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Abstract The impacts of global climate warming on maize yield vary regionally. However, less is 

known about how soil modulates regionally-specific impacts and soil properties that are able to alleviate 

adverse impacts of climate warming on maize productivity. In this study, we investigated the impacts 

of multiple soil inherent properties on the sensitivity of maize yield (SY,T) to growing season 

temperature across China. Our results show that a 1°C warming resulted in the largest yield decline 

(11.2±6.1%) in the mid-eastern region, but the moderate yield increase (1.5±2.9%) in the north-eastern 

region. Spatial variability in soil properties explained around 72% of the variation in SY,T. Soil organic 

carbon (SOC) content positively contributed the greatest extent (28.9%) to spatial variation of SY,T, 

followed by field capacity (9.7%). Beneficial impacts of increasing SOC content were pronounced in 

the north-eastern region where SOC content (11.9±4.3 g kg-1) was much higher than other regions. 

Other soil properties (e.g plant wilting point, sand content, bulk density, and saturated water content) 

were generally negatively correlated with SY,T. This study is the first one to answer how soil inherent 

properties can modulate the negative impacts of climate warming on maize yield in China. Our findings 

highlight the importance of SOC in alleviating adverse global warming impacts on maize productivity. 

To ensure food security for a rapidly increasing population under a changing climate, appropriate 
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farming management practices that improve SOC content could reduce risk of adverse effects of global 

climate warming through a gain in yield stability and more resilient production in China’s maize belt. 

Key words: climate crisis; sensitivity analysis; soil inherent properties; maize yield; China cropping 

belt; soil organic carbon 
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1 Introduction 

With a rapidly increasing global population and growing food demand, farmers are facing a dilemma 

of producing crops with higher yield in the same (or even less) cultivated areas (Cammarano and Tian, 

2018; Harrison et al., 2012). More specifically, the mean growth rate of global crop yield must exceed 

2.4% per year to feed 10 billion people by 2050s (Ray et al., 2013), without degrading natural resources 

(water, air, biodiversity, etc.) or producing additional greenhouse gas emissions (Alcock et al., 2015; 

Harrison et al., 2014a). However, the ongoing climate change and increasingly severe extreme climatic 

events are preventing farmers from fulfilling this goal. As current farming systems have evolved to fit 

within historical climate conditions, climate change-induced changes of meteorological factors, in 

particular rising temperature, are expected to pose significant risks for future farming outputs (Chang-

Fung-Martel et al., 2017; Zhao et al., 2017). Understanding the impacts of shifting meteorological 

factors can provide invaluable information to improve farming’s resilience to climate change, thereby 

enhancing food security while preserving the natural resource base (Harrison et al., 2021). 

Temperature is a major determinant of crop productivity and crop phenological responses to climate 

warming have been well studied from local through to global scales. Asseng et al. (2015) estimated that 

global wheat production is likely to fall by 6% when annual temperature increases by 1°C, based on 

simulations from process-based crop models. Lobell and Field (2007) demonstrated a negative response 

of global maize yield to increased temperature through an analysis of global recorded maize yield for 

1961-2002. Nevertheless, the actual impacts of increased temperature on crop yield are usually not 

uniform across regions. For example, maize crops had heterogonous sensitivities in different regions, 

e.g. positive in South American yet negative in northwest Africa during 1961-2014 (Liu et al., 2020). 

Even within a country, the impacts can also vary greatly. For example, positive impacts were mainly 

distributed in northeast China from 1980 to 2010, while negative impacts occurred in most areas of 

central China (Chen et al., 2011; Deng et al., 2020). It has been reported that regional disparities in crop 

yield impacts are related to latitudes, which present different initial meteorological conditions (Deryng 

et al., 2014). Nevertheless, different regions also share varied soil properties that are also likely 

contribute to spatial variations. However, the extent to which soil properties modulate the impact of 

climate warming on crop yields is yet unknown. 
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In any cropping system, the suitability of a region for crop cultivation is determined by climate, yet the 

yield level is subject to soil characteristics as well (Bodner et al., 2015; Pinheiro et al., 2019). Soil plays 

a fundamental role in crop growth by providing physical support and more importantly, acting as the 

source of water and nutrients (Bonfante and Bouma, 2015). Such capabilities are based on a suite of 

physical, hydraulic, and chemical properties, which can show significant spatial variation (Ara et al., 

2021; Harrison et al., 2011). Given the interacting nature of the soil-plant system in response to 

atmospheric drivers, crop response to climate warming is expected to vary spatially with different soil 

properties. Most soil properties are relatively stable and change slightly under short-term farming 

practices. Some of them, such as texture, water retention, and soil organic carbon (SOC) concentration, 

have been demonstrated to account for the spatial variability of crop responses to increased temperature 

(Farina et al., 2021; Sándor et al., 2020). For example, yields of seven major crops between 1958 and 

2019 in the United States were generally more sensitive to temperature variability in coarse-textured 

soils and less responsive in medium- and fine- textured soils (Huang et al., 2021a). Rezaei et al. (2018) 

also reported that wheat yield on sandy soils decreased significantly by 24% with increased air 

temperature at anthesis, compared to loamy soils or soils consisting of clay in a controlled environment. 

In addition, SOC is an important indicator of soil quality and soils with higher SOC tend to show better 

water and nutrient retention (Karhu et al., 2011), which can then help crops buffer the impacts of 

increased temperature and even exploit positive effects (Droste et al., 2020; Song et al., 2015). However, 

the quantitative impacts of various soil properties on crop yields at a regional scale remain uncertain. 

 

Figure 1 Maize cultivation in northeast China (photographs by the authors). Images show the farming 

practices of straw mulching and no-tillage, as strategies to improve soil quality. 
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With the largest cropping area in the world, China is one of the world’s leading maize producers 

(FAOSTAT, 2020). However, China is also the world’s most populous country. Against a background 

of global warming, sustainable intensification of maize production without adverse environmental 

trade-offs (Harrison et al., 2021) is of great importance for Chinese both domestic food supply as well 

as global food security. Here for the first time, we used the Agricultural Production Systems sIMulator 

(APSIM), to investigate impacts of multiple soil properties on the responses of maize yield to growing 

season temperature in China’s Maize Belt (CMB). Our objectives were to address the following 

questions: I) how does maize yield respond to climate warming in different zones of CMB? II) how do 

various soil physical, hydraulic, and chemical properties modulate the impacts of climate warming on 

maize yield? By answering these questions, we provide insights into the development of adaptive 

strategies for global warming from the perspective of soil amelioration (Figure 1). 

