is the
image of the subset

(TN x ™)\ (Z" x (/") c 1 (0)

under the natural projection u~!(0) — P, it is connected, too. Hence, it forms an orbit type
stratum. We denote this stratum by Pr.

(Z) Since g* has dimension 3, the level set ~!(0) generically has dimension 2N - 3 — 3 = 3(2N —
1). On the other hand, since T has dimension 1 and the elements of TV x t¥ have stabilizer
T under the action of G, the subset of GV x gV of orbit type T has dimension 2N - 1 + (3 —
1) =2(N + 1). Hence, if the orbit type Z occurs in P, i.e., if N > 2, then the subset of ,u‘l(O)
generated from TV x t¥ by the action of G has codimension

32N -1)-2(N+1)=4N -52=3.

Therefore, its complement is connected. Since the complement coincides with the subset of
1~ 1(0) of orbit type Z, the subset of 7 of this orbit type is connected. Hence, it forms an orbit
type stratum. We denote this stratum by Py.

One can visualize the set of strata and their partial ordering by a Hasse diagram; see Ref. 11.
Finally, one transports the above results to Gg , that is, for each of the above strata, one finds the
subset (Gg)T of Gg. It suffices to do this for every sequence of signs v = (v, ..., vy) and for T. Let
Tc € G¢ denote the subgroup of diagonal matrices. One obtains the following.

Theorem 4.5. Let a € Gg. Then,

1. ae (Gg)z if and only if a is orbit closure equivalent to (vi1,...,vn1),
2. ae (Gg)r if and only if a is orbit closure equivalent to an element of T(’CV \ ZN.

C. Zero locus and radical ideal conditions

In this subsection, for the strata v found above, we recall from Ref. 11 the finite subsets R, of
‘R having the corresponding orbit type subset (Gg)T as their zero locus and satisfying the radical
ideal condition. Since 7 = Z corresponds to the principal stratum and hence Hz = H, it suffices to
discuss the secondary strata 7 = v and 7 = T. For this purpose, we define the following G-invariant
representative functions:

p(@ =tr ([ar, a,1%), 1<r<s<N,

prv(@ =t (lar, ala;), l1<r<s<t<N.
For the strata labeled by sequences of signs v, one obtains the following.

Theorem 4.6. The subset (Gg ) C Gg is the set of common zeros of the Ge-invariant functions
p,TSwithlSr<s$N,p,TS,with1§r<s<t§N,and

pr(a) =tr(a,) — v.2, r=1,...,N.

Remark 4.7. Instead of using Theorem 4.6, one can construct the subspace H, associated with
the stratum P, directly as follows. Let {¢/,: @ € A} be an orthonormal basis of H which contains
a constant function (. Clearly, the basis provided by Proposition 3.7 is of that type. Since for a
continuous invariant function ¥, the condition to vanish on (G{é’)Z is equivalent to the condition
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w(v11,...,vy1) =0, the vanishing subspace V), of the stratum P,, given by (3.7), is spanned by the
elements

Vo —¥oOnl,...,vw 1, a€A, a#0,

where 1 denotes the constant function with value 1. One proves that H, is spanned by the single
element

1 B
= Z¢ﬁ(v1ﬂ,...,vNﬂ)wﬁ,

Y BeA

where C, is a normalization constant. See Remark 5.4 in Ref. 11 for the details. m]

By this remark, checking the radical ideal condition is relevant for the stratum Pr only.

Theorem 4.8. The topological closure (Gg)T is the set of common zeros of the G-invariant
representative functions

plk. 1<r<s<N,  pk.,l1<r<s<t<N. @.11)
The ideal in 'R generated by these functions is a radical ideal.

The proof of the radical ideal condition is the hard part of Ref. 11.

