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Abstract
Despite their relatively high thermal optima (Topt), tropical taxa may be particularly 
vulnerable to a rising baseline and increased temperature variation because they live 
in relatively stable temperatures closer to their Topt. We examined how microbial eu-
karyotes with differing thermal histories responded to temperature fluctuations of 
different amplitudes (0 control, ±2, ±4°C) around mean temperatures below or above 
their Topt. Cosmopolitan dinoflagellates were selected based on their distinct thermal 
traits and included two species of the same genus (tropical and temperate Coolia spp.), 
and two strains of the same species maintained at different temperatures for >500 
generations (tropical Amphidinium massartii control temperature and high tempera-
ture, CT and HT, respectively). There was a universal decline in population growth 
rate under temperature fluctuations, but strains with narrower thermal niche breadth 
(temperate Coolia and HT) showed ~10% greater reduction in growth. At suboptimal 
mean temperatures, cells in the cool phase of the fluctuation stopped dividing, fixed 
less carbon (C) and had enlarged cell volumes that scaled positively with elemental C, 
N, and P and C:Chlorophyll-a. However, at a supra-optimal mean temperature, fixed C 
was directed away from cell division and novel trait combinations developed, leading 
to greater phenotypic diversity. At the molecular level, heat-shock proteins, and chap-
erones, in addition to transcripts involving genome rearrangements, were upregu-
lated in CT and HT during the warm phase of the supra-optimal fluctuation (30 ± 4°C), 
a stress response indicating protection. In contrast, the tropical Coolia species up-
regulated major energy pathways in the warm phase of its supra-optimal fluctuation 
(25 ± 4°C), indicating a broadscale shift in metabolism. Our results demonstrate diver-
gent effects between taxa and that temporal variability in environmental conditions 
interacts with changes in the thermal mean to mediate microbial responses to global 
change, with implications for biogeochemical cycling.
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1  |  INTRODUC TION

The ocean has absorbed 50% of the carbon dioxide (CO2) emitted 
through anthropogenic activity in the Earth's biosphere and >90% 
of the heat trapped at the Earth's surface (Domingues et al., 2008). 
As a result, the global ocean has warmed at an average rate of 
~0.062 ± 0.013°C per decade from 1900 to 2019 (Garcia-Soto 
et al., 2021), and depending on the CO2 emissions scenario, it is an-
ticipated surface waters will warm by at least twice that rate by 2100 
under a low warming scenario (SSP1-2.6) or by 4–8 times under a 
high warming scenario (SSP5-8.5) (Arias et al., 2021). In addition to 
long-term warming, the ocean has also experienced more frequent 
and intense marine heatwaves (anomalous warming events) over the 
last century (Oliver et al., 2018), with this trend projected to increase 
further under climate change (Frölicher et al., 2018).

The biological implications of a shifting baseline as well as increas-
ing environmental variation are unknown (Kroeker et al., 2020). Our 
present understanding of the future distribution of species is based 
on climate-envelope or ecological niche models, which forecast the 
availability of suitable environments for different taxa that are de-
fined by their traits (Araújo et al.,  2005; Dutkiewicz et al.,  2013). 
The values of these traits are developed from field-based obser-
vations and meta-analyses that are largely derived from cultivation 
experiments under constant conditions (Dutkiewicz et al.,  2015; 
Eppley, 1972). Although we are beginning to quantify the impacts of 
environmental variation compared with a change in mean condition 
(Cabrerizo et al., 2021; Gill et al., 2022; Pansch & Hiebenthal, 2019), 
such trait models have largely ignored the biological processes that 
influence species persistence under more variable conditions, and 
currently do not allow for organisms to dynamically respond to their 
environment.

Currently, it is unclear how selection for higher thermal op-
tima (Topt) in response to ocean warming (i.e., increases in mean 
temperature) will affect species' capacities to adapt to changes in 
thermal variation. Plasticity, the phenotypic variation arising from 
the interaction of genotypes with their environment, is widely ac-
knowledged as an important response to environmental change 
(Schlichting & Pigliucci, 1998). Theory predicts that plasticity should 
evolve in highly predictable environments, whereas reduced plas-
ticity is expected in environments that fluctuate less predictably, 
because this lowers the risk that physiological responses do not 
match future selective pressures (Botero et al., 2015; Lande, 2009; 
Leung et al., 2020). There are a range of molecular, morphological, 
and physiological traits that are responsive to temperature, including 
body size (Daufresne et al., 2009), intracellular composition (Woods 
et al., 2003), the ratio of RNA to protein (Toseland et al., 2013), the 
use of heat-shock proteins (HSPs) (Feder & Hofmann,  1999), and 
for photosynthetic microbes, photochemistry, carbon fixation and 

respiration, as well as changes in photosynthetic pigments and pro-
teins like Rubisco (Baker et al., 2016; Schaum et al., 2018; Valentin & 
Mock, 2004). Temperature variability in marine environments shows 
a broad-scale latitudinal pattern, with minimal seasonality in tropical 
environments and maximal in the temperate mid-latitudes (Doblin 
& van Sebille, 2016; Locarnini et al., 2018). It follows that tropical 
species with highest Topt for growth and physiological functions 
have reduced tolerance to temperature variation due to their evo-
lution under relatively stable temperatures (Qu et al., 2019; Thomas 
et al., 2012). Furthermore, the shape of thermal performance curves 
(TPC) means that fluctuations on the ascending portion of the TPC 
would lead to an acceleration in growth (Response A; see Figure 2), 
whereas fluctuations on the descending portion would cause a de-
celeration in growth (Response D) (Bernhardt et al., 2018).

