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S U M M A R Y
Modern microseismic monitoring systems can generate extremely large data sets with sig-
nals originating from a variety of natural and anthropogenic sources. These data sets may
contain multiple signal types that require classification, analysis and interpretation: a consid-
erable task if done manually. Machine learning techniques may be applied to these data sets
to expedite and improve such analysis. In this study, we apply an unsupervised technique,
the Self-Organizing Map (SOM), to high-volume data recorded by an in-mine microseismic
network. This represents a good example of a large seismic data set that contains a wide range
of signals, owing to the diversity of source processes occurring within the mine. The signals
are quantified by extracting a number of features (temporal and spectral) from the waveforms
which are provided as input data for the SOM. We develop and implement a weighted variant
of the SOM in which the contributions of various different features to the training of the
map are allowed to evolve. The standard and weighted SOMs are applied to the data, and the
output maps compared. Both variants are able to separate source types based on the waveform
characteristics, allowing for rapid, automatic classification of signals and the ability to find
sources with similar waveforms. Fast classification of such signals provides practical benefit
by automatically discarding waveforms associated with anthropogenic sources within the mine
while seismic signals originating from genuine microseismic events, which constitute a small
fraction of all signals, can be prioritized for subsequent processing and analysis. The weighted
variant provides an exploratory tool through quantification of the contribution of different
features to the clustering process. This helps to optimize the performance of the SOM through
the identification of redundant features. Furthermore, those features that are assigned large
weights are considered to be more representative of the source generation processes as they
contribute more to the cluster separation process. We apply weighted SOMs to data from
a mine recorded during two different time periods, corresponding to different stages of the
mine development. Changes in feature importance and in the observed distribution of feature
values indicate evolving source generation processes and may be used to support investiga-
tory analysis. The weighted SOM therefore represents an effective tool to help manage and
investigate large seismic data sets, providing both practical benefit and insight into underlying
event mechanisms.

Key words: Earthquake source observations; Induced seismicity; Seismic noise; Machine
learning.

1 I N T RO D U C T I O N

Seismology, and its practical application, starts with the recording of
ground motions by sensors as the seismic waves propagate through
the sensor locations. These ground motions and their characteris-
tics are dependent on the source processes that generate them as

well as the propagation path taken from source to receiver. Study-
ing ground motion waveform records, and extracting information
from them, is a core principle of observational seismology and
either focuses on the source or the path (Aki & Richards 2002).
The volume of waveform catalogues has increased due to improve-
ments in sensor technology, and hence the ease of deploying dense
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seismic networks. In parallel, the limited capacity for manual anal-
ysis by human experts demands automated tools to manage these
data sets and extract the desired information. The objective of such
automation may be highly specific, such as the identification of
seismic waves originating from large, hazardous seismic events, so
that these events may be located and their magnitude and moment
tensor determined (Ekström et al. 2012). However, tools that assist
with more investigatory analyses are also required.

Seismic sources can be considered as forces, acting within the
rock or substrate, that generate seismic waves. The nature of these
radiated waves can be considered representative of those sources.
Waveform characteristics are dependent on many factors, such as
deformation type (e.g. shear, volume change or impact), deforma-
tion rate and amplitude, and the confining stresses at source. In
cases where the propagation path may be assumed to be constant
(or effectively so), any variations in the observed waveforms must
be due to changes in the source processes generating the waves. To
utilize these waveforms and changes in their characteristics, the raw
ground motion records need to be converted into quantifiable val-
ues that describe the waveforms, often based on aspects related to
the amplitude, frequency content and other statistical parameters.
This may be achieved through feature (or attribute) extraction or
calculation (Provost et al. 2017).

Representing a waveform data set as a set of representative fea-
tures opens up a rich set of options in machine learning or pattern
recognition techniques. Large data sets with diverse feature content
are, in general, well suited to machine learning techniques, which
can broadly be split into two categories, supervised and unsuper-
vised (Marsland 2015); the defining difference is the presence, or
lack, of data with labels. A significant body of ongoing research is
focused on using supervised machine learning in the classification
of seismic data (e.g. Langer et al. 2006; Kortström et al. 2016;
Provost et al. 2017; Reynen & Audet 2017; Tibi et al. 2019) and
the identification of phase arrivals and locating events (e.g. Zhu &
Beroza 2019; Zhu et al. 2019; Kriegerowski et al. 2019). The train-
ing sets used by the given studies make use of labels that have been
previously assigned by human experts. Supervised learning tech-
niques are therefore used to carry out a repetitive task in the manner
of a human analyst or make some testable predictions using aspects
of the data that may not be initially apparent (e.g. Rouet-Leduc et
al. 2017).

While supervised learning techniques extend the work that can
be performed by a human, unsupervised techniques provide tools to
help domain experts interrogate unwieldy data sets and hence apply
their knowledge in a more effective manner. This can often take the
form of an algorithm being applied to suggest patterns or similarities
in data that are not readily apparent, hence illuminating this infor-
mation. Unsupervised techniques provide a method of clustering
unlabelled data so that inspection enables the subsequent classifi-
cation, or application of labels, to the data. For example, Köhler
et al. (2010) applied a Self-Organizing Map (SOM) to continuous
recordings from an active volcano, identifying and labelling signals
associated with rockfall and volcano-tectonic sources. In this case,
the SOM was able to find patterns in the waveform records and sub-
sequently group similar signals together after the map was trained.
The concept of ‘training’ is often used in machine learning. In the
case of supervised techniques, where the training data are labelled,
it refers to the method learning how to apply these labels to new
data. For unsupervised techniques, where the data are unlabelled,
training refers to the identification of similar groups or clusters in
a representative data set by the algorithm, with these clusters (e.g.

a trained map) being used for the subsequent classification of new
data.

Since the original implementation of the SOM by Kohonen
(1990), the method has been used widely, in a variety of fields,
including seismology (e.g. Köhler & Ohrnberger 2008; Esposito et
al. 2008; Köhler et al. 2010; Ida & Ishida 2022). There have also
been a number of developments, improvements and modifications
to the original SOM framework. Many of these adaptations are dis-
cussed within a theoretical framework and demonstrated on small
or synthetic data sets, without thorough analysis of the results. Work
by de Bodt & Cottrell (2000) proposed bootstrapping a SOM in or-
der to test the true statistical significance of SOM neighbours while
Guérif et al. (2005) introduced the μ-SOM, a weighted, iterative
method in which the data dimensions have weights applied to them.
The evaluation of the weights is computed using a second SOM,
trained on features extracted from the component planes of the first
SOM.