2 Materials and methods 

2.1 Study area 

The study area is CMB (Fig. 2), accounting for over 70% of national maize production and more than 

15% of global production (Meng et al., 2016). CMB is confined to a relatively narrow band of land, 

spreading from the southwest to the northeast (97.6°-134.9°E, 21.4°-50.9°N). The characteristics of 

topography and climate vary greatly across CMB. Topographically, the western and south-western parts 

of CMB are occupied by plateaus with elevation more than 1000 m, but the eastern and north-eastern 

parts are mostly plains of less than 500 m. Climatically, CMB is characterized by warm and wet 

conditions in the south-western part, and cold and dry conditions in the north-eastern part. Varied 

environmental conditions result in varied cropping systems, e.g. single cropping system with maize in 

the northeast and northwest but double cropping system with winter wheat and summer maize in the 

middle of CMB. In addition, there is a mixed cropping system in the southwest, with both single and 

double cropping systems distributed. Thus, to consider the impacts of regional variations in climate and 

soils, we divided CMB into six maize planting regions (Fig. 2) according to a previous study (Huang et 

al., 2020). The regions were divided based on geographic location and different cropping systems, 

which were derived from agrometeorological observational data. Basic information of the six regions 

is given in Table 1. 
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The SPAM (Spatial Production Allocation Model) global synergy cropland map was used to distinguish 

the maize crop land (Lu et al., 2020). This map was developed by Chinese Academy of Agricultural 

Sciences based on a self-adapting statistics model with multiple existing maps and national and 

subnational statistics fused. It shows higher accuracy and better consistency (99%) with statistics than 

many previous cropland maps. This map was originally at a resolution of 5 arc-minute, but we upscaled 

to 15 arc-minute to make it match with climate data. As shown in Fig. 2, there were 4283 grids in total 

(Table 1) which illustrated cropland pixels over CMB. Our subsequent data analysis and result 

visualization were both performed on these maize cropland pixels. 

 

Figure 2 Six major maize cultivating regions across China’s Maize Belt. Grid colours denote soil types 

based on the classification of the FAO-UNESCO (Food and Agriculture Organization of the United 

Nations-United Nations Educational, Scientific and Cultural Organization) Soil Map of the world 

(https://www.fao.org/soils-portal/en/). 
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Table 1 Climatic and growth information of the six maize regions across China’s Maize Belt. CS: 

Cropping system; TGS: typical growing season of maize; AE: average elevation; AMT, AMP, and 

AMR are annual mean temperature, precipitation, and solar radiation, respectively. 

Region No. of grids CS TGS AE (m) AMT (°C) AMP (mm) AMR (MJ·m-2) 

I 713 Single 1 May – 30 Sep 267 2.1 550 15.8 

II 338 Single 1 May – 30 Sep 387 4.6 620 16.6 

III 375 Single 1 May – 30 Sep 529 6.9 589 17.6 

IV 680 Single 1 May – 30 Sep 1471 8.5 458 19.0 

V 950 Double 1 Jun – 30 Sep 388 13.2 677 17.9 

VI 1227 Mixed 1 Apr – 30 Sep 1380 15.6 1120 18.2 

2.2 Climate data 

Historical gridded climate data were obtained from the Terrestrial Hydrology Research Group at 

Princeton University (Sheffield et al., 2006). This dataset was developed by blending the NCEP–NCAR 

(National Centers for Environmental Prediction–National Center for Atmospheric Research) reanalysis 

data with multiple observation-based datasets. Known biases in the reanalysis data have been corrected 

using observed data. The final product provides a globally-consistent dataset of near-surface 

meteorological factors at 15 arc-minute spatial resolution, which are designed for the purpose of long-

term and broad scale terrestrial modelling studies (Parkes et al., 2019; Ruane et al., 2021). This dataset 

has also been implemented for many modelling studies in China and given satisfactory simulation 

results (Li et al., 2019; Yao et al., 2018). We derived daily series of maximum and minimum air 

temperatures, precipitation, and solar radiation (1961–2016) for all of the grids located in CMB. 

2.3 Soil data 

Gridded soil profiles for crop model simulation were derived from the Global High-Resolution Soil 

Profile Database of the Harvard Dataverse (Hengl et al., 2014). This dataset is an improved version of 

the SoilGrids dataset released by ISRIC (International Soil Reference and Information Centre) in 2014, 

with more soil hydraulic properties (e.g. soil water content at saturation, wilting point, and field capacity) 

included, making it readily available for simulating crop growth. Other soil physical and chemical 

properties, such as bulk density, texture, and organic carbon content, are also available and have been 

frequently used as inputs for crop modelling studies, including China (Wang et al., 2020; Zhang et al., 

2018). In all grids, the soil profiles have six layers, namely 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-
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100 cm, and 100-200 cm. Spatial maps of several soil properties for each layer are given in the 

supplementary material (Figures S1-S6). In addition, these data are provided for each country at 5 arc-

minute resolution. To make them congruent with the climatic grids, we aggregated 5 arc-minute grids 

into 15 arc-minutes. 

2.4 APSIM simulations 

We implemented the APSIM (Agricultural Production System sIMulator, https://www.apsim.info/) 

crop model version 7.10 to simulate the dynamics of maize growth and development. APSIM is 

structured around soil, plant, atmosphere, and management modules, making it a comprehensive model 

capable of simulating manifold biophysical processes in response to environmental variations 

(Holzworth et al., 2014). Many studies have successfully used the APSIM maize module to quantify 

the impacts of climate change on maize yield in China (Wang et al., 2018; Xiao et al., 2020; Zhu et al., 

2022). 

The APSIM model was originally developed in Australia but since inception has been used with success 

in numerous countries across the world (Harrison et al., 2014b). When used in other regions, cultivar 

traits should be re-parameterized only if local and robust datasets exist (Harrison et al., 2012; Harrison 

et al., 2019). In this study, we obtained the genetic parameters of six maize genotypes (Table S1) for 

the six cultivating regions from the study of Huang et al. (2020), who reported that the calibrated maize 

genotypes can well represent observed yield of maize cultivated in the belt with R2 being 0.74 and 

NRMSE being 17.7%. Then we set up a long-term simulation (1961-2016) for each grid across CMB. 