Here, we explicitly test how temperature variability interacts 
with mean temperature to influence growth and phenotypic plas-
ticity among cosmopolitan tropical and temperate eukaryotic mi-
crobes. We used two species of the same genus, and two strains of 
the same species, each with a different thermal history, to investi-
gate how universal their responses were. Strains included the poten-
tially harmful dinoflagellate Coolia palmyrensis and Coolia malayensis 
with similar thermal traits (Topt, niche breadth) even though they 
were isolated from tropical and temperate latitudes, respectively 
(Larsson et al., 2019), and two strains of the tropical dinoflagellate 
Amphidinium massartii with different thermal traits; one that was 
maintained at the standard growth temperature of 25°C (referred 
to as the control strain [CT]) and another that had undergone di-
rectional high-temperature selection at +5°C for 3.25 years (>500 
generations) (referred to as the high-temperature strain [HT]) (Baker 
et al.,  2018). Temperature treatments were designed to fluctuate 
with a period of 2 days at different amplitudes (0 control, ±2, ±4°C) 

K E Y W O R D S
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F I G U R E  1  Design of temperature treatments. Temperatures 
fluctuated regularly every 2 days around a mean throughout an 
initial acclimation period involving six growth cycles (20–28 days). 
Cells were then harvested under the final downward (cool) and 
upward (warm) phase to quantify phenotypic traits.
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around different means (20, 25, 30°C) that were below or above the 
estimated Topt of each strain (Figure 1; Table S1). Exposure to regu-
lar temperature fluctuations led to a universal reduction in average 
population growth rate, but there was a greater cost to growth for 
temperate C. malayensis and A. massartii HT (strains with narrower 
thermal niche breadth). At suboptimal mean temperature, traits 
were linearly correlated to cell volume. However, at supra-optimal 
mean temperature, novel trait combinations developed, leading to 
greater phenotypic heterogeneity. Furthermore, growth declined as 
expected in the warm phase but also declined during the cool phase 
of fluctuations, indicating that the TPC does not reliably predict per-
formance at supra-optimal mean temperature. Together, these em-
pirical data show that phenotypic traits become less predictable at 
mean temperatures above Topt and thermal specialisation (narrower 
niche breadth) may come at the expense of lowered tolerance to 
temperature variability.

2  |  MATERIAL S AND METHODS

2.1  |  Microbial eukaryote taxa and temperature 
selection environments

Experiments were performed using dinoflagellates isolated from 
tropical and temperate latitudes (Table S1). Tropical A. massartii (CS-
259) was provided by S. Murray after it was isolated from Kurrimine 
Beach and described in Murray et al.  (2012). It was grown under 
temperature selection for 39 months at two different temperatures 
(25 and 30°C; CT and HT, respectively), after which the HT strain 
had become high-temperature specialized, with a +2.67°C shift in 
the Topt and a +14.92°C increase in the Tmin, with the overall effect 
of narrowing the thermal niche (Baker et al., 2018). A second tropical 
dinoflagellate C. palmyrensis and a temperate dinoflagellate Coolia 
malayensis isolated within months of each other in 2014 (Larsson 
et al., 2019) were also used, allowing us to examine whether ther-
mal history influences responses of strains to thermally variable 
environments.

A. massartii was cultivated in coastal seawater medium with 
modified f/2 enrichment, lacking silicic acid (Guillard & Ryther, 1962). 
Coolia spp. was cultivated in coastal seawater medium with modified 
K nutrients (Litaker et al., 2009). All cultures were maintained under 
a light intensity of 100 μmol photons m−2 s−1 with a light–dark cycle 
of 12:12 light: dark (LD) in either 25°C (CT, Coolia spp.) or 30°C (HT).

2.2  |  Experimental setup

Thermal regimes were designed to test the effect of regular thermal 
fluctuations in comparison with stable control treatments with the 
same mean temperature. Control treatments had thermal variability of 
<0.1°C over the experimental duration. The amplitude of temperature 
fluctuations was ±2 or ±4°C with temperatures in the variable treat-
ments cycling every 2 days between temperature endpoints (Figure 1). 

Similar frequencies of short-term temperature variations are observed 
in coastal waters worldwide (Aguirre et al.,  2021; Dai et al.,  2009; 
Leinweber et al.,  2009; Shaw et al.,  2012). Such temperature varia-
tions are especially pronounced in coastal regimes due to the effects 
of atmospheric weather fluctuations on a shallow water column along 
with vigorous advection, mixing and upwelling (Aguirre et al., 2021; 
Leinweber et al., 2009). Mean temperatures for experiments were de-
termined based on two considerations: (1) seasonal sea surface tem-
peratures in tropical eastern Australian waters (AIMS,  2009): 20°C 
(winter; July) and 30°C (summer; January) and (2) the long-term cul-
turing temperature of isolates (Table  S1). For CT ad HT strains, this 
equated to reciprocal temperature transplants at 25 and 30°C.

To determine the effect of amplitude in variable thermal regimes, 
all taxa were exposed to 25 ± 2 and ±4°C, relative to the stable 
control—that is, temperature varied from 23°C to 27°C or from 21 
to 29°C (Table S2). To examine the effect of thermal variation cen-
tered around different mean temperatures, A. massartii CT and HT 
strains were exposed to 30 ± 4°C (26 to 34°C), and C. palmyrensis and 
C. malayensis were exposed to 20 ± 4°C (16 to 24°C; Table S2). Given 
the TPC of Coolia spp., fluctuations around 20°C were below Topt 
and fluctuations around 25°C were supra-optimal; for Amphidinium, 
fluctuations around 25°C were around Topt, and those around 30°C 
were supra-optimal.

Experiments were conducted in a temperature-controlled room, 
where a system of water baths was used to maintain incubation tem-
peratures. Temperatures in the variable treatments were adjusted 
every 2 days using thermostatically controlled cooling and heating 
systems (Julabo GmbH), with temperature shifts occurring over 
60 min. Experimental microcosms consisted of 500 ml capped poly-
carbonate flasks filled with 400 ml of culture, illuminated from above 
with LED light banks (Schenzen Cidly Group) at 150 μmol photons 
m−2 s−1 in a 12:12 light: dark cycle.

