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ABSTRACT 

Spatial professionals are required to handle an increasingly wide range of positioning 

information obtained from various sources including terrestrial surveying, Global 

Navigation Satellite System (GNSS) observations and online GNSS processing 

services. These positions refer to a multitude of local, national and global datums. A 

clear understanding of the different coordinate systems and datums in use today and the 

appropriate transformations between these is therefore essential to ensure rigorous 

consideration of reference frame variations in order to produce high-quality positioning 

results. This paper provides a compendium for spatial practitioners, reviewing the 

concepts and definitions of coordinate systems and datums in the Australian context and 

outlining the practical procedures for coordinate transformations in Australia, in relation 

to both horizontal and vertical datums. The differences between Cartesian, curvilinear 

and projection coordinates are explained and practical solutions for the required 

coordinate conversions and transformations are presented. The computational procedure 

for the transformation between orthometric and ellipsoidal heights in the absence of 

geoid undulations referenced to a regional ellipsoid is outlined. 

INTRODUCTION 

The increasing use of Global Navigation Satellite System (GNSS) technology, online 

GNSS processing services and Geographic Information System (GIS) analysis tools 

requires spatial professionals to be familiar with a wide range of positioning 

information derived from various data sources and referenced to different coordinate 

datums. Often, several datasets need to be integrated for spatial analysis tasks, e.g. in 

order to investigate environmental change, manage national security and contribute to 

hazard and emergency management. High-quality coordinate transformations have 

become essential in practice to ensure that dynamic datum effects caused by tectonic 

plate motion and other geophysical phenomena are considered appropriately and the 

high precision and/or accuracy of the observations is not sacrificed during the 

transformation process. 

This paper reviews the concepts and definitions of coordinate systems and datums in the 

Australian context. It is intended as a compendium for spatial practitioners, identifying 

and detailing the procedures necessary to perform coordinate transformations in 

Australia, in regards to both horizontal and vertical datums.  

The following distinction is made between the terms conversion and transformation. A 

conversion describes a change of the coordinate system and does not include a change 
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of the datum, e.g. a conversion between Cartesian and curvilinear coordinates relating to 

the same datum. A transformation describes a change of the datum and does not include 

a change of the coordinate system, e.g. a transformation of a set of coordinates given in 

a particular coordinate system between two datums. While a conversion can be 

interpreted as a direct calculation (i.e. a one-to-one relationship allowing for round-off 

errors), a transformation is a best estimate. In practice, both often have to be used in 

tandem since positions given in a certain coordinate system in Datum 1 are required to 

be transferred into positions given in a different coordinate system in Datum 2.  

SHAPE OF THE EARTH 

The shape of the earth is defined by its gravity field and not its topography. The gravity 

field is characterised by equipotential surfaces, i.e. surfaces of constant potential that are 

always perpendicular to the direction of gravity. The true shape of the earth is therefore 

known as the geoid, defined as a specific equipotential surface that best approximates 

mean sea level (MSL) on a global basis. It should be noted that MSL differs from an 

equipotential surface by up to about a metre due to effects such as atmospheric pressure, 

temperature, prevailing winds and currents, and salinity variations. The geoid is 

computationally very complex since density variations in the earth’s interior cause it to 

be a very irregular surface. 

It is therefore necessary to approximate the geoid by a surface that can efficiently be 

handled mathematically. For small scale mapping applications, a sphere is sufficient but 

generally an ellipsoid of revolution (sometimes also called spheroid) is adopted in order 

to consider the flattening of the poles caused by the earth’s rotation. This ellipsoid is 

generated by rotating an ellipse around its minor axis and can be defined by the length 

of its semi-major axis (a) and its semi-minor axis (b) or, alternatively, the inverse 

flattening (f
 -1

). Over the years, many ellipsoids of various shapes and sizes have been 

defined in order to approximate the geoid, either locally or on a global basis (Fig. 1). 
 

 

Fig. 1: Several ellipsoids approximating the geoid (adapted from Iliffe & Lott, 2008). 