For the construction of the subspace Hr associated with the stratum 7, it will be convenient to
express the functions p’; and prTS, in terms of the basis functions ( X;‘C);,z’ introduced in Sec. IV A. It
will turn out that the functions pZ are linear combinations of basis functions with Jj having entries j, at
r, js at s, and O elsewhere. For such a sequence, we write j = (j,r, j5) . The corresponding sequences
L€R(j) have entries ' = --- = "1 =0,1" = -.. =ls_1_=j,, and ' =--- =V =, where j € (j,,
Js)- Hence, for given j, there is only one sequence [ in R(j,j) so that we may omit the labels  and [’
in the notation. In a similar way, the functions p’, will turn out to be linear combinations of basis
functions with j having entries j, at r, j; at s, j; at £, and O elsewhere. For such a sequence, we write
J=Girr.jss,Jit) . Here, the sequences [ € R(j) have entries N=..=01'=z0,'=--- =p""'=j,
P=-.=l1=Landl'=--- =N =, where [ € {j,., j;) and j € ([, j,). That is, they are labeled
by a single intermediate spin / so that in our notation we may replace the labels [ and [’ by / and /',
respectively.

Lemma 4.9. The functions pL; and pl, on Gg are given by

2
T C 1 C 1 C 0 C 1
Prs=Wdr0s) ¥ Xor1s) ¥ Xaras) — =Waris) — 3 (4.12)

V3
V3

1 1
T _ C 2 _(.,C 2
prst_ 2 ((X(%r’%s’%z))o’l (X(%r’%s’%t))1’0)~ (4.13)

Proof. According to the last statement of Corollary 3.8, the expansion coefficients of p, and pZ,
with respect to the basis {( X](.C)’Z 1 in H coincide with the expansion coefficients of their restrictions

to GV with respect to the basis {(y; ; 1’} in L2(GM)Y. Hence, it suffices to determine the latter. By an

abuse of notation, in what follows, p,TS and prTst mean the restrictions to GV.
First, consider p’.. We have

pl=21tr ((aras)®) =2 tr(afasz).

For the second term, we use a = D%(a) and D? ® D3 =D ® D! to calculate
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22
tr(ala?) = Z D3 s @)Dy (@)D 2y @)D, (@)
*2
1 1 1 1 1 1
= Z (5l ® (§,m||D(a,) ® D2 (a)||5,ma) ® |5,m3)
m;:i%
1 1 1 1 1 1
(3. m3| ® (5,m4||D?(as) ® D (ay)||5,ma) ® |5,m1)
ml‘:i% Jrds=0 nr»n,rzfjr f’l.y,’lngj.;
i A cd b gy <
r s
lemZ”rCm2m3n', Cm3m4ngcm4mlnj D;rn;(ar) Dlnsn;(as)-
Hence,
1 Jr Js
2 2\ _ jrJ
wlaa)= Y, > D, R D (@)D (), (4.14)
Jrids=0 n, "/r:_jr ng,g=—js
; 11 11
r.]v _ 2 z/r 2 z/r 212J)s 272J)s
n AT n; T Z CmImZ"r mymsn, Cm3m4ns Cm4m1n§'

m;= 12
A similar calculation for the first term of p’, using the relations

J1jaj j1+j2— (21 J1j2j J1j2)’ .
lemvm = (_1)] szmlm’ Z lemzmc 6}]’5mm’,

mlmzm
miy,my
yields
1 Jr Js
2y = JrJi
tr ((aray)”) = Z Z Z S MYD’” (ar)D’ 1 (@5): (4.15)

er‘xZO n,,n;:—j,. ns,ng_:_jx
i 1-f
S}’lr;l g _(_1) Jr(sjrjxénrn.:énlrn.v'

From (4.14) and (4.15), we conclude that prTS is a linear combination of the basis functions (x j, ., s))i

with j,, j, =0, 1 and j € {j,, j;). To compute the expansion coefficients, we use Proposition 4.2 to

write

d;,d;
dj

J
LD aLC Dl (@)D () (4.16)

nnm }’l}’l

(/\/(j, r,jxs))] =
m=—j Nrs=m
T njang=m

and compute the scalar products ((x(;, .5/ IP%) using the orthogonality relation

1
<D/m1m2|Dl == 6]/ 5m1m 6m2m .

