UNIVERSITY of
TASMANIA

University of Tasmania Open Access Repository

Cover sheet
Title
A Fast VLSI Implementation of a FIFO Queue

Author
Sale, AHJ, Danielle Berry, Headlam, A, Loane, RK, John Parry, Wang, TK

Bibliographic citation
Sale, AHJ; Berry, Danielle; Headlam, A; Loane, RK; Parry, John; Wang, TK (1987). A Fast VLSI

Implementation of a FIFO Queue. University Of Tasmania. Conference contribution.
https://figshare.utas.edu.au/articles/conference_contribution/A_Fast VLS| _Implementation_of a FIFO_Queue/.

Is published in:
Copyright information
This version of work is made accessible in the repository with the permission of the copyright holder/s under

the following,

Licence.

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections

University of Tasmania

Private Bag 3

Hobart, TAS 7005 Australia

E oa.repository@utas.edu.au CRICOS Provider Code 00586B | ABN 30 764 374 782 utas.edu.au

http://doi.org/
http://rightsstatements.org/vocab/InC/1.0/
mailto:oa.repository@utas.edu.au
https://figshare.utas.edu.au
https://utas.edu.au

1 . F3

Mi on VLSt 1987
Malbourne, 8-10 April, 1987

A Fast VLS| Implementation of a FIFO Queue

D. BERRY, A. HEADLAM, R.K. LOANE, .). PARRY, T.K. WANG
{Honours) Students, University of Tasmania
AH.J. SALE

Professar of Information Science, University of Tasmania

SUMMARY The paper describes a hardware implementation in nMOS of a first-in, first-out (FIFO) quene, The
implementation has independently operating insertion and extraction logic which is capable of achieving high speeds of less than
200ns per operation, and may be entirely contained on a single chip. A regular cellular structure is described which is capable of
extension both in the direction of wider queued items and in the direction of maximum queus size. The implementation was carried
out at the University of Tasmania by the first five authors under the supervision of the last-named anthor.

1 CONCEPT

There is an increasing trend for algorithms to be implemented in
hardware as integrated circuit technology achieves higher and
higher densities of active components and is thus capable of
implementing more complex structures. Generally the besi imp-
lementations are derived from structures with a high degree of
regularity, The implementation described in this paper is that of
a first-in, first-out (FIFQ) queue in silicon, The design is based
on a regular array of cells each of which communicates only
with its near neighbours.

A intsgrated circuit implementation of a queve is capable of
higher speeds than can be obtained using a conventional
microprocessor and memory programmed to implement a
queue, High speed queucing can be useful in some applic-
ations, for example in chemical experiments and satellite
communications. In some of these cases the data arrives at a
very high burst rate; the consuming process may be capable of
matching the average arrival rate but not able to handle the peak
arrival rate during the burst. The reverse situation is also
possible. Buffered high-speed channels (or pipes in Unix
parlance) between processors are atso useful simply to smooth
out production and consumption rates betweeen different
processes.

2 STRUCTURE

The FIFO queue described is based on a concept presented by
Al-Khalili & Ali (1986). This concept itself is derived from
earlier work on systolic quenes by Leiserson (1979). The initial
stages of our design closely parallels a description in the paper
by Al-Khalili & Ali and is presented below. It is emphasized
that this structure is described at a conceptual level; there is
scope for implementation variations.

The queue is composed of two extended vectors of cells L; and
R, (Left and Right), where i = 1 to M. Each cell may hold a
single item of queved data. Besides the queue data each cell has
a fulllempty status derioted by SL; and SR; for the left and right
cells respectively. Each cell L, is capabie of transferring data to
the cell L, ; or to the cell Ry h cell R, is capable of trans-
ferring data to the cell R, ,. This ce]luﬁar interconnection
structure is shown in Figure 1.