In Australia, spatial professionals will generally encounter three ellipsoids. The 

Geodetic Reference System 1980 (GRS80) and the World Geodetic System 1984 

(WGS84) ellipsoids are both global earth models. The former has been widely accepted 

as international standard, while the latter is the nominal reference ellipsoid used by the 

Global Positioning System (GPS). These ellipsoids are geocentric, i.e. their origin 



V. Janssen 

699 

 

coincides with the earth’s centre of mass (including the earth’s oceans and atmosphere), 

called the geocentre. Prior to the advent of space geodetic techniques such as GPS, it 

had not been possible to realise geocentric coordinate systems in practice. 

Consequently, the Australian National Spheroid (ANS) was designed as a locally best 

fit to the geoid in the Australian region. The ANS is non-geocentric, exhibiting an offset 

of approximately 200 metres from the geocentre. Table 1 lists the defining parameters 

of these three ellipsoids. 

Tab. 1: Parameters of ellipsoids used in Australia. 

Ellipsoid Semi-major axis a (m) Inverse flattening f
 -1

 

ANS 6,378,160.0      298.25 

GRS80 6,378,137.0      298.257222101 

WGS84 6,378,137.0      298.257223563 
 

The GRS80 and WGS84 ellipsoids only exhibit a very small difference in the flattening 

parameter, affecting 3-dimensional coordinates at the sub-millimetre level, and can 

therefore be assumed identical for most practical purposes (ICSM, 2002). 

COORDINATE SYSTEMS 

A coordinate system is a methodology to define the location of a feature in space. On 

the ellipsoid, positions are either expressed in Cartesian coordinates (X, Y, Z) or in 

curvilinear coordinates (φ, λ, h), i.e. geodetic latitude, longitude and ellipsoidal height 

(Fig. 2). 
 

 

Fig. 2: Ellipsoidal coordinate systems. 

In a geocentric, rectangular Cartesian coordinate system the Z-axis coincides with the 

mean position of the earth’s rotation axis. The X-axis passes through the intersection of 

the Greenwich meridian and the equator, and the Y-axis completes a right-handed 

coordinate system by passing through the intersection of the 90°E meridian and the 

equator. 

In regards to curvilinear coordinates, geodetic latitude is defined as the angle in the 

meridian plane between the equatorial plane and the ellipsoid normal through a point P. 

Geodetic longitude is measured in the equatorial plane as the angle between the 

Greenwich meridian (X-axis) and the meridian through a point P, while the ellipsoidal 

height is measured from the ellipsoid surface along the ellipsoid normal. It is important 

to note that a single ground point can have different geodetic coordinates depending on 
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which ellipsoid the coordinate system refers to. Curvilinear coordinates can easily be 

converted into Cartesian coordinates by (e.g. Vaniček & Krakiwsky, 1986): 
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where ν represents the radius of curvature in the prime vertical: 
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The quantities a and e
2
 = 2f – f

 2
 denote the length of the semi-major axis and the 

squared first eccentricity of the ellipsoid, respectively, defining its size and shape. The 

inverse conversion is not as straight forward and requires iteration (e.g. Torge, 2001): 
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However, since ν >> h, the iteration converges quickly. Numerous alternative 

approaches have been developed, such as the non-iterative method by Bowring (1985) 

and the vector method by Pollard (2002), but will not be discussed here. For a 

comparison of various different methods and their computational efficiency, the reader 

is referred to, e.g., Seemkooei (2002) and Fok & Iz (2003). 

Terrestrial geodetic measurements generally refer to the observation point located on 

the surface of the earth. Coordinates derived from these observations are therefore often 

expressed in a local (topocentric) reference coordinate system (n, e, u) that is tied to the 

direction of the ellipsoid normal at the observation point (Fig. 2). The origin of such a 

topocentric coordinate system is located at the observation point P. The u-axis (up) is 

aligned with the direction of the ellipsoid normal, while the n-axis (north) is 

perpendicular to the u-axis and directed towards ellipsoidal north (i.e. the geodetic 

meridian through P). The e-axis (east) completes a left-handed Cartesian system. Some 

countries utilise right-handed variations such as the east-north-up (e, n, u) or north-east-

down (n, e, d) systems. The topocentric coordinate system is also helpful for 

applications where the area being mapped is sufficiently small to allow the curvature of 

the earth to be ignored, thereby rendering projections unnecessary. 