Semi-continuous dilution culturing methods were used to accli-
mate cells to variable temperature treatments (Figure S2) and avoid 
excessive biomass accumulation and consequent nutrient limitation 
or self-shading. At the end of every dilution cycle, each bottle was 
diluted individually back to the initial cell concentration for that bot-
tle. Thus, in this semi-continuous “turbidostat” method, the growth 
rate in each treatment determined the dilution rate. After 6 cycles 
(~32 days), cells were subsampled for physiological trait quantifica-
tion at the end of the 2-day cool exposure period (downward phase) 
and then 2 days later, at the end of the warm exposure period (up-
ward phase) (Figure 1). All experiments used three replicate bottles 
in each treatment.

2.3  |  Trait quantification

2.3.1  |  Biomass, relative cell size estimates, and 
specific growth rates

Biomass was estimated every second day using in vivo chlorophyll-a 
(Chl-a) fluorescence to determine semi-continuous dilution volumes 
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based on calculated specific growth rates. These in vivo Chl-a esti-
mates were later validated with microscopic or flow cytometric cell 
counts; growth rates calculated with these two methods were found 
to be closely comparable.

Cell abundance of A. massartii was determined with flow cy-
tometry. One mL of culture was first fixed in paraformaldehyde 
solution (1% v/v final concentration), snap frozen in liquid nitrogen 
and stored at −80°C. Prior to enumeration, samples were thawed 
quickly in a 35°C water bath, vortexed and analysed with an Influx 
flow cytometer (BD Biosciences) under blue (488 nm laser) exci-
tation. Yellow-green fluorescent beads were added in known con-
centrations for volumetric and fluorometric internal calibration. 
Events were triggered on FSC for enhanced sensitivity; populations 
were isolated on cytograms of FSC and chlorophyll-a fluorescence 
(692/40 nm). Cell count samples for the Coolia experiments were 
preserved in Lugols (1% final solution) and were then enumerated 
under the microscope using a Sedgewick Rafter Chamber.

2.3.2  |  Cell size

A. massartii cell size was estimated using flow cytometric forward 
scatter, relative to bead standards (Marie et al.,  1999). For Coolia 
spp., Lugols-preserved subsamples were aliquoted into 24-well 
glass bottom plates, and cells were measured with an automated im-
aging system (IN CELL 2200, GE Healthcare) using a 20× objective. 
Images were analysed with proprietary software to obtain major 
axis length, minor axis length and form factor (i.e., cell roundness, 
varying between 0 and 1 with 1 being a perfect circle). Biovolume 
was calculated based on an ellipsoid shape using minor axis as width 
and major axis as length, according to Hillebrand et al. (1999).

2.3.3  |  Chlorophyll and elemental composition

Chlorophyll-a samples were extracted using 90% acetone for 24 h 
in a −20°C freezer in the dark and measured on a calibrated fluo-
rometer (Turner designs Model 10 AU) (Fu et al., 2005). Particulate 
organic carbon, nitrogen and phosphorus (POC, PON, and POP, re-
spectively) samples were filtered onto pre-combusted GF/F filters 
and dried at 60°C, then stored at room temperature. PON and POC 
was measured using an elemental combustion system (Model 4010, 
Costech) (Hutchins et al., 1998). POP samples were combusted at 
high temperature (500°C) to convert the organic P into orthophos-
phate, and then measurements were performed using the standard 
colorimetric molybdate method (Strickland & Parsons, 1968).

2.3.4  |  Primary productivity (14C uptake)

To estimate primary productivity, carbon fixation rates were 
measured using 14C-labeled bicarbonate in small volume in-
cubations as described in Doblin et al.  (2011). Specifically, 

radiolabelled NaH14CO3 (stock solution 1.85 × 107 Bq) was added 
to 5 ml of culture in clear glass tubes (1.5 μCi per tube) and in-
cubated at the treatment temperature for 60–80 min under the 
growth irradiance. Activity in the samples was determined by 
removing a 100 μL aliquot and placing it into 5  ml of refriger-
ated 0.1 M NaOH, adding 10 ml scintillation fluid (Ultima Gold™, 
PerkinElmer) and shaking before counting using a liquid scintil-
lation counter (Packard TriCarb 2900TR). Following incubation, 
tube contents were acidified with 250 μl 6 M HCl and shaken on 
an orbital shaker for 12 h to remove unfixed 14C. Scintillation fluid 
(10 ml Ultima Gold, Perkin Elmer) was then added to each sample, 
vigorously shaken and left for 1 h before counting. Counting time 
was set to 5 min so that counts were within a 5% counting error.

2.4  |  RNA sampling, extraction, and analysis

Cells were sampled between hour 1 and 2 of the light period to limit 
diel effects, and immediately filtered onto 5  μm 25-mm polycar-
bonate membranes before being flash frozen in LN2 and stored at 
−80°C. Due to resource limitations, only control and ±4°C fluctua-
tion samples from CT, HT, and C. palmyrensis were analysed further 
(Table  S2). RNA extraction was performed based on methods de-
scribed in Verma et al. (2019). Briefly, preheated Trireagent (Ambion) 
and bead beating was used for cell lysis. RNA was purified using 
RNeasy Mini Kit (Qiagen) according to manufacturer's instructions. 
Any residual DNA was removed via the TURBO DNA-free™ Kit (Life 
Technologies) according to manufacturer's instructions and RNA 
was then stored at −80°C. The RNA purity, quantity, and integrity 
were assessed using a Nanodrop ND-1000 (Thermo Scientific) and 
2100 Bioanalyser Nano and Pico chips (Agilent Technologies) de-
pending on RNA yields.