In our design we further postulate the existence of a
synchronous clock signal distributed to all cells, and assume
that all cells asseme a new state and data at the clocked instant,
dependent on their previous state and that of their immediate
neighbours, If data is transferred out of a ccll it assumes the
empty stale; unless specified otherwise below a cell retains its
previous state and data (if full).

96

Extract

Ingert

Figure 1. Interconnection of gueue cells.

If a full right cell R; finds an empty neighbour cell below it
(R, ;) then the data moves downwards on the next clock cycle.
The extraction of an item from the front of the R vector makes
the head cell empty. On successive clock cycles an empty cell (2
hole) moves up through the full part of the vector until it reaches
the tail of the queued items in the R vector. Since items cannot
be extracted from the head of the queue on successive clock
cycles (see below for discussion of peak extraction rates), each
hole is surrounded by full cells as it moves up the R vector of
queued items.

If a full left cell L, finds itself above the tail of the right queuc
then its data moves across from the left cell L, to its corres-
ponding right cell R;. From the property deduced above, the tail
of the R vector is marked by both R, and R;, having the empty
status. However, if this vector transfer cannot be carried out
then a full left cell L, will move to occupy an empty left
neighbour cell L, | on the next clock cycle, moving up in the L
vector.

Consider first the case where the number of queued items N is
less than M. With this organization & queue from which no
gxiractions have been made for some time will be in a steady
state with the right vector holding queued items from Ry 10 Ray.
This sitzation is shown in Figure 2. If an extraction is made,
the head item is moved and the vacancy moves up the right
vector (like a hoie in semiconductors) until it reaches the tail and
merges with the rest of the empty cells at that point. If an
insertion is made, the resulting ful left cell moves up the Jeft
vector until it reaches an index value just above the jast full cell
of the right vector, and then it transfers across to the right
vector.

Key
[emptycan

full cell

Figure 2. Steady state following no terminal
activity for an extended period.

The maximum sustainable exiraction rate is achieved if an item
is extracted every two clock cycles. Data cannot be extracted

faster than this, for if data is removed from celt R, on clock

cycle 1, then on cycle T+1 the cell is empty waiting flor transfer
from L, or R,. If this occurs then the data can be removed on
cycle T+2. In an infinitely large system, the R vector would be
populated by alternate full and empty cells all moving syn-
chronousty in the direction of smaller indexes {(downwards).

Since the maximum transfer rate of data up the L vector is also
achieved pnder the same conditions, the maximum insertion rate
is the same: one insertion every two clock cycles. This rate can
be sustained under conditions of minimal buffering as well as
maximal buffering, for data takes only two cycles to transfer
from the input to the output if the queue is empty. A snapshot
of the resulting steady state is shown in Figure 3.

Key
(] empycen

full cell

Figure 3. Steady state at maximum traffic rates.

97

In the above case the non-infinite extent of the vectors can be
ignored since no data is able to reach the end of the vectors.
However, consider also the case where the number of queued
items is greater than M. In this case it is necessary that
appropriate end conditions are provided to the last cells Ly, and
Ry The cell L, must be unable to transfer its data upwards
ur?ﬁer any conditions and thus it must be provided with bound-
ary conditions corresponding to a full cell Ly, ,. The right cell
Ry must appear to be past the il of the night vector if it is
empty, so the simulated cell Ry, above it must appear to be
empty. (Due to a variation in the design, the tmplementation has

L1 = Rpipr = By

Under these conditions and light load all cells may be filled
giving the quene a maximum capacity of 2M items. However,
if maxirnum data transfer rates are being achieved then half of
the cells must be empty, 50 the maximum queue storage under
heavy load is M items.

The boundary conditions at the exiemnat end of the queue are
also easy to derive. Data may be insented if L, is empty. Data
may be extracted if R, is full.