Geodetic work is often concerned with relative positioning. It is therefore useful to 

transform between topocentric and global curvilinear coordinate differences (Soler, 

1998): 
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where φ and h are the geodetic latitude and ellipsoidal height of the observation point P, 

respectively, and ρ represents the radius of curvature in the meridian plane: 
 

2

2 2 3/ 2

(1 )

(1 sin )

a e

e
ρ

φ

−
=

−
              (5) 

 

The transformation of coordinate difference vectors between the local topocentric (n, e, 

u) and the global Cartesian (X, Y, Z) system can be achieved by the matrix calculation 

(e.g. Hofmann-Wellenhof et al., 2001): 
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where ∆X denotes the Cartesian coordinate difference vector between the observation 

point P and the target in each system, and 
 

evaluated at point P
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These formulae allow the combination of results obtained from local terrestrial 

observations (e.g. theodolite and EDM measurements) and from satellite techniques 

(e.g. GPS baselines). However, it should be noted that results based on terrestrial 

observations will initially be referenced to the astronomical topocentric system, which 

is aligned with the local gravity vector (plumbline) through P and not the ellipsoid 

normal, and therefore need to be transformed into the ellipsoidal tropocentric system 

before computations on the ellipsoid can be performed. Alternatively, the initial 

astronomical observations can be transformed into ellipsoidal ‘observations’ before 

topocentric coordinates are obtained (e.g. Vaniček & Krakiwsky, 1986; Torge, 2001). 

COORDINATE DATUMS 

Since reference coordinate systems are idealised abstractions, they can only be accessed 

through their physical materialisation (or realisation) called reference frames or datums. 

The datum effectively defines the origin and orientation of the coordinate system at a 

certain instant in time (epoch), generally by adopting a set of station coordinates. Over 

time, different techniques with varying levels of sophistication have been applied to 

define the shape of the earth’s surface, resulting in the adoption of many different 

datums. This section describes the datums used by spatial professionals in Australia 

today. 

ITRF 

The International Terrestrial Reference Frame (ITRF) is the most precise earth-centred, 

earth-fixed datum currently available and was first introduced in 1988. It is maintained 

by the International Earth Rotation and Reference Systems Service (IERS) and realised 

by an extensive global network of accurate coordinates derived from geodetic 
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observations using GPS, Very Long Baseline Interferometry (VLBI), Satellite Laser 

Ranging (SLR), Lunar Laser Ranging (LLR) and Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS) (Altamimi et al., 2007). These 

coordinates are based on the GRS80, a geocentric ellipsoid designed to approximate the 

shape of the geoid on a global scale. 

The ITRF is a dynamic datum and changes according to temporal variations of its 

network coordinates and their velocities due to the effects of crustal motion, earth 

orientation, polar motion and other geophysical phenomena such as earthquakes and 

volcanic activity (Bock, 1998). It is updated regularly in order to account for the 

dynamics of the earth and now sufficiently refined to ensure that the change between 

successive ITRF versions is in the order of 1-2 cm. So far the following versions have 

been released: ITRF88, ITRF89, ITRF90, ITRF91, ITRF92, ITRF93, ITRF94, ITRF96, 

ITRF97, ITRF2000 and ITRF2005. Coordinates given in any of the ITRF realisations 

are referred to a specific epoch in order to enable appropriate consideration of tectonic 

plate motion. GNSS online processing services generally provide positioning results in 

the most recent ITRF and often also a national datum. 

WGS84 

The World Geodetic System 1984 (WGS84) was developed for the U.S. Defense 

Mapping Agency (DMA), later named NIMA (National Imagery and Mapping Agency) 

and now called NGA (National Geospatial-Intelligence Agency), and is the nominal 

datum used by GPS (NIMA, 2004). It is based on the WGS84 ellipsoid which can 

generally be assumed identical to the GRS80 (see Tab. 1). The WGS84 datum was first 

introduced in 1987 based on Doppler observations and has since been refined several 

times to be closely aligned with the ITRF in order to prevent degradation of the GPS 

broadcast ephemerides due to plate tectonics (True, 2004). 