Following RNA extractions, sequencing libraries were prepared 
for 2–3 replicates per sample using the Illumina TruSeq stranded 
mRNA sample prep following the manufacturer's instructions in two 
batches. The first batch comprised all libraries from Amphidinium 
30 ± 4°C samples. Those samples yielded relatively low RNA quan-
tities (on average 491 ng), hence the libraries were prepared using 
a higher number of PCR cycles (15 cycles). The second batch com-
prised the libraries from all remaining samples, prepared using 12 
PCR cycles. All libraries (71) were sequenced together using one 
Illumina NovaSeq S1 flow cell (paired-end, 2 × 100 bp reads) yield-
ing 23 to 58 million read pairs per sample (30 million on average). 
Raw sequencing data has been deposited to the NCBI Sequence 
Read Archive under Bioproject PRJNA819215.

2.5  |  Quality trimming, assembly, clustering, 
differential expression analysis

Sequencing reads were quality trimmed using trimmomatics (Bolger et al., 
2014), using the default settings (ILLUMINACLIP:$TRIMMOMATIC_
DIR/adapters/TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:5 LEADING:5 
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TRAILING:5 MINLEN:25). Quality trimmed reads were assembled into 
transcripts using Trinity version 2.6.6 (Grabherr et al., 2011; Haas 
et al., 2013). For C. palmyrensis, reads from all samples and repli-
cates were used to generate one combined assembly. Similarly, for 
A. massartii, because both strains originate from the same clonal 
culture, reads from all samples and replicates from the CT and 
HT strains were used to generate one combined Amphidinium as-
sembly. In each assembly, similar transcripts were clustered and 
only the longest transcript retained using CD-HIT-EST (word 
size of 8 and sequence identity threshold of 0.9) (Weizhong & 
Adam,  2006). Transcriptome completeness was estimated using 
BUSCO (version 3.0.2) and the eukaryote database of conserved 
single copy genes (eykaryota_odb9, creation date: 2016-11-02) 
(Simão et al., 2015).

Transcript abundance was calculated using kallisto (Bray 
et al., 2016) within the Trinity package. Differential expression 
analysis was done using edgeR (Robinson et al., 2010) within the 
Trinity package and was performed separately for each species 
and experiment, using a false discovery rate (FDR) of <0.05 
and a minimum twofold change in abundance. To identify dif-
ferentially expressed transcripts between the variable and the 
stable control treatments, differential expression analysis was 
performed on each sample of the variable treatments against 
both samples from the respective control treatment; only tran-
scripts that were significantly DE in comparison with both con-
trol samples were considered DE between variable and control 
treatment.

Functional annotation of transcripts, including Gene Ontology 
(GO) annotation, was done using Blast2GO version 5.2.5 (Gotz 
et al., 2008) based on BLASTX searches against the NCBI non-
redundant protein database (nr) (standalone BLAST+ version 2.7.1 
[Camacho et al., 2009]) and InterProScan searches (version 5.30-
69 [Jones et al., 2014]). Annotation of photosynthesis and stress-
related transcripts was manually confirmed. Enrichment testing of 
biological process (BP) GO categories within sets of differentially 
expressed transcripts was done within Blast2GO using Fisher's 
exact test with a FDR of 0.05, corrected for multiple hypothesis 
testing (Benjamini & Yosef, 1995). Enriched BP GO categories were 
further reduced to only the most specific terms (more general GO 
terms on higher levels in the Directed Acyclic Graph [DAG] were 
removed).

2.6  |  Statistical treatment of data

Statistical analyses were performed using IBM spss Statistics 
24. Prior to analysis data was checked for normality and homo-
scedasticity. Data were analyzed by ANOVA using strain, mean 
temperature, and amplitude as fixed factors. Differences in 
multi-variate phenotypes were tested using ANOSIM (PRIMER-E 
v.6). Draftsman plots were used to visualise correlations among 
traits before the similarity matrix using Bray-Curtis distance was 
constructed.TA

B
LE

 1
 

G
ro

w
th

 ra
te

s 
(m

ea
n 

±
 S

D
; d

ay
−1

) f
or

 fo
ur

 d
in

of
la

ge
lla

te
 s

tr
ai

ns
 g

ro
w

n 
at

 d
iff

er
en

t m
ea

n 
te

m
pe

ra
tu

re
s 

w
ith

 d
iff

er
en

t a
m

pl
itu

de
 o

f r
eg

ul
ar

 (2
-d

ay
) t

em
pe

ra
tu

re
 fl

uc
tu

at
io

ns
 (n

 =
 3

)

20
°C

 m
ea

n
20

°C
 m

ea
n

25
°C

 m
ea

n
25

°C
 m

ea
n

25
°C

 m
ea

n
30

°C
 m

ea
n

30
°C

 m
ea

n

St
ab

le
 c

on
tr

ol
±

4°
C

St
ab

le
 c

on
tr

ol
±

2°
C

±
4°

C
St

ab
le

 c
on

tr
ol

±
4°

C

Am
ph

id
in

iu
m

 m
as

sa
rt

ii 
C

T
0.

63
0 

±
 0

.0
19

a
0.

54
0 

±
 0

.0
10

ab
0.

51
3 

±
 0

.0
59

b
0.

68
6 

±
 0

.0
16

0.
19

9 
±

 0
.0

12
*

A
. m

as
sa

rt
ii 

H
T

0.
52

7 
±

 0
.0

27
a

0.
42

0 
±

 0
.0

09
b

0.
36

4 
±

 0
.0

18
c

0.
55

7 
±

 0
.0

27
0.

10
7 

±
 0

.0
15

*

Co
ol

ia
 p

al
m

yr
en

sis
 tr

op
ic

al
0.

26
4 

±
 0

.0
10

0.
19

7 
±

 0
.0

07
*

0.
41

2 
±

 0
.0

08
a

0.
37

0 
±

 0
.0

05
b

0.
34

6 
±

 0
.0

12
c

C.
 m

al
ay

en
sis

 te
m

pe
ra

te
0.