m WL d IZ

(4.17)

This results in

(XGrio) k) = m Z Z Chbtm Gl (S, =R ).
Jrs m=—j nr-Hly—m
Computation of the right-hand side for j,, j, =0, 1 and j € {j,, j,) yields (4.12). For computations
involving products of Clebsch-Gordan coefficients, one may use, for example, the Clebsch-Gordan
coefficient function of Mathematica®” or the class sympy.physics.quantum.cg.CG provided by the
Python library SymPy.?
For prTS,, we proceed in an analogous way. Writing
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1 1 1 1 1
PR@ =" (D@D (@) = Dy s @)D (@) D, (),

nl,':i%

we see that p’, is a linear combination of the basis functions ( X(iris l));l’ with admissible j, /, and

I, ie., withj= % and [, I’ =0, 1 or with j = % and / =1’ = 1 (five functions altogether). According to
Proposition 4.2,

< 2 3 o
(X(%r,%s,%t))b/_z E Z Z Coryngning Coangnem

m=—j Mrinstng=m
Lot o =
ny+ng=m

11y ['lj 1 1 1
C2/2/ ’ C 2 Drf,n’r(ar)Dring(aS)Drf,nj(at)'

AT T A A AN

Using the orthogonality relation (4.17), we thus obtain

j
i 1 \ 11y L
T\ _ E E 22 2/
<(X(%r,%s,%t))§[/ |prst> - 2.2d; Cn,,ns,n,+n3 Cn,+nx,n,,m
] m=—j nptngtn=m
11y vl 11y r 1
(Ciil Cl ) _ Ciil Cl )

N,y Uty ety 1M N, Mg s+ ns+n1anr,m)'

Now, (4.13) follows by computing the right-hand side for the values of j, [, and /” given above. O

D. The costratification

According to Theorem 4.8 and Corollary 3.5, the subspaces Vr and Hr associated with the
stratum Pr are given by

ve= > im@h)+ > im@, (4.18)
1<r<s<N 1<r<s<t<N
and
Hr= [ ker@)'n [ ker(®)", (4.19)
1<r<s<N 1<r<s<t<N

where the adjoint is taken with respect to the L?-scalar product (-, -) defined by the measure v;, given
by (3.3).

To derive Vr from (4.18) and H7 from (4.19) explicitly, we simplify the notation by collecting
the data j, j, [, and [’ labeling the basis functions in a multi-index

1= (s ).

Let Z denote the totality of all these multi-indices. According to Proposition 4.3, the structure constants
of multiplication, defined by

C_ .C I _C
X1 Xn ZZ Cin Xr> (4.20)
1T

are given by

dj

d./ldjzd[

4,49

1 . 7. PV T 7]
C]112 = l]z]{zQ?l»ll’Zz) [J‘Zl‘zz(l’l 9£l,£2)’ (4'21)
where [; = (ji;ji;li;ltf) and I = (j;j;g; [') . According to (4.18), the subspace Vr is spanned by the
functions p% x& with 1 < r <s < N, I €Z, and the functions p%, ¥ with 1 <r <s <N, T€Z. We
expand

Ph= ) PR X% Phe= D R X% (4.22)

KeT KeT
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where the coefficients (p%)X and (p%, )X are given by Lemma 4.9. Then,

Phxf=> Alex5. Al =Y phECh.

JeT KeT
PrXi =) Blrns.XT. Bl(rn9)= ) () .
JeT KeT

Thus, Vr is spanned by the functions

DA )X, r<s, Y Bl(rs,0)xF, r<s<t, IeL (4.23)
JeT Jel

It remains to determine the coefficients A{ (r,s) and B{ (r,s,t). Recall the notation (j;ry, jar2, . . .) for
a sequence of spins having entries j; at place ry, j» at place r;, etc., and 0 elsewhere. In addition, we
introduce the notation (ji !, /21,2, . .. ) for a sequence of spins having entries j; at places ry, ..., s1,
jo at places ra, .. ., 53, etc., and O elsewhere. From Lemma 4.9, we obtain