The first refinement was introduced in 1994 to align the WGS84 with ITRF91 and 

included a revised set of station coordinates for the tracking network, based entirely on 

GPS observations (Malys & Slater, 1994). It is known as WGS84 (G730) where G 

stands for ‘GPS’ and 730 denotes the GPS week number when NGA started expressing 

their derived GPS precise ephemerides in this frame, i.e. 2 January 1994. Swift (1994) 

estimated that the refined WGS84 agreed with the ITRF92 at the 10 cm level. The 

second refinement, WGS84 (G873), occurred on 29 September 1996 and resulted in 

coincidence with the ITRF94 at better than 10 cm (Malys et al., 1997). It should be 

noted that the GPS Operational Control Segment did not implement the WGS84 (G730) 

and WGS84 (G873) coordinates until 29 June 1994 and 29 January 1997, respectively. 

The latest refinement, WGS84 (G1150), was introduced and implemented on 20 

January 2002 based on 15 days of GPS data collected during February 2001 at six U.S. 

Air Force monitoring stations, 11 NGA stations and several additional global tracking 

stations. After this alignment with the ITRF2000, it was shown that the WGS84 

coincides with the ITRF within a few centimetres at the global level (Merrigan et al., 

2002). For all mapping and charting purposes the WGS84 and the most current ITRF 

can therefore be assumed identical (NIMA, 2004). However, it should be noted that the 

level of agreement worsens as the time gap between WGS84 (G1150) and the latest 

realisation of ITRF grows. 
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GDA94 

The Australian geospatial infrastructure is currently referenced to the Geocentric Datum 

of Australia 1994 (GDA94), a static datum adopted by the Intergovernmental 

Committee on Surveying and Mapping (ICSM) that does not account for tectonic 

motion (ICSM, 2002). The GDA94 was introduced on 1 January 2000 to replace the 

AGD (described below) and is based on the GRS80 ellipsoid, thus making it compatible 

with GPS. The GDA94 is defined in the ITRF92 at epoch 1994.0 (i.e. coincident with 

ITRF92 on 1 January 1994), realised by the eight Australian Fiducial Network (AFN) 

sites whose coordinates were estimated to have an absolute accuracy of about 2 cm at 

95% confidence (Morgan et al., 1996), and has since been ‘frozen’ in a geodetic sense 

in order to avoid changing coordinate values. This definition is justified by the 

relatively uniform drift of the Australian continent at ~7 cm to the north-east per year. 

However, tectonic plate motion causes the difference between absolute ITRF/WGS84 

coordinates and GDA94 coordinates to increase over time. For differential GPS 

applications within Australia this is not an issue, as both ends of a baseline move at the 

same rate. For most practical applications with an accuracy requirement of only a metre, 

it has previously been assumed that absolute ITRF/WGS84 coordinates can be 

considered the same as GDA94 (Steed & Luton, 2000). However, GPS users need to be 

aware that this assumption has ceased to be valid because the effect of tectonic motion 

since 1994.0 amounts to about 1 metre in 2008. 

AGD66/84 

Several different datums were used across Australia for surveying and mapping 

purposes until the introduction of the Australian Geodetic Datum (AGD) in 1966 

provided the first datum uniformly adopted nationally. The AGD is based on the ANS, a 

non-geocentric ellipsoid providing a best fit over the Australian region, i.e. AGD 

coordinates are not directly compatible with GPS-derived positions. The ANS was 

oriented by aligning its minor axis parallel to the position of the earth’s mean rotation 

axis at the start of 1962, and zero longitude was defined as 149°00’18.855” west of the 

Mount Stromlo observatory, i.e. at Greenwich (Bomford, 1967). The AGD66 was 

realised by fixing the coordinates of the Johnston Geodetic Station, located in the 

Northern Territory. The AGD84, an updated realisation based on a larger amount of 

data with higher quality and improved adjustment techniques, was only adopted by 

Western Australia, South Australia and Queensland. The difference between AGD66 

and AGD84 coordinates of the same point can reach several metres, while positions 

referred to the GDA94 appear to be about 200 m north-east of those referenced to the 

AGD  due to the origin shift between the respective ellipsoids (ICSM, 2002). 