24
5 

±
 0

.0
02

0.
16

3 
±

 0
.0

17
*

0.
35

9 
±

 0
.0

12
a

0.
26

9 
±

 0
.0

08
b

0.
29

5 
±

 0
.0

32
b

N
ot

e:
 A

st
er

is
ks

 s
ho

w
 th

at
 g

ro
w

th
 ra

te
s 

un
de

r f
lu

ct
ua

tin
g 

te
m

pe
ra

tu
re

 a
re

 s
ig

ni
fic

an
tly

 lo
w

er
 th

an
 th

os
e 

at
 s

ta
bl

e 
te

m
pe

ra
tu

re
 (A

N
O

VA
, p

 <
 .0

5)
, w

ith
 le

tt
er

 s
up

er
sc

rip
ts

 in
di

ca
tin

g 
di

ff
er

en
ce

s 
am

on
g 

di
ff

er
en

t a
m

pl
itu

de
s 

at
 a

 m
ea

n 
te

m
pe

ra
tu

re
 o

f 2
5°

C
.



6  |    FU et al.

3  |  RESULTS

3.1  |  Effects on growth

Following an acclimation period (Figure  1 and Figure  S2), average 
population growth rate under fluctuating conditions was signifi-
cantly lower than under stable conditions in all four dinoflagellate 
strains (Table  1; ANOVA Type III, F[1,23] 23.93, p  < .001), irrespec-
tive of mean temperature. Thermal variability caused the greatest 
negative impact (>70% decline) to both the HT and CT strains of  
A. massartii when the temperature fluctuated ±4°C around the 
supra-optimal (30°C) compared with the standard mean (25°C) 
(ANOVA Type III, F(2,22) = 132.561, p < .001). The amplitude (±2 vs. 
±4°C) of the temperature fluctuation (tested at 25°C for all taxa; see 
Section 2 and Table S2) was significant for A. massartii HT (ANOVA 
type III, F[2,6] = 54.349, p < .001) and tropical C. palmyrensis (ANOVA 
Type III, F[2,6]  = 40.776, p  < .001; Table  1), both showing a greater 
decline in the average population growth with increasing amplitude. 
However, the decline in growth was similar in the ±2 and ±4°C fluc-
tuations for A. massartii CT and the temperate C. malayensis popula-
tion, which may be due to larger between replicate differences.

Growth of all strains responded dynamically to within treatment 
temperature changes, with instantaneous growth rates diverging at 
temperature fluctuation endpoints (i.e., cool/downward and warm/

upward phases; Figure 2). Reduced growth during downward fluc-
tuations and increased growth during upward fluctuations (with in-
termediate growth under stable mean temperature) was anticipated 
at mean temperatures below Topt in the ascending portion of the 
TPC (Bernhardt et al., 2018). This response was termed Response A 
(Figure 2). In contrast, Response D occurred at mean temperatures 
above Topt in the descending portion of the TPC and was character-
ised by reductions in growth rate under both upward and downward 
temperature fluctuations relative to the stable temperature treat-
ment, indicating that cells were redirecting resources away from cell 
division (Figure 2).

The average population growth rate of Coolia species under fluc-
tuating temperatures was less impacted than Amphidinium (Figure 2; 
Table 1), likely due to longer generational times (2.6 days in Coolia 
spp. vs. 1.7 days in Amphidinium: Table 1) that exceeded the 2-day 
frequency of fluctuations. At the mean temperature of 20°C (3.6 to 
4.5°C below Topt; Table S1), instantaneous growth rates of Coolia spp. 
under ±4°C fluctuations diminished by −96.0% ± 10.5% (mean ± SD; 
tropical C. palmyrensis) and −110.4% ± 1.2% (temperate C. malay-
ensis) relative to stable controls in the downwards phase of the fluc-
tuation (16°C) and increased to 64.8% ± 18.3% and 43.6% ± 13.2% 
in the upwards phase (24°C)—that is, the growth dynamics of both 
species were characteristic of Response A (Figure  2). However, 
under ±4°C temperature fluctuations at the mean temperature of 

F I G U R E  2  Impact of temperature fluctuations on microbial eukaryotes. Carbon biomass normalised GPP (mean ± SD) and instantaneous 
growth rates (mean) of dinoflagellate strains in the downwards and upwards phase of fluctuating temperature treatments compared with 
growth in the stable control (n = 3). Response A is characterised by growth in the downward/upward phase being lower/higher than control 
(mean) temperature. Response D is characterised by growth in both the downward and upward phase being lower than the stable control. 
Note different x-axis scales between plots.
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25°C (0.5–1.4°C above Topt; Table  S1), the tropical C. palmyrensis 
strain exhibited Response A (instantaneous growth rates declined 
by −39.4% ± 5.6% at 21°C and increased by +8.1% ± 1.2% at 29°C) 
whereas the temperate C. malayensis showed Response D, character-
ised by a reduction in instantaneous growth in both the downwards 
(−36.3% ± 0.2%) and upwards phases (−9.4% ± 13.3%) of the 25 ± 4°C 
fluctuation relative to stable controls (Figure 2).

Both strains of A. massartii exhibited similar growth patterns 
under thermal fluctuations. At the mean temperature of 25°C with 
±4°C fluctuation, CT and HT exhibited Response A. Growth of the 
CT strain (Topt 23.94°C) declined by −58.4% ± 12.7% in the down-
wards phase (21°C) and increased by 24.1% ± 19.9% in the upwards 
phase (29°C) relative to stable controls (Figure  2). The HT strain 
(Topt 26.61°C) showed an even greater decline in growth at 21°C 
in the downwards phase (−88.4% ± 4.1%) compared with the CT 
strain (Figure 2), and a similar increase in growth (+27.0% ± 2.7%) at 
29°C in the upwards phase. At mean temperature of 30°C (+3.39 
to 6.06°C above Topt for both strains; Table S1), both CT and HT ex-
hibited Response D but the decline in growth was 10% greater in the 
HT compared with the CT strain (−76.7% ± 5.5% vs. −66.4% ± 3.9% 
at 26°C and −83.7% ± 3.2% vs. −75.6% ± 1.7% at 34°C, respectively; 
ANOVA F[1,9]  = 14.508, p  = .004), resulting in a significantly lower 
overall HT growth rate (Figure 2; Table 1).