One of the aims of a SOM is to find informative associations be-
tween features that may not be apparent to the human eye. Therefore,
making use of all available features would seem to be the ideal, but
dealing with data containing an unnecessarily high number of di-
mensions poses some challenges. First, and most obviously, higher
dimensional data sets will require additional computational time to
process with likely minimal added benefit in terms of the resulting
map quality or insight. Further, strong correlations between certain
features will be highlighted, potentially obscuring relations between
other feature pairs or groups that are less clear but perhaps more
meaningful. As the dimension increases, the ‘curse of dimension-
ality’ (Marsland 2015) means that the Euclidean distance becomes
a less appropriate measure of the similarity of two samples. There-
fore, it is desirable to reduce the number of features used while
minimizing any negative impact of this reduction on the clustering
results.

In this study, we demonstrate how a SOM can be used to manage
and interrogate large seismic data sets containing signals originating
from diverse sources, and hence facilitate the investigation of the
forces behind the generating sources. A variant of the SOM known
as the weighted SOM (ω-SOM) is described in which the different
features are assigned weights based on their relative contribution
to the clustering procedure. The performance of the ω-SOM rela-
tive to the standard SOM is assessed using synthetic data and two
real, large-volume data sets, separated in time. The results of the
unsupervised learning are appraised for their likely usefulness in
a practical setting. This enables us to assess how such techniques
might provide benefit in terms of time and cost savings. Finally,
the use of the ω-SOM enables greater insight into the features that
are characteristic in describing a data set and provides a means of
identification of changes to the generative source processes. This
is particularly useful when one considers that it is an unsupervised
technique, allowing it to be applied easily on new, unlabelled data
sets. The method is therefore more powerful than the standard SOM
and easier and faster to apply than more complex, supervised meth-
ods.

2 DATA

We analyse seismic data recorded by a microseismic monitoring
network installed in an underground hard-rock mine in Australia.
The in-mine instrumentation comprises an extensive array of three-
component geophones with natural frequencies of 4.5 or 14 Hz.
Event detection is based on an STA/LTA triggering and association
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scheme (Mendecki 1997). For the time period used in this study,
the number of operational sensors in the mine varied from 60 to 72,
with waveforms being sampled at 6000 Hz.

The monitoring network recorded 280 000 event entries in the
database over a 12-month period. Each entry represents a set of trig-
gered and associated seismograms, many of which are genuine mi-
croseismic events associated with the brittle failure of the rockmass
due to mining induced stress changes. A much larger proportion of
events, however, relate to anthropogenic sources, such as machin-
ery associated with the crushing and transport of ore, and blasting
activities. This has been confirmed through conventional mine seis-
mology studies: analyses that examine the source location of these
signals, source type (i.e. they are better described by single-forces
rather than moment tensors), and by the mine providing time and
location data on the various activities occurring in the mine (e.g.
rockbreakers, crushers and hydraulic hammering). Anthropogenic
sources are generally not of interest and their presence in the seis-
mic catalogue can impede seismic hazard assessments, which poses
a real and constant challenge for seismically active mines. A sud-
den flurry of these noise events can also trigger evacuation and
exclusion procedures at the mine if the sources are not correctly
classified.

3 M E T H O D S

3.1 Feature extraction

The seismic waveform event database (as above) is first processed
to extract or calculate waveform features. Some features (Table 1)
are based on straightforward, time-domain waveform characteris-
tics (e.g. maximum amplitude, ratio of mean value to maximum
amplitude), while others are based on aspects of the waveform
that require calculation, such as spectral content (e.g. peak fre-
quency of the FFT spectrum, frequency band amplitude ratios),
and statistical measures (e.g. variance of the raw-time domain
amplitude) following the first part of the study by Provost et al.
(2017). Each feature is calculated based on a single waveform
record with multiple waveform records being associated with each
event. The average of each feature across a number of seismograms
(in this study, 6) with the highest recorded maximum amplitude is
taken and used to represent the event in question. The features are
normalized to have values between 0 and 1 prior to training the
SOM.

Fig. 1 shows examples of 4 different event types in the database
together with the feature value for that event type superposed on the
histograms of distributions of each feature (Table 1) for the entire
data set. The first waveform (Event 1, blue) has high frequency,
impulsive arrivals with medium amplitude and is associated with a
mW = −1.5 fault slip microseismic event (where mW is the moment
magnitude). The second waveform (Event 2, red) is associated with
a typical blasting sequence for extending underground tunnels. The
third waveform (Event 3, green) is from a low stress, mW = 0.0
event associated with the expansion of the block cave in the mine
and has fairly low amplitude and low frequency waveforms. The
final waveform (Event 4, orange) has very low amplitude and fre-
quency waveforms and is associated with machinery in the mine.
While seismic waves associated with events types similar to Event
1 (microseismic event) and Event 3 (block cave expansion) are of
the most interest, they often constitute a very small portion of the
seismic waves recorded.

3.2 A standard SOM

Originally proposed by Kohonen (1990), the SOM has become
a popular method of unsupervised classification to visualize and
interpret large, high-dimensional data sets. It functions by mapping
a large set of high dimensional data to a lower dimensional set of
vectors (the map, usually 2-D). An attractive aspect of the SOM is
the preservation of the internal topology of the data structure.

If {x : xi ∈ R
N , i = 1, 2, ..., K } represents the input, N-

dimensional data set, we first generate prototype vectors {m : m j ∈
R

N , j = 1, 2, ..., M}, where M is determined from the size of the
map. These prototype vectors are often referred to as weight vectors
in other SOM studies but here we shall adopt the term ‘prototype’
to avoid confusion, as we reserve the word ‘weight’ in the context
of feature weights. We initialize the prototype vectors randomly,
although selecting an appropriate initial state may lead to faster
convergence (Kohonen 2013).

The input data vectors remain fixed while the prototype vectors
evolve during training so that m = m(t), where t is the training
iteration. At each training step, an input data vector xi is ran-
domly selected. The prototype vector, mb, that is nearest to xi in
N-dimensional space so that

||xi − mb|| = min
j

{||xi − m j ||}. (1)

is selected as the corresponding best matching unit (BMU). The pro-
totype vectors are updated according to the applied neighbourhood
function:

mj(t + 1) = mj(t) + α(t)hbj (t)[xi − mj(t)], (2)

where t is the iteration, α(t) is the learning rate andhbj(t) is the
neighbourhood function centred on the BMU:

hbj (t) = exp

(
−||rb − r j ||

2σ 2(t)

)
. (3)

In this expression, rb and r j are the positions on the SOM grid
of neurons b and j, and σ is the size of the neighbourhood search
radius, which is represented by a Gaussian kernel.

The learning rate, α(t), and neighbourhood function radius, σ (t)
do not need to follow a strict formulae. It is, however, critical
that they are monotonically decreasing functions that begin with
a large value and become much smaller (Kohonen 2013). Further,
these functions should initially change very slowly while the al-
gorithm carries out ‘large scale’ or ‘rough’ sorting. A number of
formulations that describe how these parameters evolve have been
used. We adopt the formulation used by Chaudhary et al. (2014) in
which

α(t) = α(0)

(
α(T )

α(0)

)t/T

(4)

while the search radius σ (t) is given by

σ (t) = σ (0)

(
σ (T )

σ (0)

)t/T

, (5)

where T is the total number of training iterations. There is nothing
particularly noteworthy of this form except that it meets the fun-
damental criteria of being monotonically decreasing, and has been
shown to be successful in training of SOMs. One attraction is that
it is simple to implement, requiring only the initial and final values
for α and σ .