AHD71/83 

In regards to vertical coordinates, most countries utilise an approximation of the 

orthometric height system referenced to the geoid. A vertical datum defines a reference 

for elevation comparisons and is essential for a wide range of applications such as 

floodplain management, waterway navigation management, roadway and drainage 

design, agricultural management and surveying in general. The Australian Height 

Datum (AHD) was realised in 1971 by setting the observed MSL to zero at 30 tide 

gauges situated around the coast of Australia and adjusting about 195,000 km of spirit 

levelling across the country (Roelse et al., 1971). However, due to dynamic ocean 
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effects (e.g. winds, currents, atmospheric pressure, temperature and salinity), tide gauge 

observations only spanning a period of 2-3 years and the omission of observed gravity, 

MSL was not coincident with the geoid at these tide locations. This introduced 

considerable distortions of up to ~1.5 m into the AHD, causing the AHD71 to be 

essentially a third-order datum (Morgan, 1992). The Tasmanian AHD (generally 

referred to as AHD83) was defined separately (in 1979) by setting MSL observations 

for 1972 at the tide gauges in Hobart and Burnie to zero and the Tasmanian levelling 

network was then readjusted in 1983 (ICSM, 2002). GPS observations together with the 

AUSGeoid98 (Featherstone et al., 2001) have been used to establish a connection of the 

AHD between the mainland and Tasmania, showing differences of up to 0.26 ± 0.33 m 

(e.g. Featherstone, 2002). For a detailed treatment of height systems and vertical datums 

in the Australian context, the reader is referred to Featherstone & Kuhn (2006). 

PROJECTION COORDINATES 

In practice, it is often required to express positions on a flat surface in the form of grid 

coordinates, i.e. in a 2-dimensional Cartesian coordinate system such as Easting and 

Northing. This section briefly reviews map projections and introduces the principle of 

grid coordinates. A detailed treatment of this topic can be found in texts such as Maling 

(1993), Bugayevskiy & Snyder (1995) and Grafarend & Krumm (2006). 

Map Projections 

Map projections are used to represent a spatial 3-dimensional surface (e.g. the earth) on 

a plane, 2-dimensional surface (e.g. a paper map) according to a recognised set of 

mathematical rules, resulting in an ordered system of meridians and parallels. It is 

therefore necessary to project the spherical or ellipsoidal earth onto a developable 

surface that can be cut and flattened, i.e. a plane, cylinder or cone, thus resulting in an 

azimuthal, cylindrical or conic projection, respectively. This projection surface is 

generally located tangent or secant to the earth and its axis is either coincident with the 

earth’s axis (polar or normal aspect), at right angles to the earth’s axis (equatorial or 

transverse aspect) or at an arbitrary angle (oblique aspect). For instance, in a tangential 

azimuthal projection, the plane would be tangent to the earth either at one of the poles, 

at a point on the equator or at any other point central to the area that is to be mapped, 

respectively. Figure 3 illustrates examples of three commonly used projections. Note 

that the projection surface is tangent to the earth along a parallel of latitude, along a 

meridian and at a point, respectively. The projection parameters needed to convert 

curvilinear coordinates to grid coordinates are derived either geometrically or 

mathematically. 
 

 

Fig. 3: The normal conic, transverse cylindrical and oblique azimuthal projections. 
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It should be apparent that it will be impossible to convert a 3D surface into a 2D surface 

without any distortions. A multitude of projections has been developed in order to 

satisfy certain cartographic properties, i.e. the preservation of shape locally (conformal 

projection), scale (equidistant projection) or area (equal-area projection). Thus it is 

possible to eliminate certain distortions at the expense of others or to minimise all types 

of distortions. However, some distortion will always remain. The type of projection 

chosen is therefore dependent on the extent, scale and intended purpose of the map, e.g. 

in order to investigate the global or regional distribution of wheat growing areas, an 

equal-area map is required to consistently represent the size of each area while 

considerable distortions in the shape and position of these areas may be tolerated. 

UTM Projection 

On a conformal map, meridians and parallels intersect at right angles, and the scale at 

any point on the map is the same in any direction, although it will vary from point to 

point. Conformal maps therefore allow the analysis, control or recording of motion and 

angular relationships. Hence they are essential for the generation of navigational charts, 

meteorological charts and topographic maps. An example of a conformal projection is 

the Transverse Mercator projection, which is used extensively around the world as a 

basis for grid coordinates and is therefore treated in more detail here. This projection is 

mathematically derived and utilises a cylinder that is tangent to a chosen meridian, 

called the central meridian (CM) (see Fig. 3). The scale is therefore true (i.e. unity) 

along the central meridian but increases with increasing distance from it, thereby 

causing a growing distortion in scale. The Transverse Mercator projection is most 

appropriate for regions exhibiting a large north-south extent but small east-west extent. 