Climate and soil inputs for each grid have been described above. Sowing date was determined as multi-

year average sowing date of the nearest agrometeorological observational site for each grid (Huang et 

al., 2020). Details can be found in Figure S7. Maize planting density, depth, and row space were same 

for all regions, i.e. 67,500 plants ha-1, 5 cm, and 60 cm, respectively. The fertilizer at sowing was 180 

kg ha-1 urea-based N. These are common farming management practices across China (Huang et al., 

2022; Ren et al., 2016; Zheng et al., 2021). With same management practices across regions, we were 

able to focus on the effects of climate and soil on maize yield in subsequent analysis. 

It should be noted that climate, soil, cultivar, and management practices have been changing during past 

decades. Nonetheless, we did not focus on the effects of cultivar change but on the responses of current 

https://www.apsim.info/
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maize planting to climate change. Thus, we used one calibrated cultivar and kept soil inherent properties 

and other management practices constant over the study period. Moreover, to exclude any ‘carry-over’ 

effects from previous seasons, initial soil water and nitrogen were reset to 20% of maximum soil 

available water and 80 kg ha-1 NO3-N and 12.5 kg ha-1 NH4-N on the 1st of January each year. Fallow 

was performed prior to sowing. 

2.5 Identification of temperature sensitivity 

We implemented a widely-used panel data model, ordinary least squares regression with quadratic terms 

(Deng et al., 2020; Schlenker and Lobell, 2010; Zhu et al., 2019), to estimate temperature sensitivity of 

maize yield (SY,T). Growing season mean temperature (T), total precipitation (P), and mean solar 

radiation (R) were used as the explanatory variables. 

ln(𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝑎1𝑇𝑖,𝑡 + 𝑎2𝑇𝑖,𝑡
2 + 𝑏1𝑃𝑖,𝑡 + 𝑏2𝑃𝑖,𝑡

2 + 𝑐1𝑅𝑖,𝑡 + 𝑐2𝑅𝑖,𝑡
2 + 𝜀       (1) 

where ln(𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) is the natural logarithm of yield at grid i in year t. As the APSIM model simulated 

maize yield can be viewed as climate-driven yield, we did not normalise for longitudinal yield gains 

associated with technological progress (e.g. breeding, fertilizer, and pesticide application). Quadratic 

terms are included for three climatic variables to simulate their nonlinear impacts on maize yield. a, b, 

and c are regression coefficients. 𝜀 represents the model error term. Then the SY,T can be defined as  

𝑆𝑌,𝑇 =
𝜕𝑌

𝜕𝑇
∙ 100% = (𝑎1 + 2𝑎2𝑇𝑖) ∙ 100%             (2) 

where 𝑇𝑖 denotes the mean temperature during the study period 1961-2016 in grid i. a1 and a2 stand 

for the regression coefficients derived from equation (1). As the response variable (maize yield) has 

been log-transformed, the estimated temperature sensitivity indicates the percentage change of yield for 

1°C warming. We calculated the SY,T for all of the grids across CMB using equations (1) and (2). The 

performance of the model was evaluated using two metrics, namely coefficient of determination (R2) 

and Normalized Root Mean Square Error (NRMSE), given by following equations: 

R2 = (
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−P̅)
𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂̅)
2𝑛

𝑖=1 √∑ (𝑃𝑖−𝑃̅)
2𝑛

𝑖=1

)

2

              (3) 

NRMSE =
1

𝑂̅
√
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1                (4) 
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where n is the number of samples, Oi and Pi denote observational and predicted values, and 𝑂̅ 

represents the mean of observational values. Generally, the model with higher R2 and lower NRMSE is 

considered to be a better-performance model. 

2.6 Contributions of soil properties to temperature sensitivity 

We implemented the Random Forest (RF) to study the contributions of various soil properties to 

temperature sensitivity. RF, also known as random decision forest, is an advanced tree-based ensemble 

machine learning algorithm (Breiman, 2001). Except for developing predictive regression or 

classification models, RF is also commonly used for investigating the complicated relationships among 

variables, as it can account for nonlinear and hierarchical relationships between the response and 

predictor variables (Dibari et al., 2020). For this purpose, two built-in functions, namely variable 

importance measures and partial dependence plots, can be employed after a RF model has been built. 

In this study, we first built a RF regression model with temperature sensitivity as the dependent variable 

and multiple soil properties as independent variables. The accuracy-based importance metric was used 

to evaluate variable importance. This was generated using an out-of-bag (OOB) validation procedure. 

In brief, during the model building phase, about one third of all input values were randomly selected 

and set aside for subsequent OOB model validation. Then, the prediction accuracy on the OOB sample 

was determined. The mean decrease in prediction accuracy when the values of a certain variable in the 

OOB sample were randomly shuffled, was defined as the importance value of the variable (Heung et 

al., 2014), expressed as the mean square error (MSE): 

𝑀𝑆𝐸𝑂𝑂𝐵 =
1

𝑛
∑ (𝐾𝑖 − 𝑃𝑘𝑂𝑂𝐵)

2𝑛

𝑘=1
              (5) 

where n denotes the number of observations, 𝐾𝑖 indicates known value, and 𝑃𝑘𝑂𝑂𝐵 represents the 

average of all OOB predictions across all trees. 

We also used partial dependence plot (PDP) to evaluate the marginal effects of a selected explanatory 

predictor on the response variable. A PDP can show whether the relationship between the response and 

a predictor is linear, monotonic or more complex, marginalizing over the values of all other input 

predictor variables (the ‘complement’ features) (Friedman, 2001). In this study, we used the 
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‘randomForest’ package sourced in the R software to build the RF model and derived variable 

importance values and PDPs. 

3 Results 

3.1 Climatic and yield trends from 1961 to 2016 

Temporal trends of climate and simulated maize yield in all the grids over CMB for the period of 1961–

2016 are illustrated in Figure 3. A significant increasing trend was detected for growing season mean 

temperature in nearly all central and northern grids. Specifically, temperature increased faster in inland 

grids (>0.2°C/10a). The trends varied in the southern region (region VI), with a part in its east showing 

decreased temperature. Solar radiation significantly increased in central regions and parts of north-

eastern regions, with a trend over 0.2 MJ m-2/10a. The linear trends of solar radiation in remaining 

regions were not significant. For growing season total precipitation, no significant trends were detected 

in most of the regions. Maize yields generally increased in many grids, e.g. northern regions, part of 

mid-eastern regions, and the northeast part of the southern region (region VI). In some grids of central 

and southern regions (regions IV and VI), maize yield decreased. As model simulated maize yield were 

climate driven, it can be derived that yield trends were mainly attributed to climate variations during 

1961–2016. In addition, as the trends of precipitation and solar radiation were not significant in most 

grids, we did not consider the yield sensitivity to them in subsequent analysis. 
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Figure 3 Linear trend of growing season mean temperature (a), precipitation (b), solar radiation (c), 

and maize yield (d) in each grid of China’s Maize Belt for the period 1961–2016. NS: not significant 

(P>0.05). In addition, mean values of the four variables for the study period were illustrated in Figure 

S8. 