The size of the map and the number of training iterations required
can vary depending on the complexity and volume of data. While
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Table 1. Description of features (attributes) used. Values are calculated for each seismogram of interest, and the six seismograms with the highest recorded
maximum amplitude are averaged to represent the event.

# Name Description

1 Lg10MaxAmp Logarithm of the maximum amplitude of the seismogram
2 Lg10MeanR Logarithm of the ratio of the maximum amplitude to the mean value of the seismogram
3 Lg10MedianR Logarithm of the ratio of the maximum amplitude to the median value of the seismogram
4 Lg10Var Logarithm of the variance of the amplitude of the seismogram
5 Lg10Kurtosis Kurtosis of the amplitude of the seismogram
6 Lg10AutoCor10 Logarithm of the number of peaks in the autocorrelation function using a width of 10 samples
7 Lg10AutoCor100 Number of peaks in the autocorrelation function using a width of 100 samples
8 Lg10N75Max Logarithm of the portion of the seismogram above 75 per cent of the maximum amplitude
9 Lg10N50Max Logarithm of the portion of the seismogram above 50 per cent of the maximum amplitude
10 Lg10N25Max Logarithm of the portion of the seismogram above 25 per cent of the maximum amplitude
11 Lg10ForwardRec Logarithm of the number of times a new maximum in the absolute value of the amplitude is counted moving forward in

time from the first sample in the seismogram
12 Lg10BackwardRec Logarithm of the number of times a new maximum in the absolute value of the amplitude is counted moving backward in

time from the last sample in the seismogram
13 Lg10FFTPeak Logarithm of the peak frequency of the FFT of the seismogram
14 Lg10FFTVar Logarithm of the variance of the FFT spectrum
15 Log10FFTKurtosis Logarithm of the kurtosis of the FFT spectrum
16 FFTR 10-30 300-500 Ratio of FFT amplitude between 10–30 Hz and 300–500 Hz
17 FFTR 40-60 600-800 Ratio of FFT amplitude between 40–60 Hz and 600–800 Hz
18 Lg10CAD Logarithm of the cumulative absolute displacement (Mendecki 2019) of the seismogram
19 T90 Duration of seismogram accounting for 90 per cent of total energy

Figure 1. Examples of waveforms and waveform features of the input data set for 4 event types, numbered and coloured blue, red, green and orange for
identification in the feature distributions to the right. Seismic records for event types 1–4, grey scale waveforms (black, dark grey, light grey, arbitrarily oriented
X, Y and Z). Smaller plots: feature distributions, with colour bars and numbers representing the normalized value of the different features for each of the four
event types relative to the full distribution histogram (stepped black line, X-axis bin sizes are 0.02, Y-axis represents the relative frequency). Features match
those in Table 1, except that Feature 2 is omitted for convenience of the illustration.

there are no strict criteria that need to be met, some general guide-
lines have been established. Each cell of the map should have an
average of 50 data entries associated with it after training (Kohonen
2013), and setting the number of cells equal to 5

√
K is reasonable

(where K is the total number of input data points, Kohonen 2001).
The number of iterations should be equal to roughly 500 times the

number of cells (Kohonen 1990). These guidelines enable users
to choose sensible initial parameters for SOMs but these can be
modified with care.

Once these initialization parameters are set, the training of the
SOM is accomplished via the following steps:

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/3/2156/6674209 by U

niversity of Tasm
ania Library user on 07 O

ctober 2022



2160 S. G. Meyer, A. M. Reading and A. P. Bassom

Step 1: Select a random data vector and find the corresponding Best
Matching Unit (BMU).

Step 2: Update the prototype vectors accordingly, using the BMU
and neighbourhood function (eq. 2).

Training of SOMs can be achieved in either batch or step mode
(Kohonen 2013), with the latter being used in the original for-
mulation and that presented above. While both approaches can be
successful, batch mode has the advantage of being faster, insensitive
to training parameters such as the learning rate, α, and determinis-
tic in that training on the same data set with the same parameters
will yield a consistent map (Fort et al. 2002). On the other hand,
while the batch mode can be very sensitive to the initialization of
the map, typically the step mode is not. We therefore choose to use
the step mode as avoiding complications associated with initializa-
tion is more important for our study and outweighs the advantages
provided by the batch mode.

The reliance of step mode on the learning rate and its evolution
during training is also considered to be manageable as long as this
parameter decreases monotonically at a reasonable rate, i.e. the
map will be able to be trained (Kohonen 1990). While a precisely
repeatable process in which the exact same outcome is reached (as
in batch mode) may be desirable in some situations, it is not a vital
requirement for this study. In this study, the trained maps are saved
and used for all subsequent analysis, so the ability to recreate an
identical outcome does not deliver any benefit. That is a repeat map
with exactly the same configuration is not required as the maps will
not be retrained (at least not with exactly the same input data and
parameters).

3.3 A weighted SOM

One of the drawbacks of the SOM is the inability to identify auto-
matically, and hence remove, irrelevant features (Ahmad & Starkey
2018). This is of most concern for data sets that are extremely large
or have a very high number of features (dimensions), when efficient
simplification of the data through removal of redundant features is
strongly desired. Guérif & Bennani (2007) proposed a solution to
this through a modification of the SOM, known as the weighted
self-organizing map, or ω-SOM. In this approach, each feature is
also assigned a certain weight, which represents the respective con-
tribution of that feature to the overall SOM cost function. Their
implementation of the weighted SOM is part of a feature selection
procedure and was demonstrated from a theoretical optimisation
perspective on a couple of synthetic data sets. However the poten-
tial insight gained from feature weights applied to some real data
was not explored. Within the weighted SOM, features with a lower
weight can be considered as contributing less to the training of the
SOM while features with larger weights are more useful. An im-
plementation of a weighting procedure is described in the context
of a weighted k-means algorithm by Huang et al. (2005). Applying
this to the SOM framework is similar in concept to the k-means
algorithm with the addition of the defining neighbourhood function
(eq. 3).

We now introduce the SOM weights, ωn with
∑

nωn = 1 and ωn ≥
0 for all n, where n = 1, 2, ..., N. The standard SOM implementation
used Euclidean distance so that the distance d between vectors x
and m is defined to be

d2(x, m) =
∑

n

(xn − mn)2, (6)

with weighting on a per-dimension basis giving:

d2
ω(x, m) =

∑
n

ωβ
n (xn − mn)2, (7)

where β is a prescribed constant parameter, discussed in more detail
below.