However, by splitting up the area to be mapped into longitudinal zones of limited extent 

and merging the resulting plane maps, the entire world can be mapped with minimal 

distortion.  

The Universal Transverse Mercator (UTM) projection utilises a zone width of 6° and 

ensures that the scale is very close to unity across the entire zone by defining a central 

scale factor of 0.9996 for the CM which results in a scale of 1.0010 at the zone 

boundary located 3° away from the CM. The UTM projection divides the world into 60 

zones, zone 1 having a CM at longitude 177°W, while the latitudinal extent of each 

zone is 80°S to 84°N, indicated by 20 bands labelled C to X with the exclusion of I and 

O for obvious reasons. All latitude bands are 8° wide, except the most northerly (X) 

which is 12° wide to allow Greenland to be mapped in its entirety (Fig. 4). The 

increasing distortion in scale evident at high latitudes is caused by the north-south 

gridlines not converging at the poles, i.e. the poles would be projected as lines rather 

than points. The island of Tasmania, e.g., is located in zone 55G. Note that while the 

latitude extent is generally part of the coordinate display in most GPS receivers, in a 

GIS environment it is often replaced by N or S to indicate the hemisphere when a global 

UTM system is used. 
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Fig. 4: UTM grid zones of the world (http://www.dmap.co.uk/utmworld.htm). 

Grid Coordinates 

In each UTM zone, the projected grid coordinates, i.e. Easting and Northing, are 

initially referenced to the origin defined by the intersection of the CM and the equator, 

resulting in negative Easting coordinates west of the CM and negative Northing 

coordinates in the southern hemisphere. In order to ensure positive coordinate values 

across the entire zone, the UTM system applies false coordinates to the origin by adding 

500,000 m to the true Easting and, in the southern hemisphere, 10,000,000 m to the true 

Northing. It should be noted that variations of this global UTM convention are used in 

numerous national mapping datums, applying different zone widths, false coordinates 

and central scale factors.  

In Australia, the global convention presented above applies to both the AGD66/84 and 

GDA94 datums. Grid coordinates derived from a UTM projection of the AGD66 

geodetic coordinates are known as the Australian Map Grid 1966 (AMG66) coordinate 

set. If the AGD84 is used, the resulting grid coordinates are denoted as AMG84. The 

same UTM projection applied to geodetic GDA94 coordinates results in the Map Grid 

of Australia 1994 (MGA94) coordinate set. It is important to note that while all three 

coordinate grids are obtained using the same projection, the resulting grids differ 

significantly since AGD and GDA are based on different ellipsoids. In practice, the 

MGA coordinates appear to be approximately 200 m north-east of the AMG coordinates 

for the same feature. 

The conversion between curvilinear and grid coordinates is performed using Redfearn’s 

(1948) formulae and computational tools are readily available. In the Australian context, 

these formulae are accurate to better than 1 mm in any AMG or MGA zone and can 

therefore be regarded as exact (ICSM, 2002). GPS receivers routinely allow the user to 

display positions in a selected coordinate system, datum and/or projection, while new 

datums can be defined. 



V. Janssen 

707 

 

DATUM TRANSFORMATIONS 

The coordinates of a point will differ depending on which datum these coordinates refer 

to. Several coordinate transformations exist and their accuracy depends on the method 

chosen as well as the number, distribution and accuracy of the common points used to 

determine the transformation parameters. It is generally recommended to use the most 

accurate method available, although it is recognised that less accurate options may be 

sufficient for certain applications. 

Grid Transformation 

The most accurate method is the grid-based approach which supplies users with 

transformation parameters and, being a particularly useful benefit of this technique, 

transformation accuracy (not to be confused with the accuracy of the transformed 

coordinates) on a regularly spaced grid. The transformation components of any point 

within the grid are generally determined based on bi-linear interpolation using the 

known components of the four surrounding grid nodes. In Australia, a complex model is 

employed which combines a datum shift based on a 7-parameter similarity 

transformation (discussed in the next section) with the modelling of distortions caused 

by the surveying techniques employed in the datum realisations of the AGD. This is 

achieved by utilising grids that have been developed using the method of least squares 

collocation, which allows the contribution of the distortion at surrounding data points to 

be weighted according to their distance from the interpolation point (Collier, 2002).  