Theorem 4.10. The vanishing subspace Vr is spanned by the functions (4.23), with the
coefficients A{(r, s) and B{(r, s, t) given by

A r,s) = c’! +c’!
1) L(Ar0s): ;M) T L(On s LA A ))
2
c’ -—c’ -3¢,
L(Ar0a D) 43 LArsssaa)) 1
Bl(r,s,1) = ﬁ c’
LA 2 (G s b0 LA ot L Lt 1))
V3

201G g 0BG ETIEL SING RO 3IM)
By taking the orthogonal complement, we obtain

Corollary 4.11. The subspace Hr associated with the stratum Pr consists of the vectors ¢ =
@’ )(§ whose coefficients ¢’ are determined by the system of linear equations

ZA{(”,S)901=0, r<s, ZE{(r,s,t)qu:O, r<s<t, IlIel,
JeT JeT

where A{(r, s) =A{(r, ) X§ 12 and 3{(& S, 1) =B{(r,s, Hl X§ 12, with the norm || )(}C 12 given by
(3.15).

Remark 4.12. For given multi-indices I = (Z1 ;10300 and I = (Zz;jz;gz;lé), the range of I3 =

(Z3 3 J3s Z3; [g) for which the structure constant Cff I is nonzero is given by

In particular, the range is finite. Hence, the sums in Corollary 4.11 are finite. Furthermore, for fixed
I and I3, the range of /5 is finite, too, because j, and j, are bounded by

Ui =il <js, i=1,...,N, Ui —j2l <3

and the range of the sequences 1.2, [, of intermediate spins is given by R(j2,j2). Since Cﬁ L= CII; I for
fixed I, and I3, the range of I; is bounded as well.

To find the coefficients ¢’, one has to rewrite the defining equations into recurrence relations
and to use the asymptotic behaviour of the norms. This will be discussed elsewhere. ¢
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To summarize, the costratification for G = SU(2) consists of the Hilbert subspaces
Hy, Hr, Hz=H,

together with their orthogonal projectors. Here, H,, is given by Remark 4.7 and Hy is given by
Theorem 4.11. By Lemma 7 of Ref. 10, the orthogonal projector onto the vanishing subspaces of the
point strata is given by

Py (f):=f —fOnTl,...,wwI)1,

where 1 denotes the constant function on GN with value one. Thus, the projector onto H,, is idy — P, .
There are various approaches to the constructlon of the orthogonal projector for the T-stratum. One
of them consists in applying the Schmidt orthogonalization procedure to the family (4.23). This will
be studied in future work.

E. Thecase N =2

To illustrate the general result, let us discuss the case N = 2. Here, for given j = (G',j%) and
j€)=(',j%), the set R(j,j) consists of the single sequence [ = () . Hence, the labels [ and !’ are
redundant and the basis functions may be denoted by ( /\/(([]:1 2))". Moreover, the isotypical components

of Hj=H; ® Hp are irreducible and the endomorphisms A% boil down to orthogonal projectors

L
AU')4 Thus, the basis functions are given by

. dld )
(x(,»ngQ’(a],az):\/T r (A9 o (D' (@) ® D' (@2))).
J

in2 1 1y240221)2
HOKS, 2 VI = (e (G 417+ 207), (4.24)

By (3.15),

According to Lemma 4.4, the recoupling coefficients U are given by

+1 -1 :1

Jv Ja J
Ui j,Goisivid =75 7
Jvoj2 J

Hence, by Proposition 4.3, the multiplication law reads
W ) j
PERAC R DR DR V-l (%0 (4.25)

Peipiy G G ja
Pediip)

where
il il 1 .1 .1 1\2
J1 d»1d~2d~1d.2dj Ji I J
JE I O i ] R
-1 . . djldjzdjldjz . . .
Ju J2 J Jjiojr

~
LS}
~

is the structure constant C(/’ TG, In terms of Wigner’s 9j symbols,

J1 J2 J3

nd, Ja Js Je

J1Js Jo

gt 2 J3

Ja Js Je|=

J1 8 Jo
By the analysis of Subsection IV B, we have the following orbit types and strata.