At the start of training, the weights are either randomized or set to
be equal; we adopt the latter approach. As with the standard SOM,
the first two steps are to: (1) select a data vector at random and iden-
tify the best matching unit (BMU) with the distance metric being
found using the weighted variant (eq. 7); followed by (2) update the
appropriate prototype vectors according to the neighbourhood func-
tion associated with the BMU (eq. 3). In the case of the standard
SOM, iteration would now commence, after potentially updating
the learning rate and neighbourhood function. In the case of the
ω-SOM, however, an additional step is introduced:

Step 3: Update weights, ωn, for the currently selected input vector,
x and its associated BMU prototype vector, mb.

The weights may be updated (Huang et al. 2005) according to:

ωn =
⎧⎨
⎩

0, if Dn = 0,(∑N
i

[
Dn
Di

] 1
β−1

)−1

, otherwise.
(8)

where

Dn =
∑

k

hbk(xn − mkn)2 (9)

and hbk is the neighbourhood function for the current BMU b and
prototype vector k (eq. 3).

We next comment on the role of the parameter β that appears
in eqs (7) and (8) and start by examining the parameter Dn. eq. (9)
suggests that if data in dimension n are tightly clustered (so that ωn

is expected to be large) then Dn will be small; while more scattered
data with a smaller ωn will correspond to a larger value of Dn. With
this in mind, we can examine the relation between ωn and Dn in
eq. (8) and the role played by β. If 0 < β < 1 this would lead to
an outcome opposite to that expected; dimensions that show good
clustering (small Dn) would be assigned small weights. If β > 1,
a smaller Dn corresponds to larger ωn and ωβ

n , which is in accord
with the idea of feature weighting. If β < 0, a larger Dn would lead
to a larger ωn, which seems counter to our objectives, however, ωβ

n

would in turn be larger again. We remark that β = 0 is the trivial
case when the weights have no impact, according to eq. (7), and
the behaviour would replicate the standard map. If β = 1 and ωn

= 1 for the smallest Dn, only feature n would contribute to the
SOM clustering and all other dimensions would be ignored. These
observations imply that the closer β is to (but larger than) 1, the
stronger the effect of applying weights will be. Features that contain
distinct clustering will contribute more to the overall training of the
map while those exhibiting less clustering may not contribute at all.
In the examples that follow, we consider only cases where β > 1.

To ensure that training occurs smoothly, updating of the weights
is performed using a moving average window. Depending on the
input data point used to update the map, it is possible that the ω for
a particular feature becomes very large (close to 1) or small (near 0).
This has implications for subsequent training steps and can lead to
situations in which ωn does not return to reasonable values (similar
to finding in a local minimum). For this reason, the actual ωn values
used in the distance calculation during iteration i are an average of
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the ωn from the previous L iterations, so that

ωn,i = 1

L

i−1∑
l=i−L−1

ωn,l. (10)

Empirically, it is found that L does not need to be particularly
large to ensure smooth training and updating of the weights. Values
of around 10 or larger were found to be sufficient, although much
greater values, on the order of a few hundred, may be preferred for
smoother training, especially if data are highly scattered or if there
are numerous features.

There already exists a variant of the SOM, also called the
Weighted SOM, or WSOM (Sarlin 2012). Although this method
shares the name with our work presented here, it differs in how the
concept of weighting is used. In our implementation, the weighting
is applied to the N different data dimensions but is constant across
all M input data vectors, so that different dimensions contribute
differently to the clustering procedure. In the variant proposed by
Sarlin (2012) the weights are applied to the M data vectors instead
so are effectively constant across the N data dimensions (for each
input data vector). The main distinction is that different input data
vectors make varying contributions, rather than the different data
dimensions. There is also a more fundamental difference between
the two methods that is worth highlighting. In the implementation
we suggest here, the weights assigned to the different dimensions
are an emergent output of the method, so that the method pro-
vides the user with additional insight into the data structure. By
way of contrast, in the version of Sarlin (2012), the user decides a
priori the weights to be assigned to the different data vectors and
then applies the method. This implies that although the weights
of the WSOM approach may help optimize the performance, the
method cannot provide additional understanding of the data and
may also suffer from possible subjective biases when the weights are
decided.

4 A P P L I C AT I O N T O S Y N T H E T I C DATA

To test the potential of our ω-SOM algorithm, to classify seismic
events based on waveform features, we generate a synthetic data set
(Fig. 2) with the following characteristics:

(i) 40 000, 6-D data points.
(ii) Data point values in dimensions 1–5 are distributed according

to 10 different normal distributions with means selected randomly
between 0 and 1 following a uniform, random distribution.

(iii) Standard deviations of all 10 normal distributions are set to
0.01 for dimension 1 and 0.05 for the other 4 dimensions.

(iv) Data in dimension 6 is distributed according to a uniform
distribution.

4.1 Comparison of the standard and weighted SOM
variants

We now compare the results of applying the different SOM algo-
rithms to the synthetic data set: the standard SOM (unweighted),
and the ω-SOM for different values of the β variable in eq. (7) (β
= 1.2, 2 and 5). This is done by training the four SOMs in parallel,
with the weight smoothing window length set to 500 iterations, as
appropriate.

The four maps are initialized with the same prototype vectors,
and the training is done in parallel so that the update on each
iteration uses the same input data point for all map variants. Fig. 3

compares the trained maps and associated unified-distance matrices
(U-matrix) for the standard SOM and ω-SOMs. The cells of the
trained maps are coloured according to the number of input data
points for which that cell is the BMU. White or empty cells represent
parts of the map for which the cells were not the nearest neurons to
any of the input and can be considered as bounding separate, well
defined clusters. Warm colours, or high values, therefore represent
areas of the map that correspond to high density regions of the
input data. The U-matrix is larger than the main map and has cells
inserted between all neighbours of the map. The value assigned to
these cells is equal to the Euclidean distance between neighbouring
SOM neurons in the N-dimensional input data space, RN . The value
of the U-matrix cells corresponding to the SOM cells is equal to
the average of the all neighbours (distances to other original SOM
cells).

All variants of the map were able to identify and reconstruct the 10
clusters (Fig. 3). This is observable through the separated regions
in both the maps (left) and U-matrices (right), where the regions
in the main maps are separated by cool colours (or white gaps),
while the regions in the U-matrices are separated by the warmer
borders. Although all variants of the map create these 10 regions
representing the clustered, input data, visually, they appear different
in terms of the configuration within the map. As the training was
done in parallel, with the same data points being used in the same
sequence for all maps, one may have expected that the resultant
maps should have the same final configuration. The observed result
is due to the fact that the introduction of β changes the calculation of
the neighbourhood function, and, subsequently, the re-arrangement
of the cells of the map as the updated neuron positions will now
differ.