The advantage of these grids is that a complex transformation model with a high 

accuracy can be implemented in a relatively routine fashion. The user only has to 

perform a simple interpolation to obtain coordinate shifts, followed by a simple addition 

to perform the transformation. The user friendliness of these grids has led to their 

adoption in several countries such as the U.S., Canada and Australia. An analysis of the 

errors introduced by the use of such transformation grids is provided by Nievinski & 

Santos (2007). 

In Australia, it was found that distortions for the transformation between AGD66/84 and 

GDA94 reach several metres, especially in the more remote regions of the country 

(Collier, 2002). If the distortion pattern across an area is regular, high transformation 

accuracy can be achieved, while an irregular distortion pattern will cause the 

transformation accuracy to deteriorate. Generally, the transformation accuracy of the 

AGD66/84-GDA94 grids is better than ±0.1 m, although it increases to ±0.5 m or more 

in some cases (Collier, 2002). 

National transformation grids for the transformation between the two realisations of the 

AGD and GDA94 are provided by ICSM (2002) and supersede previous state-wide 

grids. These grids utilise the National Transformation Version 2 (NTv2) format 

developed by the Geodetic Survey Division of Geomatics Canada which is now being 

used in many GIS software packages. The NTv2 format was chosen because it enables 

accuracy estimates of the transformation parameters to be included and allows sub-grids 

of different density which is very useful when dealing with variable distortion patterns 

(Collier, 2002). Australian state jurisdictions have developed readily available 

transformation software, e.g. GDAit (Victoria), GDAy (Queensland), GEOD and 

DatumTran (both NSW). The latter has been specifically designed to transform GIS 

data in various formats (NSW Department of Lands, 2008a). Alternatively, these grid 

transformations can be performed within the GIS environment. 
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Similarity Transformation 

A 7-parameter similarity transformation, also known as Helmert transformation, 

accounts for the difference between two 3-dimensional datums by applying three 

translations along the coordinate axes, three rotations about the axes and one scale 

factor change (e.g. Harvey, 1986): 
 

( )
2 1

2 1

2 1

1

1 1

1

∆ −       
       = ∆ + + −       
       ∆ −       

X X X

Y Y s Y

Z Z Z

γ β

δ γ α

β α

           (8) 

 

where (X1, Y1, Z1) and (X2, Y2, Z2) are the coordinates of a point in Datum 1 and Datum 

2 respectively, ∆X, ∆Y, ∆Z are the coordinates of the origin of Datum 2 in Datum 1 (i.e. 

the origin shift), α, β, γ are small differential rotations (i.e. up to a few seconds) around 

the X, Y, Z axes of Datum 1 respectively to establish parallelism with the axes of Datum 

2, and δs is a differential scale change between the two datums. If the rotations exceed a 

few seconds, the use of a rigorous rotation matrix is required (cf. Hofmann-Wellenhof 

et al., 2001). 

If a transformation in the opposite direction is desired, the same equation can be used 

but the signs of all parameters need to be reversed. By convention, a positive rotation is 

an anti-clockwise rotation when viewed along the positive axis towards the origin. It 

should be noted that in Australia the rotations are assumed to be of the coordinate axes, 

while the IERS assumes the rotations to be of the position around the coordinate axes. If 

the IERS convention is to be used in the Australian context, the sign of the rotation 

parameters needs to be reversed (ICSM, 2002). 

Since this transformation is based on Cartesian coordinates, geodetic coordinates first 

need to be converted using equation (1). The transformed Cartesian coordinates can 

then be converted back to curvilinear coordinates using equation (3), effectively 

allowing curvilinear coordinates to be transformed between two datums. The similarity 

transformation is also known as a conformal transformation because it maintains the 

shape (but not the orientation and size) of the transformed objects. A 7-parameter 

similarity transformation can achieve transformation accuracies of about 1 m for 

AGD66/84-GDA94 transformations, using the parameters given in Table 2. Online 

tools and spreadsheets to perform these calculations are available from various sources 

(e.g. NSW Department of Lands, 2008b; GA, 2009). 

Tab. 2: Transformation parameters from AGD to GDA94 (ICSM, 2002). 