3.2 Temperature sensitivity of maize yield 

The performance of the panel data model in each region are presented in Figure 4. Though with some 

fluctuations, the R2 values for the six regions were mainly around 0.5, and the NRMSE values were 

mainly lower than 1%, meaning that maize yield variations could be largely explained by climate 

variables. 
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Figure 4 Distributions of R2 (coefficient of determination) and NRMSE (Normalized Root Mean 

Square Error) derived from the panel data model for all grids in each region. The probability density 

curves are derived from gaussian kernel density estimate. The area under a density curve should sum 

up to a total of 1. They are smoothed versions of histograms, showing the distributions of continuous 

data. The peaks of a density curve help display where values are concentrated. 

As rising temperatures are a uniform and consistent feature associated with climate change, we 

separately analyzed the contributions of temperature to maize yield (hereafter, temperature sensitivity 

or SY,T). The results for all the grids across the belt are illustrated in Figure 5. Temperature sensitivity  

varied greatly in different grids. The most noticeable feature was that SY,T values in region V were rather 

smaller than other regions. Specifically, the values in region V were generally smaller than 0 and the 

mean value was about -11 %/°C. This indicated that maize yield in region V negatively responded to 

temperature increase and yield normally decreased by 11% for every 1°C increase. On the other hand, 

we also noticed that grids with positive temperature sensitivity were mainly located in the northeast, 

especially region I. Region I was the only one with mean SY,T exceeded 0% per °C, reaching 1.5% 

per °C. The values in other regions generally showed a normal distribution with the mean values in the 

range of -5 to 0 %/°C. Thus, in general, temperature increase could contribute to yield losses in most 

regions of CMB, except for region I. 
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Figure 5 Spatial distributions of SY,T (%/°C). SY,T is the temperature sensitivity of maize yield, 

representing the yield change (%) for 1°C warming. Histograms show the distributions of SY,T values 

for all grids in each sub-region. The vertical dotted line indicates the average of each region. 

3.3 Impacts of soil properties on temperature sensitivity 

Figure 6 shows the performance of the RF model in explaining the spatial variance of temperature 

sensitivity based on soil properties. We selected input soil properties according to three standards. First, 

they were APSIM parameters so that their impacts could be captured by modelling methods. Second, 

their characteristics did not change greatly under conventional farming management practices. Third, 

they were commonly available in gridded soil datasets. Thus, we selected six soil properties, namely 

soil organic carbon content (SOC), bulk density (BD), sand content (SC), wilting point (WP), field 

capacity (FC), and saturated water content (SWC). Weighted averages of these soil properties by layers 

were used as explanatory predictors to develop the RF model. The model explained 72% variation of 
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SY,T with low error (2.74% °C-1), indicating that temperature sensitivity was largely under the 

modulation of soil inherent properties. 

 

Figure 6 Comparison of RF-predicted SY,T and actual SY,T for all of 4283 grids across China’s Maize 

Belt. The RF model was run based on a 10-fold cross validation procedure. The dashed line is the 1:1 

ratio line. The orange line is the linear regression fit. Fitted equation y=0.68x-1.06, R2=0.72, 

RMSE=2.74% °C-1. Comparisons of RF-predicted SY,T and actual SY,T for each sub-region are shown 

in figure S9. 

Next, we analyzed the relative importance of input predictors through their marginal effects on 

temperature sensitivity (Figure 7). SOC ranked highest with an importance value of 28.9%, showing a 

positive effect on temperature sensitivity. While SOC content was highest in region I, it was lowest in 

region V, partly explaining the differences of temperature sensitivity in the two regions (Figure 7a). 

Next highest was wilting point (20.2%), showing a negative effect on temperature sensitivity (Figure 

7b). Moreover, wilting point in region I was lowest, suggesting that this variable also contributed to the 

high temperature sensitivity of region I. Sand content and bulk density showed a similar negative impact 
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and their importance values were also similar (Figure 7c and d, noting that the bulk density in region I 

and V were larger than other regions). The latter two predictors were field capacity and saturated water 

content (Figure 7e and f), two hydraulic properties, showing positive and negative impacts on 

temperature sensitivity respectively. The two soil properties were similarly distributed across CMB, 

with region VI highest and region IV lowest. 

 

Figure 7 Partial dependence of SY,T on input soil properties and distributions of each property in 

different regions. The orange lines are smoothed representations of the response. The trend of the line, 

rather than the actual values, describes the nature of the dependence between the response and predictors. 

The percentages denote the relative importance of each predictor generated from the random forest 

model. Box plots indicate the distributions of each soil property in different regions. Box boundaries 

indicate the 25th and 75th percentiles across grids, whiskers on the left and right of the box indicate the 

10th and 90th percentiles. The black lines within each box indicate the median value. SOC, WP, SC, 
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BD, FC, and SWC represent soil organic carbon content, wilting point, sand content, bulk density, field 

capacity, and saturated water content, respectively. Regions I-VI correspond to those shown in Fig. 2. 

4 Discussion 

Ensuring food security is the second most important Sustainable Development Goals of the United 

Nations during the period of 2015-2030. The agriculture sector is struggling to fulfil this goal under the 

background of the climate crisis. Temperature increase is the typical feature of climate change. It is 

observed that global average land surface temperature has increased by ~1°C in comparison with 1850-

1900 and is going to increase by another 0.5°C over the next 20 years (IPCC AR6). In our study, we 

also found increasing trends of growing season temperature in most grids of the CMB (Fig. 3), with 

some grids increasing even faster than global averages. Temperature has been previously reported as 

the predominant factor affecting maize yield (Lobell et al., 2011), thus any changes on temperature are 

likely to cause substantial impacts on maize yields. Our study revealed that for each unit increase in 

growing season mean temperature, the maize yield across the belt was generally reduced by 3.6% (Fig. 

4). This is consistent with Deng et al. (2020)’s study which also reported a negative response of maize 

yield in China to climate warming. A main reason is that increased temperature hastens phenology and 

reduce the growth cycle, resulting in fewer days for yield formation (Casali et al., 2021; Ibrahim et al., 

2019). Meanwhile, the adverse effects of high temperature are also associated with increased 

maintenance respiration rates (Innes et al., 2015) and decreased net photosynthesis (Rezaei et al., 2015). 