The most notable difference between the maps (Fig. 3) is for
the ω-SOM, where β = 1.2, which exhibits extreme clustering
around a few neurons in each of the 10 clusters, with single neu-
rons being considered the BMU for up to 1409 input data points.
This is significantly higher than for the other maps, where a max-
imum count of 150 was observed for β = 2 and 105 and 106,
for β = 5 and the unweighted maps, respectively. This indicates
that although all four algorithm variants were able to identify the
clusters, the introduction and value of β impacts the final shape
and distribution within the map, with larger values of β leading
to behaviour closer to that of the standard SOM. This observation
is remarkable considering that the maps were initialized as equal
and that the maps were trained using an identical sequence of input
data.

4.2 The impact of the parameter, β

We now examine the effect of the different β values on the weights
for the different features to further illustrate the impact of this
parameter. The evolution of feature weights for the different variants
during training (Fig. 4) shows that the larger the value of β, the less
fluctuation there is from an equalized weight of 0.17. This applies
for the variability during training, as well as the final weights at the
end of training, summarised in Table 2.

For high β = 5, the final weights range from 0.12 to 0.18 while for
a lower β = 1.2, the final weights show a significantly larger range
from 0.00 to 0.52. The highest value corresponds to the weight for
Feature01 which the map identified as the feature containing the
most distinct clustering. Furthermore, for β = 1.2, the uniformly
distributed Feature06 has its weight reduced to zero, indicating that
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Figure 2. Synthetic data set used to test the ω-SOM algorithm. The distribution of data for the 6 dimensions is shown: Feature01 appears in clear, well defined
clusters while Feature06 has a uniform distribution.

when the map is trained, the values of this feature provide no input to
the training at all and it could have been excluded from the training
at the outset. Features 02, 03 and 04 were also assigned very low,
but non-zero values at the end of training, suggesting that they were
also identified as relatively unimportant for clustering. In contrast,
Feature05 was assigned a relatively large weight (0.37), meaning
that when β = 1.2, the ω-SOM utilized data almost entirely from
Feature01 and Feature05, effectively ignoring the others. As such,
the β parameter determines the strength with which the weights are
applied. Lower values of β amplify the effect of the weight of a
feature while if β is increased this amplification and the behaviour
of the ω-SOM tends towards that of the standard SOM.

It is worth noting that when β = 0, eq. (7) reverts to eq. (6)
and we retrieve the original, standard SOM. We also remark that
as β increases so the behaviour tends towards that of the standard
SOM. It would seem rather peculiar that the β → 0 and large β

behaviours would be the same but this can be ascribed to different
equations that control matters in these limits. When β = 0, ωβ

n ≡ 1
within eqs (7) and (8) is redundant. On the other hand, as β → ∞
so eq. (8) predicts that ωn → 1/N which reproduces the behaviour
of the standard SOM. It should also be remembered that owing
to the nature of eq. (8) any small changes in the size of β when
this parameter is close to 1 can have quite profound effects on the
weights.

4.3 Comparison of component planes

Fig. 5 compares the component planes of Feature01 (strong clus-
tering) and Feature06 (no clustering) for the four map variants. The

nature of the distribution of Feature01 for the different maps has a
similar character; each one is able to identify and delineate clusters
and matches the distribution of clusters in Fig. 3. For Feature06,
however, the component plane plots are very different. The stan-
dard SOM (unweighted) shows evidence of the cluster separation in
the upper left region, with the centre and right regions being with-
out clear cluster separation, and the component plane for β = 1.2
shows an apparently random distribution of the values with no dis-
cernible clusters or trends. The component planes for β = 2 and β

= 5 show some weak clustering, with boundaries between different
clusters generally showing a gradual transition. The distribution of
data across the different component planes for the different features
is consistent with their assigned input distributions and the influence
of the weights. For Feature01, the data in this dimension did contain
distinct clustering and all variants of the SOM are able to capture
this. Feature06, which contained no clustering, is assigned a weight
of 0 when β = 1.2 and data from this dimension in the clustering
procedure is ignored. Subsequently, there is little evidence of the
final clusters for that component plane. The standard SOM and β

= 2 and β = 5 variants still attempt to utilize the data from Fea-
ture06, so some trends are visible, although clusters are not explicitly
delineated.

The introduction of the ω-SOM and the influence of β are well
illustrated using this synthetic data set. By assigning weights to the
different dimensions of the input data, the ω-SOM is able to identify
which dimensions of the data contribute more or less to the identifi-
cation of distinct clusters. When β is low, such as the β = 1.2 case,
uniformly distributed data containing no information are assigned
a weight of 0. Using such a low value of β may seem appealing,
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Figure 3. Synthetic data test. Comparison of SOM training on the same data set for the standard SOM (top panel) and ω-SOMs for β = 1.2, 2 and 5 showing
the trained maps (left-hand column) and associated U-matrices (right-hand column).

but for real world data the importance of a single dimension can
be overemphasized, which may not be representative of the entire
data set. A moderate value for β, perhaps somewhere in the range

2–4, is recommended for use on real data as the training will not
be dominated by a single dimension and yet will benefit from the
clustered structure of data.
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Figure 4. Evolution of the weights for each feature for the three variants of the ω-SOM. Dashed grey line represents the weight value if all features had equal
weights. Details of the final weights are listed in Table 2.

Table 2. Synthetic data test weights for the different features (Fig. 2) and β

variants at the final iteration of training.

β = 1.2 β = 2.0 β = 5.0

Feature01 0.52 0.25 0.18
Feature02 0.03 0.10 0.16
Feature03 0.05 0.20 0.18
Feature04 0.04 0.11 0.19
Feature05 0.37 0.27 0.17
Feature06 0.00 0.06 0.12

5 A P P L I C AT I O N T O R E A L DATA

We now apply the ω-SOM algorithm to a real data set of 280 000
seismic records, trained on a 40 × 40 map. Initially, a 50 × 50 map
was tested, based on the 5

√
K rule-of-thumb. The map dimensions

were then reduced slightly, as the results from the smaller map were
more appealing with higher density regions. The features used in the
analysis are those listed in Table 1 and their normalized distributions
are shown in Fig. 1.

5.1 Comparison of the standard and weighted SOM
variants

As with the synthetic test, we train a standard SOM and ω-SOM
using the same initial map configuration and sequence of records
when training. In the case of the ω-SOM, the weights are initialized
to have equal distributions and we use β = 4 and L = 1000.

The resultant maps applied to the real data are shown in Fig. 6,
for both the standard (top panels) and weighted (bottom panels)
variants. Qualitatively, the two maps appear quite similar, with a
region of the U-matrix containing high values located in a corner of
the map, the lower left for the standard map and upper right for the

weighted map. There are also smaller zones of relatively high values
on the U-matrix located on the side of the map opposite to the high
value region just mentioned. The maps can therefore be regarded
as having many characteristics in common, although the relative
positions and distributions across the map differ. This means that,
even though they were initialized with the same configuration and
updated using the same sequence of input vectors, the inclusion
of the weighting aspect led to a completely different configuration
of the map. Such behaviour was observed in the synthetic case in
Fig. 3, where all variants were able to reconstruct the clusters but
in different configurations on the final map. This is indicative of
the ability of SOMs to preserve the internal topological structure
of the data and indicates that the final resultant maps are effectively
similar, even if they appear somewhat different.