3.2  |  Effects on phenotypic traits

There were significant trait value changes between the downward 
and upward phases of the fluctuations, indicating phenotypic plas-
ticity of all strains (Data Table). As part of Response A, cell volume 
was directly proportional to growth (Figure 3; Table S3), most clearly 
illustrated by the tropical C. palmyrensis in the 20 ± 4°C treatment. 
When temperatures approached 16°C, growth slowed (i.e., cell divi-
sion ceased), and cell volume was maximal, as was elemental car-
bon (C), nitrogen (N), and phosphorus (P) content. Conversely, as 
temperatures approached 24°C, growth increased, and cell volume 

diminished alongside cellular C, N, and P. Cellular chlorophyll-a (Chl-
a) content and gross primary productivity (GPP; carbon fixation 
measured over 1–2 h) showed poor correspondence to cell volume, 
but C:Chl-a was positively correlated. The same pattern was ob-
served for both Amphidinium strains when temperatures fluctuated 
around 25°C (Figure 3).

Response D however, characterised by relatively low growth 
rates at the downward and upward phases of temperature fluctu-
ations around a supra-optimal mean, led to new trait combinations 
that were most apparent in Amphidinium (Figure 4). In the 30 ± 4°C 
regime, A. massartii cells became significantly larger but a distinct el-
emental composition was evident for the HT strain which had higher 
N per biomass and hence lower C:N compared with the CT popula-
tion (Figure 4). In the 25 ± 4°C treatment close to Topt, Amphidinium 
cells were smallest, most pigmented and had maximal rates of car-
bon fixation (GPP; gross primary production). Amphidinium pheno-
types diverged between stable and fluctuating treatments (ANOSIM 
Global R = .330, p = .001), at specific temperatures (ANOSIM Global 
R = .788, p = .001) except for 25 and 29°C (pairwise tests) as well 
as between CT and HT strains (ANOSIM Global R = .117, p = .019). 
Coolia phenotypes appeared less plastic to the imposed thermal 
treatments (Figure 4), with tropical and temperate species respond-
ing similarly (ANOSIM, R = .056 p = .113) with phenotypes only dis-
tinct between different temperatures (Figure  S5; ANOSIM Global 
R = .678, p = .001).

3.3  |  Effects on metabolism

To help uncover how changes in the temperature environment im-
pacted different strains, we examined carbon fixation (i.e., GPP) in 
relation to growth rates as well as gene expression at downward 
and upward phases relative to stable mean temperature controls. 
In Coolia spp., GPP (normalised to carbon biomass) was propor-
tional to growth at 20 ± 4°C, increasing with growth rate in the 
upward phase, and decreasing with growth rate in the downward 

F I G U R E  3  Cell volume–dependent growth. Temperate and tropical Coolia spp. strains (green and orange symbols, respectively) at 20°C 
(a), all strains at 25°C (b) and Amphidinium massartii control temperature and high-temperature strains (blue and red symbols, respectively) 
at 30°C (c). Lines reflect significant linear regression (p < .05). Size of symbol reflects magnitude of fluctuation amplitude, whereby largest 
symbols are ±4°C treatments, smallest symbols are stable treatments and intermediate symbols are ±2°C treatments. Upward and 
downward facing symbols depict warm and cool phases of temperature fluctuation treatments, respectively. Each symbol represents a 
distinct biological replicate.
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phase of fluctuations (Figure 2). However, when temperature fluc-
tuated at 25 ± 4°C, GPP was a factor of ~2 higher and remained 
relatively constant in both downward and upward phases, with 
instantaneous growth rates that were similar to the 20 ± 4°C 
treatment (Figure 2). The pattern was similar in Amphidinium, but 
because growth did not increase in the downward phase at supra-
optimal mean temperature (Figure 2; Table 1) we interpret this to 
mean that fixed carbon was being directed away from cell division. 
Notably, biomass normalised carbon fixation rates were lower in 
the HT versus CT strain except in stable temperature controls 
(Figure 2).

In Coolia spp., growth rates were lowest in the downward 
phase of fluctuations at mean temperatures of both 20 and 25°C 
for both the tropical and temperate strains (Figure 2). Even though 
the tropical C. palmyrensis strain grew extremely slowly at 16°C 
(downward phase of 20 ± 4°C) (0.011 ± 0.028 day−1; ~97% slower 
than its maximum), there was relatively little downregulation of 
gene expression (Figure S1). In comparison, a wide range of tran-
scripts encoding photosynthetic functions were upregulated at 

both 21 and 29°C (25 ± 4°C), consistent with higher carbon fixa-
tion rates than in the 20 ± 4°C regime (Figure S3). When exposed 
to 29°C (upward phase of 25 ± 4°C), instantaneous growth rates 
of C. palmyrensis were faster than in the stable mean control tem-
perature of 25°C (0.445 ± 0.005 day−1 vs. 0.412 ± 0.008 day−1, 
respectively) and were accompanied by large transcriptional 
changes (Figure S1). Although the number of downregulated tran-
scripts was large, many of them could not be annotated and thus 
encoded for unknown functions. In contrast, 43 BP GO categories 
for various metabolic functions were enriched in the upregulated 
transcripts (Figure  S4), including 28 transcripts involving photo-
synthesis functions (Figure S3B), indicative of a broad-scale shift 
in metabolism.