(G) The stabilizer is G = SU(2). The corresponding subset of P consists of (the trivial orbits of)
the points
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((a,b),(A,B)) =(£1,+1),(0,0)).

Hence, this subset decomposes into the four strata Pa..
(T) The stabilizer is a torus. The corresponding stratum Pr consists of the orbits of the points
((a1,a2),(A1,A2)) # (( £ 1,£1,(0,0)) for which ay, az, Aj, Ao commute pairwise.
(Z) The stabilizer is the center of SU(2). The corresponding stratum Py consists of the orbits of
the points ((aj, a2), (A1,A»)) for which ay, ay, Ay, A, do not commute pairwise.
To these strata, there correspond the following closed subspaces of H.

(Z) As in the general case, the subspace Hg associated with the principal stratum Py coincides
with H.

(G) The subspaces H.. associated with the strata P.. can be constructed as outlined in Remark
4.7. Since P corresponds to (+1, +1) € G¢ X G, the subspace V... is spanned by the functions

(ON (ON
(X(lldz))] - (X(IIJZ))](iﬂ 5 iT]) 1
and the subspace H.. is spanned by the single vector

1
N,

C j C j
- 2 o VELED GG )
J? e

Yis =

(T) The subspace H7 associated with the stratum Pr is defined by the single function
pl(ar, @) =tr (lar, a2]?).
By Lemma 4.9,
2
V3

As a consequence, the vanishing subspace Vr is spanned by the vectors

DAIXT. IeL
JeL

P =o' + (o) + (i)’ — —= (ry)' = 3. (4.26)

where according to Theorem 4.10, the coefficients A{ are given by

1 il jl 0 l-l jl 1 il jl 5 1 il jl
A{=0i2j2+1i2j2+1i2j2—$1i2j2—36{
1 i 1 i 0 i j 1 i

with L =(i;i) and J =(j;j) . Finally, Corollary 4.11 implies that Hr consists of the functions
o=¢’ )(@JC whose coefficients ¢’ are determined by the system of linear equations

DAlp' =0, IeT
JeT

where A7 = A7 || x5 1|7 and || x € |I? is given by (4.24).

F. The eigenvalue problem for the Hamiltonian

Recall the classical Hamiltonian

2
H(a,E)= i—é D UIE@I - g% D (tra) +wa()),
CeN! pEA?
given by (2.2). Here, a(p) = a(£1)a(f2)a(f3)a(ts), where the links £y, .. ., {4, in this order, form the
boundary of p and are endowed with the boundary orientation. The quantum Hamiltonian, obtained via
canonical quantization in the tree gauge, is called the Kogut-Susskind Hamiltonian (more precisely,
its pure gauge part),
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H-% e Lo 427
=55 ¢ gT(S ) (4.27)
Here,
¢i= Z Ej(DE;(£)
LeN!
is the Casimir operator (negative of the group Laplacian) of SU(2)" and

W= ) (W(p) + Wip)),
pEA?
where W(p) is the quantum counterpart (multiplication operator on H) of tr a(p), called the Wilson
loop operator. For details, see Refs. 26, 14, and 27. Recall that the representative functions of spin j
on SU(2) are eigenfunctions of the Casimir operator of SU(2) corresponding to the eigenvalue

€=4jG +1),
see Refs. 8 and 18. It follows that the invariant representative functions ( )(j); , are eigenfunctions of
¢ corresponding to the eigenvalues N

Ej26j1+“’+EjN. (4.28)