The maps in Fig. 6 do not show such clear clustering and sepa-
ration as was observed during the synthetic test. This is expected
as the synthetic data set was designed to contain distinct clusters
for illustrative purposes. Although the maps of real data show less
distinct clustering, they again provide a tool with which to probe
the data set, and useful information can be inferred regarding struc-
tures contained within the data set. Section 6 includes discussion
of how this map can be utilized to realize practical benefit and how
feature weights have the potential to give insight into underlying
microseismic event processes.

6 I N T E R P R E TAT I O N A N D D I S C U S S I O N

6.1 Map validation using independent information

The databases of in-mine seismicity used in this study have
the advantage, in the context of method development, that the
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Figure 5. Synthetic data test comparison of the component plane plots for Feature01 (top row) and Feature06 (bottom row) for, from left to right, the standard
SOM, and the ω-SOM for β = 1.2, β = 2 and β = 5.

Figure 6. Comparison of SOM results for real data: standard SOM (top row) and ω-SOM with β = 4 (bottom row).

majority of records have been reviewed and classified, and ar-
rival times picked (when appropriate). The classification and
picking is performed by a combination of automated proce-
dures (with review) and trained humans. This information, in-
dependent of the SOM applications, allows us to investigate
how these already classified events are distributed across the
ω-SOM.

For the time period in question, there were 3683 genuine micro-
seismic events out of the total of 283 136 records, constituting a
mere 1.3 per cent. As these events have been independently classi-
fied, we are able to examine how genuine and discarded events are
distributed across the ω-SOM (Fig. 7). Good separation is achieved
with genuine events mostly confined to the upper right corner of

the map (the highlighted area). This region of the map also shows
a much lower density of discarded events, indicating that the map
should generally provide a successful tool to separate the events of
interest from those to be discarded.

A few isolated contrary cases occur, where events identified as
genuine are located in regions of the map otherwise dominated
by discarded events. These represent instances of misclassification
which is discussed in the next section.

6.2 Limitations

Application of the ω-SOM to the large demonstration data set il-
lustrates how the method is able to separate the majority of events
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Figure 7. Distribution of genuine seismic events (left-hand panel) and discarded signals (right-hand panel) on the ω-SOM (Fig. 6 bottom). The left-hand plot
indicates the area dominated by genuine events (highlighted by the orange domain boundary.

of interest from those that can be discarded, but, the method is not
without its limitations. Some situations are encountered in which the
SOM, be it either the standard form or a weighted variant, makes an
incorrect classification. Fig. 8 demonstrates two such cases where
this may happen. In the first example the recorded signal contains
two (or more) different sources within the same waveform buffer;
in the case shown there is a small genuine event at the start of the
buffer but a low frequency noise produced by machinery follows
approximately 3 s later, Fig. 8, top). A trained human analyst would
identify the small signal at the start of the waveform and process
it accordingly. By way of contrast, as the features provided to the
SOM are extracted from the entire waveform, the higher amplitude,
lower frequency portion may dominate. The resultant features asso-
ciated with this waveform are therefore more likely to represent the
low-frequency portion and hence the event might be classified to be
discarded. In this demonstration data set, this would have occurred
in about 1.4 per cent of all events classified as genuine. While any
loss of such genuine events should ideally be minimized, this loss is
not of major concern as small microseismic events such as these fall
below the system-wide minimum sensitivity threshold. This means
that many are routinely missed, and are not therefore included in
hazard assessments and evacuation initiation procedures.

The second example shown in Fig. 8 illustrates a less serious
limitation; here waveforms that could be discarded are classified
such that they are actually kept. This sample waveform consists of a
high frequency, energetic signal with relatively low amplitude that,
in many ways, shares characteristics with small, genuine events.
Such instances again only constitute a very small proportion of
events classified to be kept in our study, and would be unlikely to
contaminate the catalogue. At mine sites where many spikes are
recorded, they could be identified by the SOM and classified as
discarded.

A final limitation of this approach is simply that data are required
for the SOM to be trained. Situations may arise when it would
be desirable to immediately apply a SOM to a new data set (e.g.
consisting of only 1 d of data), but this may be insufficient to
adequately train the map. It would be possible to apply a map trained
on another data set if the system and environment are similar, such
as another similar mine with the same sensors. In this case, the
use of a standard SOM over a weighted one would be preferred,
as the importance of different features will be unknown and not

necessarily the same as for the data set from which the trained SOM
originates.

6.3 Practical benefit of a weighted SOM

In hard rock, underground mines, seismic monitoring has be-
come a standard tool used by engineers to monitor and quan-
tify the rockmass response to mining. In some mines, such as
our demonstration example, the vast majority of the recorded
signals can originate from machinery within the mine and can
ultimately be discarded as they contain no valid or useful in-
formation for the engineers. Therefore, these in-mine seismic
data sets require reliable classification (Dong et al. 2016) and
processing (Martinsson 2013; Gal et al. 2021) to locate seis-
mic events of interest and evaluate their source parameters and
mechanisms.

The region of the map highlighted in Fig. 7 is dominated by
genuine events. If any event, including one that is newly recorded,
is assigned to the highlighted region of the map then that event
should be considered to be potentially genuine, and proceed for
further processing and analysis, with any events outside this region
being discarded. With this rule applied, 93 per cent of the events
would be automatically classified for being discarded, allowing re-
sources to be devoted to signals more likely to contain beneficial
information.

Another practical outcome of the trained SOM is the ability
to identify quickly waveforms with similar characteristics. A user
may have a specific event or waveform of interest or concern, with
a need to find similar events. This can be achieved by simply ex-
tracting those events which are assigned to the same position on
the SOM as the event in question. A range of other useful analyses,
such as identifying events with certain characteristic waveforms
and analysing their spatial or temporal variation, is therefore made
feasible.

These results show how a SOM could be applied in real time to
identify events of interest, and discard those which are not. Practi-
cally, the difference between using a standard and ω-SOM for this
task is relatively minor as both achieve similar outcomes. However,
a weighted version with a moderately high value of β is recom-
mended, as any preferential clustering in the data will lead to an
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Figure 8. Two example waveforms for which the SOM performed poorly. The first waveform on the left contains a small, high frequency signal at the start of
the buffer associated with a genuine seismic event which is followed about three seconds later by low frequency noise from nearby machinery. The waveform
on the right contains an electrical spike which could be legitimately discarded but was actually classified to be kept owing to its features being reminiscent of
genuine events. In both cases just one (arbitrarily chosen) of the three sensor components is shown.

improvement in the final map structure. The demonstrated test re-
sults indicate that applying a SOM could lead to significant time
and cost savings as resources can be allocated to more relevant and
informative data.