In general, more transcripts were differentially expressed in 
the A. massartii HT strain than the CT strain in both the 25 ± 4°C 
and 30 ± 4°C regimes, suggesting it was undergoing more phys-
iological adjustments (Figure  S1). At 21°C (downward phase of 
25 ± 4°C), the HT strain had a considerably slower growth rate at 
0.061 ± 0.022 day−1 (~90% slower than its maximum) relative to the 

F I G U R E  4  Viable multitrait phenotypes of Coolia spp. and Amphidinium massartii. Resultant trait combinations in control and fluctuating 
temperature centred around a mean of 20°C (Coolia) and 30°C (Amphidinium). nMDS input variables include growth, cell size, cellular carbon, 
nitrogen, phosphorus content, C:N, N:P, chlorophyll-a content, and gross primary productivity. Vectors show the traits driving differences 
between phenotypes (Pearson correlation >0.7). Symbols represent tropical Coolia palmyrensis (orange) temperate Coolia malayensis (green), 
A. massartii CT (blue) and HT (red) strains. Symbol directions (upward or downward) and size are the same as Figure 3.
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CT strain (0.262 ± 0.080 day−1), consistent with it having a higher Tmin 
(14.94 vs. 0.02°C for CT; Table  S1). It also downregulated consid-
erably more transcripts and functions (2008 transcripts within 27 
enriched BP GO categories compared with 94 transcripts and 7 en-
riched BP GO categories in CT; Figure 5a, Figure S1), including 26 
transcripts pertaining to the photosynthetic light harvesting com-
plex (chlorophyll A–B binding proteins) (Figure 5b). DNA repair en-
zymes and HSPs and related chaperones were also encoded among 
the downregulated transcripts in the HT strain at 21°C (25–4°C) 
(Figure 5C), suggesting a broad-scale shift in metabolism. In the up-
wards phase of each temperature regime, all strains were actively 
dividing, despite being exposed to absolute temperatures approach-
ing their thermal maximum (Tmax) (Table S1). Under periodic exposure 
to 34°C (upwards phase of 30 + 4°C for Amphidinium only), both the 
HT and CT A. massartii strains showed a large number of differen-
tially expressed transcripts relative to the 30°C stable mean control 
(2523 and 3374 for HT and CT, respectively), with the majority of 
those transcripts upregulated at 34°C (78% and 76% for HT and CT, 
respectively) (Figure  S1). In both Amphidinium strains, transcripts 
encoding functions involved in DNA recombination and integration 
were enriched in the upregulated transcripts, indicative of genomic 
changes at 34°C (Figure S4).

Together, these observations suggest that variable tempera-
tures approaching upper thermal limits led to increased metabo-
lism, despite contrasting effects on growth, and that in fluctuating 
environments, cells may tolerate periodic exposure to temperature 
extremes with limited signs of stress.

4  |  DISCUSSION

A greater understanding of the consequences of thermal varia-
tion are needed to make predictions about the current and future 
growth, abundance, and distributions of species in the natural en-
vironment. Climate change models not only forecast higher mean 
temperatures in the future ocean but also that the magnitude, fre-
quency, and extremes of temperature variability will increase (Boyd 
et al.,  2016; Frölicher et al.,  2018; IPCC,  2014, 2018; Thornton 
et al., 2014; Vasseur et al., 2014). Here we show that regular 2-day 
temperature fluctuations of the type often observed in coastal wa-
ters (AIMS,  2009; Dai et al.,  2009; Leinweber et al.,  2009; Shaw 
et al., 2012), can cause significant demographic and biogeochemical 
impacts on microbial eukaryotes, and that phenotypic trait values 
diverge at a similar absolute temperature depending on previous 

F I G U R E  5  Transcriptional plasticity of dinoflagellates. Number of biological process gene ontology categories enriched in differentially 
expressed transcripts (a), differentially expressed transcripts encoding photosynthesis (b) and stress functions (c) for A. massartii control 
temperature and high-temperature strains growing at fluctuating temperatures (25°C ± 4 (21 and 29) and 30°C ± 4 (26 and 34)) relative to 
stable controls. “down/up” refers to downregulated and upregulated differentially expressed transcripts, respectively.
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thermal history. Furthermore, the existence of Response D (decline 
in growth under both upwards and downwards shifts in temperature 
from a supra-optimal mean) indicates that predicting responses is 
not as straight forward as understanding the shape of TPCs.

Our expectation was that average population growth rates 
would decrease under variable temperature treatments because 
cells spent less time within their Topt range, and that the decline 
would be proportional to the amplitude of temperature fluctuation 
because increasingly variable regimes impose an energetic cost 
(Putnam & Edmunds, 2011). Given that TPCs are non-linear (Huey & 
Stevenson, 1979), with an accelerating phase of growth at tempera-
tures below Topt and a decelerating phase of growth at temperatures 
greater than Topt, we anticipated Response A, where instantaneous 
growth rates decreased during the downward phase and increased 
during the upwards phase of fluctuations (Bernhardt et al.,  2018). 
However, there was a net loss of fitness when temperature fluctu-
ated around a supra-optimal mean, as demonstrated by the non-
reversibility of growth (i.e., Response D) in temperate C. malayensis 
and A. massartii CT and HT—that is, no increase in growth rate during 
the downward phase as temperature approached Topt. This indicates 
there is an interaction between temperature variability and mean 
temperature that fundamentally alters cellular processes, with 
cascading effects on growth and phenotypic traits. One direction 
for future work would be to determine the threshold temperature 
above Topt and associated fluctuations where phenotypic responses 
are no longer reversible, and what other factors affect the tempera-
ture at which this thermal tipping point occurs.