Nevertheless, we also noticed the positive impacts of climate warming on maize yield, specifically in 

north-eastern of the belt (Fig. 4). This might be related to antecedent low temperature conditions, under 

which increased temperature still lied within the optimum temperature range of 18-25°C (Muchow et 

al., 1990) for maize growth and yield. 

The soil-plant-atmosphere continuum is a connected holistic system (Harrison et al., 2012) such that 

changes in one part of the system influence feedbacks in other parts. Given this, we would expect soil 

properties to influence crop-climate responses, thereby contributing to the spatial variation in SY,T. This 

was confirmed by our results that in grids at a same latitude, the response of maize yield to rising 

temperature could also vary greatly (Fig. 4). Our results also illustrated that among multiple soil 

properties, SOC contributed most to the sensitivity of maize productivity to climate warming (Fig. 5), 
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in particular the resilience to warming. Many previous studies have demonstrated that crop yields are 

under the modulation of soil carbon stocks and higher SOC content can normally lead to higher pasture 

and/or crop yields (Harrison et al., 2021; Osanai et al., 2020; Stockmann et al., 2013). Here we further 

demonstrated that SOC could help buffer the adverse effects of climate warming. This might be related 

to the improvement of soil quality by SOC. Soil organic carbon content is a fundamental representation 

of soil quality (Lal, 2016), supporting multiple soil functions determining soil physical, chemical, and 

biological features (Reeves, 1997) which can significantly affect the productive ability of soils for food 

production. SOC correlates with multiple soil biodiversity dimensions, e.g. community structure, 

microbial biomass, and its activities (Mau et al., 2015). Decomposition of SOC mainly releases 

absorbable nitrogen and higher nitrogen contents has been previously demonstrated to provide 

resilience for maize to cope with warming (Deng et al., 2020). In addition, SOC can also increase soil 

structure (e.g. aggregate stability and porosity) and water retention (Bronick and Lal, 2005; Karhu et 

al., 2011). In this case, crops can normally obtain more available water to maintain high productivity 

via evapotranspiration during high temperature conditions (Huang et al., 2021a; Williams et al., 2016). 

Our results also show that wilting point largely accounted for the spatial variations of temperature 

sensitivity, more important than other two hydraulic features, field capacity and saturated water content. 

This might be also due to the differences of plant available water capacity (PAWC) in different regions. 

The PAWC is determined as the difference between field capacity and wilting point. In CMB, the 

variations of wilting point in different regions were relatively larger than field capacity (Fig. 5), thus it 

was the wilting point that accounted more for the variations of PAWC as well as SY,T. Sand content 

ranked third and it showed negative impacts of SY,T. This was consistent with results obtained by Rezaei 

et al. (2018), reporting that wheat yield reduced significantly by 24% grown on sandy soil substrate 

with increasing air temperature in a chamber-based experiment and with Van Ittersum et al. (2003)’s 

study monitoring a declined of wheat yield in a sandy soil under warmer (increase of temperature up to 

3°C) scenarios in western Australia. This was mainly due to that high wilting point usually represented 

low water holding capacity (Huang et al., 2021a). Bulk density also showed negatively influenced SY,T, 

as higher bulk density normally resulted in lower soil porosity (Song et al., 2015).  

Our results also reveal feasible, reversible pathways for farmers to take action against global climate 

change. Over the past few decades, intensive farming practices, e.g. excessive inorganic fertilization 
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and tillage, have been widely adopted to enhance crop productivity to meet the increasing domestic 

food demand in China. These practices degrade soil quality, meaning more unfavourable soil conditions 

for crops to grow (Droste et al., 2020; Waqas et al., 2020). Degraded soil quality will also make a 

cropping system more vulnerable to warming according to our results. These problems can be alleviated 

through improving soil quality. With appropriate farming management practices at long-term context, 

farmers can control soil quality (unlike the weather) to produce high crop yields under current climate 

conditions, as well as maintain yields despite climate change (Macholdt et al., 2020; Manns and Martin, 

2018). For example, Song et al. (2015) conducted a 22-year field experiment in northeast China and 

claimed that compared to inorganic fertilizer treatments, organic matter amendments (crop straw or 

farmyard manure) can not only increase maize yield but also maintain an increasing trend. As 

demonstrated by Song et al. (2015), organic amendments can mitigate the negative and promote the 

positive effects of climate warming on maize production through increasing SOC. Farming practices 

that increase SOC can usually enable soils to keep higher levels of biodiversity, supply more plant 

nutrients, have better water holding capacity, and be less vulnerable to erosion (Manns and Martin, 

2018; Minasny et al., 2017). Moreover, increasing SOC is identified as a main approach for greenhouse 

gas emissions mitigation (Farina et al., 2021; Lal et al., 2007), thus it can also contribute to the 

mitigation of climate change. In addition, some conservation agriculture practices, such as no tillage 

(Figure 1), are also proved to improve soil quality (Sithole et al., 2019; Valkama et al., 2020). 

Nevertheless, different regions might be varied in most suitable practices. Thus, further studies are 

needed to explore what farming practices can maximize the benefit to soil quality in certain regions to 

create resilient and sustainable agro-ecosystems in face of climate change. 

5 Conclusions 

This study is the first one to quantify the potential of soil inherent properties to mitigate the effects of 

increased growing season temperature on maize yield across the CMB. Climate warming caused yield 

losses (up to 20% decline for 1°C warming) in most areas but gains in north-eastern regions (up to 10% 

increase for 1°C warming). Around 72% of the spatial variation of yield sensitivity could be attributed 

to the variation in soil properties. Soil organic carbon contributed most to the temperature sensitivity of 

yield, with positive correlations. As previous intensive farming practices have been widely carried out 
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across the belt, soil degradation potentially reduced agriculture’s resilience to climate warming and thus 

food security. Here we provided evidence that preservation of soil carbon and improved soil quality 

reduced yield losses due to climate warming.  

Declarations 

Authors’ contributions Funding acquisition: Kelin Hu. Data collection and formatting: Puyu Feng, 

Mingxia Huang, and De Li Liu. Data analysis: Puyu Feng and Bin Wang. Writing original draft: Puyu 

Feng, Bin Wang, Matthew Tom Harrison, Jing Wang, Ke Liu, and Qiang Yu. Writing, review, and 

editing: all co-authors. 