Sometimes there is a necessity to determine whether the queue is
empty (no stored items) or full {no more items can be accepted
unless an extraction takes place). An empty queue may be
signalled if all of the cells L, L, R, and R, ars empty, for
under these conditions no datz is in transit to the cutput. A full
queue cannot be extemnally detected except by observation of the
input cell L,. If it remains full for 2M cycles, the queue is full.
This caters for the case of an empty *hole’ travelling through
both vectors from the output to the input. Fortunately a require-
ment to determine whether a queue is fuli is not ofien required
and perniission to insert is usuaily sufficient.

The propertics mentioned above can be proved from an analysis
of the states of the queue, but this proo}) is not presented in this
paper as it is oriented to the description of a particular imple-
mentatiorn.

Deviations from the previously described queus

The description of the queue structure presented here gencrally
follows the presentation in Al-Khalili & Ali (1986) but has a
few deviations. In particular their description assumes that
extraction of data requires two active clock cycles. On the first
the queue is interrogated to see if data will be available on the
next clock cycle. This is possible if any of the cells R, L, or
R, are full. In the first case data is waiting at the head of the

‘qieue and in the second and third cases it will be mansferred

there during this clock cycle. Data is then removed on the
second clock cycle.

Their description also requires two active clock cycles for
insertion. In this case the queue is interrogated to see if the
insertion cell will be empty on the next clock cycle. This is
assured if L, is empty (since it cannot be fitled in this cycle) or
if L, is empty. If there is data in L, it may move across R, or
move up to L, during this cycle.

There are also two esrors in the paper. It states “if dawa cannor
be pushed the queue is completely full; if dara cannot be
popped, ir is empry.” The first of these two assertions is not
comect. It is passible for the queue to have been completely
filled and for some exiractions to have taken place subsequently
so that it is no longer full. However it will take a time of the
order of 2M cycles for a kole to travel back through the queue 1o
the start and only then will it be possible to insert more items.
Detection of a completely full status thus requires a global view
of the structure or alternatively a finite-state machine which
monitors events at the input and output.

The second error requires analysis of the operation. (A paper
by AH.J.Sale is in preparation proving properties of the
systolic array.) Al-Khalili & Ali assume that the queue never
has two consecutive holes below the tail on the right; however
the description provided allows situations similar to that shown
in Figure 4 to occur. The order of items C and D are reversed
on extraction. This error was resoived by allowing 1.1 to

move to R; under the condition that L, R; and R;, | are ail
empty.

Figure 4. Illustrating loss of ordering.

3 Basic DESIGN LAYOUT

The design of the queue was based on three major components.
If the FIFO queune is required to puffer N-bit data words, and to
have a total capacity of 2M words, the requirements for each of
the components are:

+ The interface cell, which takes the pop and push signals
from the outside world and provides the bottom control cell
with the correct values for SL,, and SR, It also takes the
outputs SL; and SR, from the bottom control cell and
provides two signals to the outside world, push done and
data available. Omly one of these cells is required.

* The control component, which consists of M control cells,
each of which remembers the values SL, and SR, takes the
four signals SL,_ ;. SL;,;, SR; ; and SR;,, from the
neighbouring control cells and provides the signals:

- ‘movely,into L,

- ‘moveL;inioR/’, and

- ‘moveRy;into R.

Note that n:stﬁving the double hole problem allows both the
signais ‘move L, ; into L, and ‘move L into R;’ to be
simultanecnsly present. All the cells are identical except for
a slight modification to the bottom cell.

» The memory component, which consists of an M x N array
of memeory cells. Each of these cells holds both the L; and
R, bits in dynamic memory. Five transmission gaic paths
are required in each cel); three controlled by the three signals
from the contro! cell together with two data refresh paths.

A layout of cells to impiement the queue is shown in Figure 5.

Controt cel
5L SR S+ SR+

Layout of cells on chip

© Rk R
¢ B 2

e
0 :
e e e o

W B H EJ | H 2
C bRt AN
C HMEMPHEMBHEMEMS
+++=+ emory cell
U]
=
RD

Dets Gutput

Figure 5. Layout of cells on chip

98

Once the logical interface between the cells was decided, a
program was written to simulate the Jogical design of the amray,
in order to fully test the logical design of the chip. At this stage
one of the previously described design errors was detected: that
illustrated 1n Figure 4 which allows the order of quened items to
be lost due io the introduction of ‘double holes'.