Although there is well-established theory that overall pheno-
typic plasticity increases when populations evolve in predictably 
variable environments, and some empirical evidence that environ-
mental fluctuations with fixed period but random amplitude select 
for plastic individuals (Botero et al.,  2015; Lande,  2009; Schaum 
et al., 2016), the combinations of traits that phytoplankton use to 
increase plasticity is less well known. The elemental content of C, 
N, and P was proportional to cell volume which flexed depending on 
growth rate at temperatures below Topt, demonstrating its utility as 
a “master trait” (Litchman & Klausmeier, 2008). Given that C, N, and 
P make up most microbial biomass (Finkel et al., 2016), changes in 
these traits with cell size were expected. However, pigment content 
and GPP were not related to cell size, and at temperature extremes it 
was evident that fixed carbon was being redirected into non-growth 
components—for example, respiration or dissolved organic carbon 
release or both. Our observations also showed that the A. massartii 
HT strain diverged from its CT descendant, showing higher N con-
tent than at the stable mean temperature of 30°C, consistent with 
its increased N demand associated with its high-temperature adap-
tation (Baker et al., 2018). Furthermore, C:N and N:P ratios were re-
lated to cell volume but showed contrasting patterns in Amphidinium 
versus Coolia. There was also a common pattern of increasing het-
erogeneity among phenotypes at temperatures exceeding Topt. 
Although many ocean biogeochemical models include correlations 
between traits (e.g., those that incorporate flexible C:N:P stoichi-
ometry), many overlook how these correlations may change with 

adaptation to climate change. Collapsing multi-trait phenotypes, 
derived from experiments such as this, into two dimensions using 
multi-variate methods may provide a pathway for integrating plas-
ticity and evolution into ocean biogeochemical models (Argyle 
et al., 2021; Walworth et al., 2021).

Another aspect of plasticity revealed by transcriptomic analyses 
in this study was that microbial eukaryotes can be in physiologically 
different states while exhibiting similar growth rates. The ability to 
down- and up-regulate metabolism whilst maintaining a consistent 
growth rate was demonstrated by the tropical C. palmyrensis strain 
fluctuating between 21 and 29°C (25 ± 4°C; Figure 2 and Figure S4). 
Alternatively, broadscale downregulation may be a conservative 
strategy that protects cells against damage when approaching tem-
perature limits (Kültz, 2005) but requires cells to rapidly respond to 
changes in their external conditions. The response of C. palmyrensis to 
the sub-optimal temperature at 16°C (downward phase of 20 ± 4°C) 
involved cell persistence and cessation of cell division (Figure  2), 
but no major restructuring of metabolism (Figures  S3 and S4).  
Importantly, our gene expression analyses showed that tempera-
tures of upper and lower thermal growth limits determined under 
stable conditions (Table  S1) were not necessarily stress-inducing 
or fatal for cells that only periodically experienced these extreme 
temperatures. Temporary respite from high or low temperature evi-
dently allowed populations to limit cumulative stress, as was shown 
by Schaum et al. (2018) for a marine diatom in fluctuating tempera-
ture regimes. These observations are in line with field data that show 
similar composition of dinoflagellates within phytoplankton commu-
nities in the tropical Pacific Ocean despite a clear environmental 
gradient in temperature and nutrient limitation (Cohen et al., 2021), 
suggesting that regulation of gene expression is critical to plasticity 
in situ. However, thermal tolerance within any single taxon could be 
surpassed during marine heatwaves (temperatures above a season-
ally varying 90th percentile for at least 5 days at a particular loca-
tion; Hobday et al., 2018). Indeed, in mixed natural phytoplankton 
communities from the San Pedro Ocean Time-series station exposed 
to mean temperatures that exceeded multiyear upper thermal lim-
its and fluctuated ±4°C, there was a complete restructuring of the 
community (Kling et al., 2020).

At the outset of this study, we hypothesised that the thermal 
histories (i.e., differing isolation locations or laboratory selection 
regimes) and higher Topt of A. massartii HT and tropical C. palmy-
rensis would lead to greater vulnerability to temperature variability. 
However, this was not the case, with narrower thermal niche breadth 
the common factor among strains that had the most detrimental im-
pacts to growth under fluctuating temperature.

The mean temperatures used in our experiments were 20, 25, 
and 30°C, representative of temperate, sub-tropical and tropical 
ocean waters, respectively, and therefore relevant to species grow-
ing in a large proportion of the global ocean (Locarnini et al., 2018). 
Fluctuation regimes were designed to have regular intervals (2 days) 
that would not be biologically anticipated through diel light cues 
(Ottesen et al.,  2014; Vislova et al.,  2019). In general, A. massartii 
populations were more responsive to temperature shifts, moderating 
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growth rates up and down when temperatures fluctuated. Given that 
fluctuations occurred every 2 days, this exposed Amphidinium cells to 
temperatures that allowed for cell division, whereas for Coolia spp., 
temperature exposures were within a single generation. This suggests 
that different generational times could set the pace of acclimatiza-
tion relative to the frequency of environmental change—that is, fast-
growing taxa with short generation times could potentially alter their 
cell physiology at similar time scales to environmental fluctuations. 
Among freshwater phytoplankton taxa Fey et al. (2021) found greater 
support for gradual thermal acclimation that lagged behind changes 
in temperature, rather than instantaneous adjustments. Furthermore, 
mechanisms such as nutrient storage could allow large cells to “ride 
out” changes in the external environment. Considering that growth 
rates are intrinsically related to cell size (Litchman et al., 2007), our re-
sults potentially provide a unifying framework with which to test the 
implications of environmental fluctuations on microbial taxa spanning 
orders of magnitude in size.

5  |  CONCLUSION

With the ocean projected to become warmer and more variable, in-
vestigations that connect aspects of environmental variation with 
organismal plasticity and evolution are urgently needed (Collins 
et al., 2020). Here we show clear evidence that microbial eukaryotes 
diverge in their responses to temperature fluctuations depending on 
whether mean temperature is above or below Topt, with the magni-
tude of impact being mediated by their degree of thermal specialisa-
tion. Our selection of strains allowed comparison of dinoflagellate 
taxa with similar thermal traits isolated from different latitudes 
(Coolia spp.) as well as a comparison of strains from the same an-
cestor that were maintained at different temperatures (A. massartii), 
both of which showed clear differences linked to narrower thermal 
niche breadth not Topt as we hypothesised. The implications are that 
species with narrower TPCs under a warming baseline could be more 
vulnerable to changes in temperature variation, with cascading im-
pacts to global biogeochemical cycles and climate feedbacks.
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