6.4 Insights into evolving source processes

The application of a SOM to large data sets provides practical bene-
fit, irrespective of whether the standard or weighted variant is used.
The ω-SOM, however, provides the user with additional investi-
gatory tools with which the probe large data sets. Features with
large weights contribute more to data separation and, as such, can
be considered as representing characteristic aspects of the genera-
tion processes. Features with low weights do not contribute greatly
to this discrimination, and, therefore, are not considered to pro-
vide a helpful representation of one or more of the generation
processes.

The ω-SOM provides additional guidance when one considers
the potential evolution of source processes. In order to apply the
map to a given sequence of data, an ω-SOM is trained on data taken
from the same mine, but from a time period three years previous
(Period A). The length of Period A was selected so that the total
number of records was similar to the given sequence (Period B,
our main study), ensuring that the two maps had comparable data
density. The parameters such as size of the map and β are kept the

same for the two sets of data. The feature values were normalized
according to the minimum and maximum values of both periods
combined so that they are directly comparable.

During Period A, mine processes involved fracturing the rock in
the target area for ore extraction. In contrast, during Period B, this
fractured region is already well established. As the mining was at
different stages, both the overall state of the rockmass, and the min-
ing activities being conducted, are likely to differ between the two
periods. Period A would likely include more frequent and stronger
blasting compared to that in Period B. Moreover the process of ini-
tiating major fracturing in the rockmass during Period A could also
lead to a relatively high proportion of small, energetic microseismic
events associated with the failure of the intact rockmass. During
Period B these microseismic events will still occur, but, as the re-
gion of broken, mobilized material would be significantly larger, we
may expect a larger proportion of low-frequency sources associated
with the movement of this material. Furthermore, during Period B,
the larger volume of broken material leads to significant changes
in the the stress field surrounding the mine. This may initiate the
activation of geological structures that were previously quiet, owing
to the induced stress changes.

We now focus on the weights assigned to different features and
their relative rank, rather than the resultant maps. The final weights
after training the ω-SOMs on the two periods are compared (Fig. 9,
top panel) and are quite similar in many cases. The rank of each
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Figure 9. Top panel: histogram of final weights of the different features for the two time periods. Horizontal line indicates the average, equalized value. Bottom
left-hand panel: change in the rank of features between the two time periods, with rank 1 being the largest weight feature. Text annotations refer to feature ID
as listed in Table 1. Bottom right-hand panel: comparison of normalized feature distributions between Period A (earlier, blue) and Period B (later, orange) with
feature IDs the top corner. Feature 2 is excluded for illustrative purposes.

feature in the two periods illustrates that, similar to the values of
the weights, the majority of features experienced little change in
their respective rank (Fig. 9, lower left-hand panel). Comparing the
distribution of observed values for each feature between the two
periods shows that most underwent minor changes (Fig. 9, lower
right-hand panel, e.g. Feature 08), although some exhibited a more
dramatic shift (e.g. Feature 19) and a few others experienced almost
no change at all (e.g. Feature 11). The observed distribution of
values associated with Feature 01 changed considerably between
the two time periods although the relative importance remained
fairly high. This indicates that the source generation processes had
evolved but the feature remained useful for separating the data, as
would be the case if an existing source generation process were to
persist but change in some way.

Changes (or lack thereof) to distributions of feature values are
now considered in conjunction with corresponding changes in rank.
One may expect that if the observed values of a feature altered
markedly, so might the relative importance of that feature and that,
similarly, little change in the observed values would be accom-
panied by no more than perhaps a small adjustment in the rela-
tive importance. Feature 03 retained its high rank (1 and 2) over
the two periods and the distribution of observed values also re-
mained fairly consistent, an important characteristic of the data in
regards to separation of the source processes. Feature 19 presents
the opposite, but also foreseeable, behaviour; the feature shows
both a dramatic change in the observed values accompanied by a
major change in its importance. Other scenarios are perhaps less
predictable. For instance, Feature 01 demonstrated a considerable
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change in the distribution of observed values but remained of simi-
lar and fairly high importance, at rank 7 and 8 in Periods A and B
respectively. On the other hand Feature 06 possessed almost iden-
tical distributions in the observed values between the two periods
but suffered a relatively large change in rank, dropping from 12
to 6.

In cases where both the rank and observed values change con-
siderably, the interpretation is that some characteristic of a source
process has evolved, together with the importance of that char-
acteristic for data separation. This could occur if existing source
processes were to cease or new ones were to appear (as with Feature
19). In Period A, the source generation processes were such that
Feature 19 was found to play an important role in separating the
data. However, during Period B, the source processes had changed,
as evidenced in the observed distribution of Feature 19 values, and
in such a way so that this feature was no longer so pivotal for the
clustering. With regard to the evolving source processes, we remark
that the interpretation of the changes in the observed distributions
and weights in the context of changes to a single source process
should be treated with some caution as this ignores the multivariate
nature of unsupervised machine learning techniques such as the
SOM.

The observed variations in the feature importance (relative
weights) and feature value distributions in Fig. 9 implies that there
were changes to the source generation processes between Periods A
and B. We demonstrate this further by examining some waveforms
in more detail. Fig. 10 considers two genuine microseismic events,
one taken from each time period. The feature distributions on the
right correspond to the genuine events in the respective periods only.
For many features, the distributions of the observed genuine events
are very similar. Both waveforms shown are from mW = 0.0 events
and are recorded at fairly similar hypocentral distances (based on
the S-P separation). The vertical coloured bars in the distributions
illustrate the feature values associated with the waveforms. Both
events are of high amplitude and of relatively short duration, as
captured by Features 01 (logarithm of maximum amplitude) and 19
(T90 duration), respectively. The waveform from Period B is seen
to contain some higher frequency content, which is also captured by
the values of Feature 13. These three examples are cases in which the
expected feature value can be roughly estimated based on a cursory
visual inspection of the waveform. For many other features, such
as Feature 07, this visual technique is infeasible. The values of this
feature were extremely similar for the two waveforms shown but
they occupy different positions within their relative distributions;
the Period A event is near the middle of the distribution, while the
Period B event falls on the lower range. The feature distributions for
the genuine events are generally fairly similar, but Feature 04 is the
clear exception to this. The relative consistency of the distributions
of some Features such as 01, 03, 13 and 19 indicate that the changes
are likely not due to variations in the source–sensor distributions
or distances, but actually represent changes to some aspects of the
source generation processes. If the sources were suddenly much
further from or closer to the sensors, for example, one could expect
a dramatic change in these features; at larger distances amplitudes
would be lower and higher frequencies would have been attenuated
out.