Let us analyze 20. For this purpose, for our regular cubic lattice, we define a standard tree as follows.
By a line, we mean a maximal straight line consisting of lattice links. First, choose a lattice site xg
and a line L; through x. Next, choose a second line L, through x( perpendicular to L; and add all
lines parallel to L, in the plane spanned by L; and L,. Finally, add all lines perpendicular to that
plane. Let B be such a standard tree. Since a(¢) = 1 for every £ € B! and since there are no plaquettes
having 3 off-tree links, we can decompose 2U into three sums. It is easy to check that there exists
an orientation and a numbering of the off-tree links such that for every plaquette with four off-tree
links (all of these plaquettes are parallel to the plane spanned by the lines L; and L,), the boundary
links are numbered and oriented consistently, meaning that for one of the two possible orientations
of the plaquette, they carry the induced boundary orientation and that their numbers increase in that
direction. Then,

W= Z tr(a,, as,ar,ay,) + tr(ay, as,a;, ay,)
{p:pnB=0)
+ Z tr(a,p asp) + tr(a,p asl,)
{p: IpNB|=2}

+ Z tr(ay,) + tr(a,).
{p: IpNB|=3}

To find the matrix elements of H with respect to the basis functions {( ,\/j); 1’}’ we have to find the

corresponding expansion of 2J. The sequences j occuring here will have at most four nonzero entries,
so we can use the notation introduced in Sec. IV C, given by writing j = (j 1y, . . . ,jxx) if j has entries

0, except for j; at the places r;, i = 1, ..., k. The function 7,(a) = tr(a,) coincides with the basis
function ( XJ;)? v with ]_ = (%r) . Omitting the irrelevant indices j, [, ', we thus have
T, = X(iry

The function T,5(a) = tr(a,as) is a linear combination of the basis functions ( X-Z);l’ with j= ( %r, %s) .
As in Sec. IV C, we may omit the irrelevant labels Z, I’. Using (4.16), the orthogonality relation for
the matrix entry functions given by (4.17) and the normalization condition }; C,%“%,{,z,,,)2 =1,
we obtain

Vd;

5

ml,mzzi%(

(ara)/ 1 T) = (=D
Thus,
V3

Ty = 7

1
1 0
Xdris) 3 X (Lris).
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Finally, the function T, (@) = tr(a,asaay,) is a linear combination of the basis functions ( X/);l’ with

Zz(%r, 1s,3t, 2u) . Here, the sequences [ € R(j, j) have entries N=o=rt=0,1r=-..=rt=1

P=--=l"""=l'=-.. =" '=kand *=--- =N =j, where [ =0, 1 andke(l,%)sothat]€<k,§>.
That is, they are labeled by two intermediate spins /, k so that in our notation we may replace the
labels [ and I’ by (I, k) and (I, k), respectively. Expressing these basis functions in terms of matrix
entry functions according to Proposition 4.2 and using once again the orthogonality relation (4.17),
we obtain

<()((§r ,,,,, u)):lk) , k!)| Trstu) = Z Z
m=—j myt-tm,=m
; ;1 11k kij
Cm, M M+ m,+mv My Mg+~ My +mg+m; m, ,m
vy i1
Cz 3l I3k K3

My My 10y M+ Mg i+ +11y, M+ 1y, iy M

Evaluation yields

1 _\3 _¥3
Trsty = S(X(%r "))(0 101 (X(lr u))(l o) 8 (X(lz ..... u))(o bHad

1 _¥ -1
s >)<1 bt T8 X u>)<o 1)04) S(X(%“-"%”))(l%)<0%)

_ L 3 1 1
B X %W)(l%)(o%) . ”>)(0 ) T 5 X dn)anat
S 1 L - L
X dwinay * x/é(/\/(%r,---»%"))(1%)(1%) WX, ">)(1 33
+ 2 (1 1) :
X Greag0’a3)ad)
Now, consider the eigenvalue problem for H. Expanding

y=> 0 xs, W= Wi+,
J 1

and using (4.20), as well as the fact that (yx | x7x7) = {x1.xXk|XI) = C,JK implies

X1 X7 =Cie XK

we can write the eigenvalue equation in the form

2
g
Z{(zée]—g)af 252Wl c}f,+c,’K)}¢, =0, (4.29)