Funding This study was supported by the Strategic Priority Research Program of the Chinese Academy 

of Sciences (XDA28060200) and the National Key R&D Program of China (2016YFD0201202). 

Data availability The datasets generated during and/or analysed during the present study are available 

from the corresponding author on reasonable request. 

Code availability Not applicable. 

Ethical approval Not appropriate. 

Consent to participate Not appropriate. 

Consent for publication Not appropriate 

Conflict of interest The authors declare no competing interests. 

 

References 

Alcock, D.J., Harrison, M.T., Rawnsley, R.P. and Eckard, R.J., 2015. Can animal genetics and flock 

management be used to reduce greenhouse gas emissions but also maintain productivity of 

wool-producing enterprises? Agr Syst, 132: 25-34. 

https://doi.org/10.1016/j.agsy.2014.06.007. 

Ara, I. et al., 2021. Modelling seasonal pasture growth and botanical composition at the paddock scale 

with satellite imagery. in silico Plants, 3(1): diaa013. 

https://doi.org/10.1093/insilicoplants/diaa013. 

Asseng, S. et al., 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 

5(2): 143-147. https://doi.org/10.1038/nclimate2470. 



 

 

Feng et al (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for 

Sustainable Development. Accepted for publication 1 August 2022. 

Bodner, G., Nakhforoosh, A. and Kaul, H.P., 2015. Management of crop water under drought: a 

review. Agron Sustain Dev, 35(2): 401-442. https://doi.org/10.1007/s13593-015-0283-4. 

Bonfante, A. and Bouma, J., 2015. The role of soil series in quantitative land evaluation when 

expressing effects of climate change and crop breeding on future land use. Geoderma, 259: 

187-195. https://doi.org/10.1016/j.geoderma.2015.06.010. 

Breiman, L., 2001. Random Forest. Machine Learning, 45: 5-32. 

https://doi.org/10.1023/A:1010933404324. 

Bronick, C.J. and Lal, R., 2005. Soil structure and management: a review. Geoderma, 124(1-2): 3-22. 

https://doi.org/10.1016/j.geoderma.2004.03.005. 

Cammarano, D. and Tian, D., 2018. The effects of projected climate and climate extremes on a winter 

and summer crop in the southeast. Agr Forest Meteorol, 248: 109-118. 

https://doi.org/10.1016/j.agrformet.2017.09.007. 

Casali, L., Herrera, J.M. and Rubio, G., 2021. Modeling maize and soybean responses to climatic 

change and soil degradation in a region of South America. Agron J. 

https://doi.org/10.1002/agj2.20585. 

Chang-Fung-Martel, J., Harrison, M., Rawnsley, R., Smith, A. and Meinke, H., 2017. The impact of 

extreme climatic events on pasture-based dairy systems: a review. Crop and Pasture Science, 

68(12): 1158-1169. https://doi.org/10.1071/CP16394. 

Chen, C.Q. et al., 2011. Will higher minimum temperatures increase corn production in Northeast 

China? An analysis of historical data over 1965-2008. Agr Forest Meteorol, 151(12): 1580-

1588. https://doi.org/10.1016/j.agrformet.2011.06.013. 

Deng, X., Huang, Y. and Qin, Z.C., 2020. Soil indigenous nutrients increase the resilience of maize 

yield to climatic warming in China. Environ Res Lett, 15(9): 11. 

https://doi.org/10.1088/1748-9326/aba4c8. 

Deryng, D., Conway, D., Ramankutty, N., Price, J. and Warren, R., 2014. Global crop yield response 

to extreme heat stress under multiple climate change futures. Environ Res Lett, 9(3): 034011. 

https://doi.org/10.1088/1748-9326/9/3/034011. 

Dibari, C. et al., 2020. Expected changes to Alpine pastures in extent and composition under future 

climate conditions. Agronomy, 10(7): 926. https://doi.org/10.3390/agronomy10070926. 

Droste, N. et al., 2020. Soil carbon insures arable crop production against increasing adverse weather 

due to climate change. Environ Res Lett, 15(12): 13. https://doi.org/10.1088/1748-

9326/abc5e3. 

FAOSTAT, 2020. Food and Agriculture Organization of the United Nations 2020. FAOSTAT 

Database (https://fao.org/aquastat/en/). 

Farina, R. et al., 2021. Ensemble modelling, uncertainty and robust predictions of organic carbon in 

long‐term bare‐fallow soils. Global Change Biology, 27(4): 904-928. 

https://doi.org/10.1111/gcb.15441. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of 

statistics: 1189-1232. https://doi.org/10.1214/AOS/1013203451. 

Harrison, M.T. et al., 2021. Carbon myopia: the urgent need for integrated social, economic and 

environmental action in the livestock sector. Global Change Biology, 27(22): 5726-5761. 

https://doi.org/10.1111/gcb.15816. 



 

 

Feng et al (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for 

Sustainable Development. Accepted for publication 1 August 2022. 

Harrison, M.T., Evans, J.R., Dove, H. and Moore, A.D., 2011. Recovery dynamics of rainfed winter 

wheat after livestock grazing 2. Light interception, radiation-use efficiency and dry-matter 

partitioning. Crop and Pasture Science, 62(11): 960-971. https://doi.org/10.1071/CP11235. 

Harrison, M.T., Evans, J.R. and Moore, A.D., 2012. Using a mathematical framework to examine 

physiological changes in winter wheat after livestock grazing: 1. Model derivation and 

coefficient calibration. Field Crop Res, 136: 116-126. 

https://doi.org/10.1016/j.fcr.2012.06.015. 

Harrison, M.T. et al., 2014a. Increasing ewe genetic fecundity improves whole-farm production and 

reduces greenhouse gas emissions intensities: 1. Sheep production and emissions intensities. 

Agr Syst, 131: 23-33. https://doi.org/10.1016/j.agsy.2014.07.008. 

Harrison, M.T., Roggero, P.P. and Zavattaro, L., 2019. Simple, efficient and robust techniques for 

automatic multi-objective function parameterisation: Case studies of local and global 

optimisation using APSIM. Environ Modell Softw, 117: 109-133. 

https://doi.org/10.1016/j.envsoft.2019.03.010. 

Harrison, M.T., Tardieu, F., Dong, Z., Messina, C.D. and Hammer, G.L., 2014b. Characterizing 

drought stress and trait influence on maize yield under current and future conditions. Global 

change biology, 20(3): 867-878. https://doi.org/10.1111/gcb.12381. 