4 DESIGN CONSIDERATIONS
4.1 Overall Design

As the authors already had experience in designing chips using
nMOS technology, and were still gaining prototyping experience
with CMOS designs, it was decided 10 use nMOS. It was also
decided that the & = 2.5um aWa fabrication facility would be
used through the University of New South Wales MPC service,

There was another major decision at the start of the project. 1t
was possible to preserve the logical structure of the queue as
described carlier, where all the left bits are on one side of the
chip and all the right bits on the other, The other possibitity,
which was chosen in the final design, is to interleave the left and
right bits as was shown in Figure 5. A separated design would
have required the two sides to be connected at each row,
resulting in a river crossing the array, requiring enc wire for
each bit of data width and thus resulting in a waste of space for
the N wires and their separations.

To simplify the design and avoid race conditions developing in
the control cell, a two phase globally clocked design was
chosen. Phase one ($,) would be used for the memory cell
refresh and next-state computations while phase two (§,) would
be used to change the memory ¢ell values and the corresponding
empty/full bits in the control cells.

4,2 Memory Cell Design
When designing this cell, a number of decisions had to be made:
¢ Would static or dynamic storage be used?

+ How would the layout of the memory cell fit with the layout
of the control cell, which would be very much larger in
arca?

T dynamic storage was used, how would it be refreshed?

Due to a significantly smaller requirement for chip area per cell
bit, dynamic storage was chosen, and a globat clock signal was
used to refresh it ‘When considering the cell layout, it was
decided to use a layout which had a reasonably long edge facing
the control cell with the other edge being very short (z cell
which was deep in the propagation direction but narrow trans-
versely), This resulted in a cell design where the three data
paths were stacked on each other, with wires running in parallet
as shown in Figure 5.

When considering the design layout, it was found that it was
possible to economize on cell area by inverting the data bits
every time they are transfered from one cell to the other. The
fact that the bits are inverted on every move is not a problem as
the data words will always be moved an even number of times
before they emerge at the far end of the quene. For every left
side cell the data enters, it must enter exactly one right side cell.

4.3 Control Cell Design

Two different logical designs were suggested for the control
cell. One required all the data coming inse a cell pair L; and R,
to be controlled by a single control cell (which we named the z
design) and a second where the control cell controls the paths
benween the i~1 and i pairs (which we named the U design).
The U design has the added complexity that the cell which
controls new data coming into a memory bit is not always the
control cell which remembers if there is valid data in the
memory bit. By a majority decision the Z design was chosen,
and no further explorations of the U design were undertaken.

—{* Ris Lisg

D
l ..'].
-

-1 i Ry I LN

7 contra! design U control design

Figure 6. Alternative control cell paths

Having decided to use the Z design for the control cell, the next
decision was whether to use discrete custom logic designed by
hand or whether to use a programmed logic array (PLA). Due to
time limitations constraining the studeats, it was decided to use
2 PLA, and the following equations were used to produce the
single contre] cell. (Note: All values default to false if not
specified.)

if Ri, 1 n-R; then /* Move right bit down */

{RD := oue; NextR := true}

if Lj~n~Rjn "Ry
then /* Move left bit right */
{LR := true; NextR := true}

i ~LiaL g A~Rjn~Rj, g ARy g _
; ther /* Move lower left bit up and right */
{LU := true; LR := true; NextR := true}

IoDialiog AR VR A (-Ria Ry g AR)
then /* Move lower left bit up *
{LU := true; NextL := true;}

if RiaR; 4 them /* Can't move the current right bit *
{NextR = true;} .
if LinLli g then /* Can't move the current left bit */