Jel 1T

for all K € Z. Here, we have written €; for the eigenvalue of the Casimir operator ¢ corresponding
to the eigenfunction y;, given by (4.28). Thus, we are left with a homogeneous system of linear
equations for the eigenfunction coefficients ¢/. The eigenvalues £ are determined by the requirement
that the determinant of this system must vanish. Note that the sum over [ in (4.29) is finite because
there are only finitely many nonvanishing W/. Moreover, by Remark 4.12, also the sum over J is finite
for every fixed K. Thus, we have reduced the eigenvalue problem for the Hamiltonian to a problem
in linear algebra. Combining this with the well-known asymptotic properties of 3nj symbols, see
Ref. 5 (Topic 9), Ref. 2, and further references therein, we obtain an algebraic setting which allows
for a computer algebra supported study of the spectral properties of H. This will be done in a future
work.

V. SUMMARY AND OUTLOOK

In this paper, we have constructed the Hilbert space costratification for SU(2) lattice gauge
theory. This work is based on the results obtained in Ref. 11, where we have implemented the
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defining relations for the orbit type strata on the quantum level. Here, the main technical tool is the
calculus of invariant representative functions for representations of SU(2) combined with recoupling
theory for angular momenta. We have already explained in the Introduction how the results of this
paper fit into our long-term programme for studying the non-perturbative aspects of non-Abelian
quantum gauge theories. Here, let us outline some perspectives:

1. It will be a challenge to extend our results to the case of the gauge group SU(3). On the classical
level, we have some preliminary results; see, e.g., the case studies in Refs. 6, 7, and 9.

2. InRef. 10, one of us has developed another approach toward the study of costratifications for
arbitrary compact Lie groups. The starting point in Ref. 10 was the observation that the vanishing
subspaces corresponding to the classical strata may be viewed as intersections of one-point van-
ishing subspaces. The orthogonal complements of the latter were shown to be one-dimensional
and, for each of these spaces, a spanning (holomorphic and square integrable) vector w, was con-
structed. Finally, passing to the Hilbert space of invariant functions was accomplished by using
the projection operator P defined by averaging over the compact group manifold. As aresult, each
element of the costratification was characterized as the closure of the span of {ng }, with g run-
ning over a complete set of representatives of the set of orbits belonging to the stratum under con-
sideration. Moreover, for the point strata, the spanning vectors w, turned out to be proportional
to the coherent states in the sense of Hall.'>!¢ For the other strata, up until now, this approach has
not led to such an explicit characterization of the corresponding elements of the costratification.
It will be interesting to combine the calculus developed in this paper with the methods of Ref. 10.
This will possibly lead to a characterization of the full costratification in terms of coherent like
states.

3. In Subsection IV F, we have formulated the eigenvalue problem of the quantum Hamiltonian
H in terms of invariant representative functions. We have shown that, in this language, it boils
down to a problem in linear algebra. As already explained there, this can serve as a starting
point for a study of the spectral properties of H. In particular, it should be possible to inves-
tigate the role of the coherent states addressed in the previous point; see the toy model in
Ref. 22.

APPENDIX A: PROOF OF COROLLARY 3.8

For every A € G, we choose a scalar product in H , invariant under , and an orthonormal basis

{e;.l :r=1,...,dim(H,)}. Forevery 4 € EN, the vectors
1 i .
=l @-wel,  r=0...N), =1 dimHy),

form an orthonormal basis in H, with respect to the natural scalar product in the tensor product of
Hilbert spaces. Define holomorphic functions

fLiGe—C,  fAa)=+/dimH) (e} ma(a)el),

where A € E}, r,s=1,...,dim(H,), and

F5iGE-C, fA@) = Jdim(Hy) (e ma@er),

where A€ GV and r,s € [TY {1.....dim(H,)}. We have
A N i
fis@= l_[ r/il’si (aj).
i=1

By this relation, the natural unitary isomorphism HL*(GY) = (HL*(Gc)) ®N and the holomorphic