The fact that minor changes in the distributions of some features
are observed indicates that there are more subtle variations within
the different seismograms. For example, Features 08, 09 and 10
count the proportion of samples within a seismogram that are above
0.75, 0.50 and 0.25 of the maximum amplitude, respectively. For the

seismograms shown (which were for events of the same magnitude,
recorded at similar distances), these three features are all higher for
the Period A event than the Period B event. This can be deduced
from the waveform, as the Period B event contains clear, impul-
sive arrivals with relatively little scattering, and few other samples
that have relatively high amplitude. Conversely, event A has periods
directly following the P- and S-wave arrivals during which the am-
plitude remains fairly high and subsequently records larger values
for these three features. In this way, these three features may be con-
sidered as proxies of the amount of scattering within a waveform. A
comparison of the distributions of these features shows that, overall,
period B events report lower values for these features. The Period
A event is situated in the centre of the distributions of these three
features and can therefore be considered quite representative. The
Period B event, while slightly on the lower end of values according
to the Period B distribution, would be on the much lower end of the
distribution for Period A. This is interpreted that the events in pe-
riod B exhibit less scattering in the waveforms than those in Period
A. Considering the distribution of observed sources in these peri-
ods, the Period A example was taken from an event associated with
fracturing of the rockmass on the perimeter of the region of broken
material. The events here are fairly energetic but, due to their prox-
imity to the broken material, can exhibit high levels of scattering
immediately following the arrivals. On the other hand, the Period B
example waveform is associated with slip on a geological structure
which was not active during Period A due to the induced stresses
at that time being insufficient to initiate sudden slip. As the event
originated on this geological weakness remote from the excavations
and regions of broken material, the waveforms are much cleaner
and exhibit very little scattering.

Fig. 11 repeats this exercise but for two events that were classified
as discarded. The exact source of the events is unclear, although the
Period A event is likely due to some mechanical noise or machinery,
while the Period B event is perhaps associated with the movement
of loose, broken rock. In this case, we see that the observed distri-
butions (which are for the discarded events only) are much closer
to the overall distributions (Fig. 9), as these discarded events con-
stitute the majority of recorded signals. The feature distributions
of these discarded events generally contain larger differences than
those for the genuine events, indicating the there is more distinct
variability in the sources responsible, while the genuine events con-
tain more subtle changes. The most apparent case for this would
be an identifiable source of a noise (e.g. a specific piece of equip-
ment in some fixed location) becoming active, or ceasing. This
would result in dramatic changes in the feature distributions, as
observed, leading to changes in feature weights evaluated by the
ω-SOM as the different features contain relatively more or less use-
ful information with the appearance or disappearance of specific
sources.

These observations have implications for the choice of features
when performing new or updated studies within a region or domain.
Since the nature of the sources can vary, it should not be assumed
that that a SOM trained on one period will necessarily be applicable
to another. The weighted variant of a SOM therefore has additional
utility for guiding expert decision making in understanding whether
a shared model is appropriate or if the characteristics of two par-
ticular data sets are moderately similar, but include an evolution in
source processes.

The ω-SOM has been shown to identify which features con-
tribute more and which less to the clustering process, allowing for
the poorly performing features to be removed which can lead to
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Figure 10. Example waveforms from two mW = 0.0 genuine seismic events, one from Period A (top, blue) and one from Period B (bottom, orange); waveform
component description provided in caption to Fig. 1, the corresponding ω-SOM for Period B is shown in Fig. 7. The associated features are plotted as vertical
bars along the distributions for genuine events from the two times periods. Feature values are normalized using the complete set of all events from both periods.

Figure 11. Example waveforms from two discarded seismic events, one from Period A (top, blue) and one from Period B (bottom, orange); waveform
component description provided in caption to Fig. 1, the corresponding ω-SOM for Period B is shown in Fig. 7. The associated features are plotted as vertical
bars along the distributions for genuine events from the two time periods. Feature values are normalized using all records, the same as in Fig. 10.

potential computational cost savings. However, keeping all features
can be beneficial as the importance of features may change as new
data become available, as shown in Fig. 9. The question whether
features with little contribution should be kept or not depends on

the use case. If one has a very large data set where the sources are
believed to be fairly constant, it may be preferable to train an ω-
SOM on a small, representative sample of it. Features that perform
poorly can be identified and removed before retraining on the entire
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data set. In other cases, where one believes there may be variations
in the source processes, it is preferable to keep all features. Gen-
erally speaking though, training of the SOM is done very quickly,
so unless the data set or number of features are incredibly large,
seeking computational time improvements by reducing the number
of features is likely not required.

7 C O N C LU S I O N S

We have applied the weighted variant of a SOM algorithm to large
seismic data sets. Our case studies use signals recorded in an un-
derground mine that arise from a diverse set of microseismic and
anthropogenic sources. The previous appraisal of the data by human
analysts allows for verification of the unsupervised classification.
The training of the SOM utilizes waveform features that are quick to
extract from, or calculate using, the recorded waveforms, allowing
it to be applied quickly and in real time, on data sets of significant
size.

Results from the standard SOM are compared with the weighted
SOM variant. When data features show reasonable separation and
the ability to be clustered, the weighted SOM leads to improved sep-
aration of clusters as it assigns less weight to features that reduce
clustering. Identification of the features with the lowest weights al-
lows for these redundant features to be removed, as appropriate, in
future classification. This is of practical benefit in cases where a very
large number of features are available but it is found that the data
can be successfully clustered using a subset of these features. Once
the SOM is trained, a user can utilize the map to quickly find subse-
quent signals with high similarity to previously identified clusters,
or unique signals of which only a few are present. In the demon-
stration example, the large number of anthropogenic signals can be
discarded, enabling focus on the genuine microseismic events. This
provides expert users with a practical and unbiased tool to interro-
gate a data set, allowing them to gain a greater understanding of the
content and underlying structure.

The weighted variant of the SOM can be used for deeper investi-
gation into the features characterizing a data set, providing insights
into the underlying event generation processes. Features with large
weights contribute more to cluster separation and can be consid-
ered more representative of the source generation processes. This
assists with the identification and characterization of specific source
processes occurring within a complex domain.

Applying an ω-SOM to two data sets taken from the same do-
main, but from different time periods, provides a means of iden-
tifying the evolution of the processes occurring within that do-
main. Significant changes in the importance of features and dis-
tribution of feature values suggests fundamental changes in the
underlying source mechanisms such as specific aspects of pro-
cesses changing, new processes becoming established, or processes
ceasing.

Unsupervised techniques such as the ω-SOM are powerful meth-
ods that capture the complex and multidimensional nature of such
data sets, in which relations between different processes and fea-
tures are not evident to the human eye. Recent studies utilising
machine learning in seismology often focus on advanced, super-
vised techniques. These are complex and often somewhat opaque
in their behaviour and can sometimes seem to act like a ‘black box’.
We demonstrate that unsupervised techniques still deliver signifi-
cant value in the study of large and complex data sets, by not only
achieving practical outcomes such as event classification, but also

provide the user with the tools to interrogate the data set. Further-
more, this is done in such a way that can be easily visualized and
interpreted using the resultant maps, U-matrices and component
planes. Large and intricate data sets are presented in a manner that
raises questions that the expert may not have considered, ultimately
revealing properties of the data that might otherwise have remain
hidden.
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