Hengl, T. et al., 2014. SoilGrids1km—global soil information based on automated mapping. PloS 

one, 9(8): e105992. https://doi.org/10.1371/journal.pone.0105992. 

Heung, B., Bulmer, C.E. and Schmidt, M.G., 2014. Predictive soil parent material mapping at a 

regional-scale: a random forest approach. Geoderma, 214: 141-154. 

https://doi.org/10.1016/j.geoderma.2013.09.016. 

Holzworth, D.P. et al., 2014. APSIM–evolution towards a new generation of agricultural systems 

simulation. Environ Modell Softw, 62: 327-350. 

https://doi.org/10.1016/j.envsoft.2014.07.009. 

Huang, J., Hartemink, A.E. and Kucharik, C.J., 2021a. Soil-dependent responses of US crop yields to 

climate variability and depth to groundwater. Agr Syst, 190(4): 103085. 

https://doi.org/10.1016/j.agsy.2021.103085. 

Huang, M. et al., 2021b. Assessing maize potential to mitigate the adverse effects of future rising 

temperature and heat stress in China. Agr Forest Meteorol, 311: 108673. 

https://doi.org/10.1016/j.agrformet.2021.108673. 

Huang, M.X. et al., 2020. Optimizing sowing window and cultivar choice can boost China's maize 

yield under 1.5 degrees C and 2 degrees C global warming. Environ Res Lett, 15(2). 

https://doi.org/10.1088/1748-9326/ab66ca. 

Huang M, Wang J, Wang B, et al., 2022. Dominant sources of uncertainty in simulating maize 

adaptation under future climate scenarios in China. Agricultural Systems, 199: 103411. 

https://doi.org/10.1016/j.agsy.2022.103411. 

Ibrahim, A., Harrison, M.T., Meinke, H. and Zhou, M., 2019. Examining the yield potential of barley 

near-isogenic lines using a genotype by environment by management analysis. Eur J Agron, 

105: 41-51. https://doi.org/10.1016/j.eja.2019.02.003. 

Innes, P.J., Tan, D.K.Y., Van Ogtrop, F. and Amthor, J.S., 2015. Effects of high-temperature episodes 

on wheat yields in New South Wales, Australia. Agr Forest Meteorol, 208: 95-107. 

https://doi.org/10.1016/j.agrformet.2015.03.018. 



 

 

Feng et al (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for 

Sustainable Development. Accepted for publication 1 August 2022. 

Karhu, K., Mattila, T., Bergstrom, I. and Regina, K., 2011. Biochar addition to agricultural soil 

increased CH4 uptake and water holding capacity - Results from a short-term pilot field 

study. Agr Ecosyst Environ, 140(1-2): 309-313. https://doi.org/10.1016/j.agee.2010.12.005. 

Lal, R., 2016. Soil health and carbon management. Food and Energy Security, 5(4): 212-222. 

https://doi.org/10.1002/fes3.96. 

Lal, R., Follett, R.F., Stewart, B.A. and Kimble, J.M., 2007. Soil carbon sequestration to mitigate 

climate change and advance food security. Soil science, 172(12): 943-956. 

https://doi.org/10.1097/ss.0b013e31815cc498. 

Li, L. et al., 2019. Increasing sensitivity of alpine grasslands to climate variability along an 

elevational gradient on the Qinghai-Tibet Plateau. Sci Total Environ, 678: 21-29. 

https://doi.org/10.1016/j.scitotenv.2019.04.399. 

Liu, D., Mishra, A.K. and Ray, D.K., 2020. Sensitivity of global major crop yields to climate 

variables: A non-parametric elasticity analysis. Sci Total Environ, 748: 12. 

https://doi.org/10.1016/j.scitotenv.2020.141431. 

Lobell, D.B. and Field, C.B., 2007. Global scale climate - crop yield relationships and the impacts of 

recent warming. Environ Res Lett, 2(1): 7. https://doi.org/10.1088/1748-9326/2/1/014002. 

Lobell, D.B., Schlenker, W. and Costa-Roberts, J., 2011. Climate Trends and Global Crop Production 

Since 1980. Science, 333(6042): 616-620. https://doi.org/10.1126/science.1204531. 

Lu, M. et al., 2020. A cultivated planet in 2010–Part 1: The global synergy cropland map. Earth Syst 

Sci Data, 12(3): 1913-1928. https://doi.org/10.5194/essd-12-1913-2020. 

Macholdt, J., Gyldengren, J.G., Diamantopoulos, E. and Styczen, M., 2020. How will future climate 

depending agronomic management impact the yield risk of wheat cropping systems? A 

regional case study of Eastern Denmark. The Journal of Agricultural Science, 158(8-9): 660-

675. https://doi.org/10.1017/S0021859620001045. 

Manns, H.R. and Martin, R.C., 2018. Cropping system yield stability in response to plant diversity 

and soil organic carbon in temperate ecosystems. Agroecol. Sustain. Food Syst., 42(7): 724-

750. https://doi.org/10.1080/21683565.2017.1423529. 

Mau, R.L. et al., 2015. Linking soil bacterial biodiversity and soil carbon stability. The ISME Journal, 

9(6): 1477-1480. https://doi.org/10.1038/ismej.2014.205. 

Meng, Q. et al., 2016. Growing sensitivity of maize to water scarcity under climate change. Sci Rep-

Uk, 6(1): 1-7. https://doi.org/10.1038/srep19605. 

Minasny, B. et al., 2017. Soil carbon 4 per mille. Geoderma, 292: 59-86. 

https://doi.org/10.1016/j.geoderma.2017.01.002. 

Muchow, R.C., Sinclair, T.R. and Bennett, J.M., 1990. Temperature and solar radiation effects on 

potential maize yield across locations. Agron J, 82(2): 338-343. 

https://doi.org/10.2134/agronj1990.00021962008200020033x. 

Osanai, Y., Knox, O., Nachimuthu, G. and Wilson, B., 2020. Increasing soil organic carbon with 

maize in cotton-based cropping systems: Mechanisms and potential. Agriculture, Ecosystems 

& Environment, 299: 106985. https://doi.org/10.1016/j.agee.2020.106985. 

Parkes, B. et al., 2019. Weather dataset choice introduces uncertainty to estimates of crop yield 

responses to climate variability and change. Environ Res Lett, 14(12): 124089. 

https://doi.org/10.1088/1748-9326/ab5ebb 



 

 

Feng et al (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for 

Sustainable Development. Accepted for publication 1 August 2022. 