{Nexil := true;}

‘With the bottom control cell, the third and fourth equations must
be changed as the data is required to enter the chip and not be
transferred right by a prior but non-existent control cell. These
equations become:
if ~Linli A -Rin Ry
then /* Move fower left bit up and right */
. {LU := true; LR := true; NexR :- true}
if ~Lialiga-{~-Ria-~Riq)
them /™ Move Jower left bit up */
{LU = true; Nextl. ;= true;}

The sizes (1% = 2.5 um) of the final prinutive ceils are:

Memory cell
80534
custom design
4 pull-up transistors and 9 enhancement fransistors

Controf cell
160 % 200 A
PLA design

98

For estimating purposes, a single row of an 8-bit quene would
occupy a chip area of: s

160 x (200 + 8 x 53)A = 400um x 624pm,
A 6mm chip could contain 9 columns each of 15 rows, resulting
in a queue capacity of 2 x 9 x 15 = 270 bytes. With optimization
of cell design, this could easily be doubled to say 500 bytes per
chip.

5 TESTING PROCEDURE

Simulation of the chip was carried out using a bottom up
approach where the primitive cell structure was simulated using
a special purpose program, then the major components were
simulated using a commercial electrical network simulator,
foliowed by a few simuiations of the full chip.

The computer time required to Simulate a primitive cell was
small, taking less than a minute for a single memory cell and 2
couple of minutes for the control cell. However, when
simulating the larger components this time increased by a factor
of between 10 and 20, with a simulation of the fuil chip taking
about an hour to complete on the Department of Information
Science's VAX-11/750.

The computer sirmulations were run at a simulated rate of 5 MHz
with a two phase clock with reasonable gaps between the two
phases where both signals were low. "At this rate it wouid he
possible to insert and extract data at the rate of one item every
200ns. With care it may be possibie to approach independent
peak insertion and extraction rates of one item cach 100ns. At
the date of writing a fabricated chip kad not been received for
testing and verification of these sstimates,

6 APPLICATIONS

The quene described is a hardware implementation of a FIFQ
queue. It will probably not be cost competitive against a ded-
icated conventional microprocessor and memory with a software
implementation of a FIFO queue, where this can be used.

The applications envisaged for this design are:

+ Very high speed queueing, where the peak data arrival rates
or peak data extraction rates exceed that which can be
achieved by a programmed loop (say to100 kwords/sec) or
direct memory access techniques (say to 1 Mwords/sec).
Such situations may arise in commmunications circuits,
such as satellites, and in high-speed message-passing links
between concurrent distributed muliiprocessors such as a
transputer (INMOS, £985) network.

» On-board a chip, where a small but high speed queue is
required to decouple two independently operating devices
producing and consuming data.

7 FURTHER WORK

A CMOS implementation of the queue is planned, together with
an optimization of the chip area occupied by each row of the
queue. A paper analysing the theory of the FIFO queue, together
with similar derived structures, is in preparation.

ACKNOWLEDGMENTS

This paper describes a collaborative design effort by students
enrolled in the Fourth Year (Honours) VLSI Design unit offered
by the Department of Information Science at the University of
Tasmania, under the supervision of Professor A.H.ISale, The
Woritcs was carried out with the assistance of the following
grants:

= Australian Research Grant F85150571,

+ aUniversity of Tasmania Research Grant, and

= an Australian Computer Research Board Grant

The comments of members of the University's Silicon Design
Group and mermbers of staff of the Department of Information
Science are gratefully acknowledped, together with the assist-
ance given by Integrated Silicon Design Lid and the University
of New South Wales.

REFERENCES

Al-Khalili AJ. & Ali Z (1986). A Fast Systolic FIFO Queve.
VLS! Systems Design, May 1936, pp76-80.

Leiserson, C.E. (1982). Area-Efficient VLST Computation.
MIT Press, Cambridge, MA.

INMOS (1985). Transputer reference manual. INMOS Ltd,
Bristol, UK.

100

	University of Tasmania Open Access Repository
	Cover sheet