Peter-Weyl theorem?! for G¢, the functions fziz form an orthogonal basis in HL*(G}.) and have the
norms
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N N N

A2 A2

P =] Tt =] ] cu-
i=1 i=1

. . . .
Using the basis vectors e;" in H, to compute the trace, we find the expansion

/1/1 2
Dt =D (e Ag) e Vs (A1)
r.s
Using this, orthogonality of the functions f, 5» and orthonormality of the endomorphisms Ak 1, we
obtain
Al Al ,1 A3 A
OO =620 D (At e e >HC/V
s
* /1 /l/ N
:(54’4 tI'( k'l’)l_[C/ll
i=1
=S, 6ax Sk O ]_[ Cy.
i=1
This yields the assertion. O

APPENDIX B: PROOF OF LEMMA 4.4

Proof. The proof is by induction over N. In the case N = 2, the reduction scheme (4.6) boils
down to (4.10) and the reduction scheme (4.7) boils down to (4.9), where ji =/, /2 =j3.j3=j"'. ja=j3,
Jjs= j%, je=j%j71= lf, Jjs = l%, and jo = [>. Hence, by definition, the scalar product of the corresponding
ladder basis elements yields the recoupling coefficient

iy

i

2B P
and by (4.8), this coincides with UZI i (J,L;1},1y) in the case at hand. This proves the assertion for
N=2.

Now, let N > 2 be given and assume that the assertion holds for N — 1. In what follows, for any
given sequence x = !, x™), we denote X = = (!, xV=1). Recall that in H ® H , we have the
orthonormal basis vectors [] ] ;11,13 1, m) defined by the reduction scheme (4 6) and [] , ] ; ],l m)
defined by the reduction scherne (4.7). Consider the following reduction scheme:

; (B1)

It leads to irreducible subspaces labeled by k1, k2, k, j, I. Let |k1, k»; k, j; I, m) denote the elements of
the corresponding orthonormal ladder basis. Using this basis to plug a unit into (4.8), we obtain

Uj, g, Go iy i1 = ZQ,J oLl ko ks 1Y my < -
ki.k2

X<k, ko k,j; 1 m[] ,J b N, m). (B2)
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To compute (] ,] ,],l mlky, kosk,j; 1 N m), we view H ®H as the tensor product ( . ® H]z) ®

([1j11v ® [szzv) and expand both arguments with respect to approprlately chosen product bases,

L NN N
l{l,J_z;j_,L"ﬁ: Z lemgm Ul’.]29f7,.7ml>®[]] 7]2 n] m2>

mi+mpy=m
|kla k], m>— Z lemzm UI’J29k19 k ml>®l]1 ,]2 ’]9m2>
my+my=m
In view of (4.8), this yields
Gpodyps bmlkas kos ko ji 1Y my = S g vy Uy, (1, L et o, K). (B3)

To compute the scalar product (ki,k»;k, j'lN m[j s j 'll,lz;lN m), we observe that the vectors
k1, k2; k ],ZN m) are ladder basis elements in the tensor product

Hjy x, © Hjy g ®HN ®HN

[for the notation H, ks etc., see (4.2)] defined by the reduction scheme (4.9) with j; = k]lv -1 Jo= kav -1
Jj3=k, js :jfl\’,js :jlz\”j6 =j, and jg = IV, whereas [Zl,zz;gl,lz; lN,m) are ladder basis elements in the
tensor product

By, ® Hptp ® Hyy ® Hyy

defined by the reduction scheme (4.10) with jy =1V=!, jp =11 ja=jV, js =), j7=1), js =1, and
jo = IV. Therefore,
lN 1 lN 1 k

<k19 k ,]’ ml] ’,] 1’ 2’ m> 6/{],1] 6](2 12 .]
l}" l%’

Plugging this and (B3) into (B2) and taking the sum, we obtain
lel lel lel

Ui, G- Blyn 1) = Ii] Jl% /lz Up o (12515, 1)
1

Thus, the induction assumption implies that the assertion holds for N. O
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