Pinheiro, E.A.R., van Lier, Q.D. and Simunek, J., 2019. The role of soil hydraulic properties in crop 

water use efficiency: A process-based analysis for some Brazilian scenarios. Agr Syst, 173: 

364-377. https://doi.org/10.1016/j.agsy.2019.03.019. 

Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., 2013. Yield trends are insufficient to double 

global crop production by 2050. PloS one, 8(6): e66428. 

https://doi.org/10.1371/journal.pone.0066428. 

Reeves, D., 1997. The role of soil organic matter in maintaining soil quality in continuous cropping 

systems. Soil and Tillage Research, 43(1-2): 131-167. https://doi.org/10.1016/S0167-

1987(97)00038-X. 

Ren X, Sun D, Wang Q, 2016. Modeling the effects of plant density on maize productivity and water 

balance in the Loess Plateau of China. Agricultural Water Management, 171: 40-48. 

https://doi.org/10.1016/j.agwat.2016.03.014. 

Rezaei, E.E. et al., 2018. Quantifying the response of wheat yields to heat stress: The role of the 

experimental setup. Field Crop Res, 217: 93-103. https://doi.org/10.1016/j.fcr.2017.12.015. 

Rezaei, E.E., Webber, H., Gaiser, T., Naab, J. and Ewert, F., 2015. Heat stress in cereals: mechanisms 

and modelling. Eur J Agron, 64: 98-113. https://doi.org/10.1016/j.eja.2014.10.003. 

Ruane, A.C. et al., 2021. Strong regional influence of climatic forcing datasets on global crop model 

ensembles. Agr Forest Meteorol, 300: 108313. 

https://doi.org/10.1016/j.agrformet.2020.108313. 

Sándor, R. et al., 2020. Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crop 

Res, 252: 107791. https://doi.org/10.1016/j.fcr.2020.107791. 

Schlenker, W. and Lobell, D.B., 2010. Robust negative impacts of climate change on African 

agriculture. Environ Res Lett, 5(1): 014010. https://doi.org/10.1088/1748-9326/5/1/014010. 

Sheffield, J., Goteti, G. and Wood, E.F., 2006. Development of a 50-year high-resolution global 

dataset of meteorological forcings for land surface modeling. Journal of climate, 19(13): 

3088-3111. https://doi.org/10.1175/JCLI3790.1. 

Sithole, N.J., Magwaza, L.S. and Thibaud, G.R., 2019. Long-term impact of no-till conservation 

agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in 

different size fractions. Soil and Tillage Research, 190: 147-156. 

https://doi.org/10.1016/j.still.2019.03.004. 

Song, Z.W. et al., 2015. Organic amendments increase corn yield by enhancing soil resilience to 

climate change. Crop J., 3(2): 110-117. https://doi.org/10.1016/j.cj.2015.01.004. 

Stockmann, U. et al., 2013. The knowns, known unknowns and unknowns of sequestration of soil 

organic carbon. Agriculture, Ecosystems & Environment, 164: 80-99. 

https://doi.org/10.1016/j.agee.2012.10.001. 

Valkama, E. et al., 2020. Can conservation agriculture increase soil carbon sequestration? A 

modelling approach. Geoderma, 369: 114298. 

https://doi.org/10.1016/j.geoderma.2020.114298. 

Van Ittersum, M., Howden, S. and Asseng, S., 2003. Sensitivity of productivity and deep drainage of 

wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and 

precipitation. Agriculture, ecosystems & environment, 97(1-3): 255-273. 

https://doi.org/10.1016/S0167-8809(03)00114-2. 



 

 

Feng et al (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for 

Sustainable Development. Accepted for publication 1 August 2022. 

Wang, N. et al., 2018. Modelling maize phenology, biomass growth and yield under contrasting 

temperature conditions. Agr Forest Meteorol, 250: 319-329. 

https://doi.org/10.1016/j.agrformet.2018.01.005. 

Wang, X., Huang, J., Feng, Q. and Yin, D., 2020. Winter wheat yield prediction at county level and 

uncertainty analysis in main wheat-producing regions of China with deep learning 

approaches. Remote Sensing, 12(11): 1744. https://doi.org/10.3390/rs12111744. 

Waqas, M.A. et al., 2020. The influence of nutrient management on soil organic carbon storage, crop 

production, and yield stability varies under different climates. J Clean Prod, 268: 121922. 

https://doi.org/10.1016/j.jclepro.2020.121922. 

Williams, A. et al., 2016. Soil water holding capacity mitigates downside risk and volatility in US 

rainfed maize: time to invest in soil organic matter? PloS one, 11(8): e0160974. 

https://doi.org/10.1371/journal.pone.0160974. 

Xiao, D. et al., 2020. Climate change impact on yields and water use of wheat and maize in the North 

China Plain under future climate change scenarios. Agricultural Water Management, 238: 

106238. https://doi.org/10.1016/j.agwat.2020.106238. 

Yao, Y., Piao, S. and Wang, T., 2018. Future biomass carbon sequestration capacity of Chinese 

forests. Science Bulletin, 63(17): 1108-1117. https://doi.org/10.1016/j.scib.2018.07.015. 

Zhang, F., Zhang, W., Qi, J. and Li, F.-M., 2018. A regional evaluation of plastic film mulching for 

improving crop yields on the Loess Plateau of China. Agr Forest Meteorol, 248: 458-468. 

https://doi.org/10.1016/j.agrformet.2017.10.030. 

Zhao, C. et al., 2017. Temperature increase reduces global yields of major crops in four independent 

estimates. P Natl Acad Sci USA, 114(35): 9326-9331. 

https://doi.org/10.1073/pnas.1701762114. 

Zheng J, Fan J, Zhang F, et al., 2021. Evapotranspiration partitioning and water productivity of 

rainfed maize under contrasting mulching conditions in Northwest China. Agricultural Water 

Management, 243: 106473. https://doi.org/10.1016/j.agwat.2020.106473. 

Zhu G, Liu Z, Qiao S, et al., 2022 How could observed sowing dates contribute to maize potential 

yield under climate change in Northeast China based on APSIM model. European Journal of 

Agronomy, 136: 126511. https://doi.org/10.1016/j.eja.2022.126511. 

Zhu, P., Zhuang, Q., Archontoulis, S.V., Bernacchi, C. and Müller, C., 2019. Dissecting the nonlinear 

response of maize yield to high temperature stress with model‐data integration. Global change 

biology, 25(7): 2470-2484. https://doi.org/10.1111/gcb.14632. 

 

https://doi.org/10.1016/j.agwat.2020.106473