Parameter 
  national regional AGD66 

    AGD84   AGD66    ACT   TAS VIC & NSW     NT 

∆X (m) -117.763 -117.808 -129.193 -120.271 -119.353 -124.133 

∆Y (m) -51.510 -51.536 -41.212 -64.543   -48.301 -42.003 

∆Z (m) 139.061 137.784 130.730 161.632  139.484 137.400 

α (") -0.292 -0.303 -0.246 -0.217    -0.415 0.008 

β (") -0.443 -0.446 -0.374 0.067    -0.260 -0.557 

γ (") -0.277 -0.234 -0.329 0.129    -0.437 -0.178 

δs (ppm) -0.191 -0.290 -2.955 2.499    -0.613 -1.854 
 

If a dynamic datum is involved in the transformation, e.g. between different realisations 

of the ITRF or between the GDA94 and a particular ITRF, the velocities of the seven 
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parameters need to be taken into account in order to refer the parameters to the desired 

epoch. This 14-parameter similarity transformation can be performed according to 

Dawson & Steed (2004). Alternatively, equation (8) can be used after the parameters 

have been updated according to (IERS, 2008):  
 

0 0( )  ( )  ( )= + ⋅ −&P t P t P t t              (9) 
 

where P(t) is the parameter at the desired epoch t (i.e. observation epoch), P(t0) is the 

parameter at the epoch t0 of its initial definition, and P& is the rate (velocity) of this 

parameter. The epoch is given in decimal years. Parameters and their rates to transform 

from ITRF2000 to the other ITRF realisations are listed in Table 3. Note that these 

parameters are valid at the indicated epoch only. 

Tab. 3: Transformation parameters and their rates from ITRF2000 to other frames 

(IERS, 2008). 

Frame ∆X (m) ∆Y (m) ∆Z (m) δs (ppm) α (") β (") γ (") Epoch (t0) 

ITRF2005 -0.0001 0.0008 0.0058 -0.00040 0.00000 0.00000 0.00000 2000.0 

Rate (yr
-1

) 0.0002 -0.0001 0.0018 -0.00008 0.00000 0.00000 0.00000  

ITRF97 0.0067 0.0061 -0.0185 0.00155 0.00000 0.00000 0.00000 1997.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF96 0.0067 0.0061 -0.0185 0.00155 0.00000 0.00000 0.00000 1997.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF94 0.0067 0.0061 -0.0185 0.00155 0.00000 0.00000 0.00000 1997.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF93 0.0127 0.0065 -0.0209 0.00195 -0.00039 0.00080 -0.00114 1988.0 

Rate (yr
-1

) -0.0029 -0.0002 -0.0006 0.00001 -0.00011 -0.00019 0.00007  

ITRF92 0.0147 0.0135 -0.0139 0.00075 0.00000 0.00000 -0.00018 1988.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF91 0.0267 0.0275 -0.0199 0.00215 0.00000 0.00000 -0.00018 1988.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF90 0.0247 0.0235 -0.0359 0.00245 0.00000 0.00000 -0.00018 1988.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF89 0.0297 0.0475 -0.0739 0.00585 0.00000 0.00000 -0.00018 1988.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  

ITRF88 0.0247 0.0115 -0.0979 0.00895 0.00010 0.00000 -0.00018 1988.0 

Rate (yr
-1

) 0.0000 -0.0006 -0.0014 0.00001 0.00000 0.00000 0.00002  
 

In order to obtain GDA94 coordinates, users have to perform the appropriate 

transformation from a given ITRF to ITRF92 at epoch 1994.0. Alternatively, Dawson & 

Steed (2004) produced parameters to be used to transform directly from several ITRF 

frames to GDA94 (Tab. 4). Users transforming coordinates derived from International 

GNSS Service (IGS) products after 2 December 2001 are provided with additional high-

quality transformation parameters that are referred to as ITRF2000(IGS). 

To date, direct ITRF2005-GDA94 transformation parameters have not been published. 

Users are therefore required to first transform ITRF2005 coordinates to ITRF2000 at the 

required epoch and then apply the appropriate parameters from ITRF2000 to GDA94. 

Note that in order to transform the coordinates of a point in a given ITRF realisation to a 

different epoch, knowledge is required of the coordinate velocities referred to this 

particular realisation. The similarity transformation can model the differences between 

various ITRF realisations at the cm level, provided that the rates are applied to account 

for tectonic plate motion (Dawson & Steed, 2004). 
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Tab. 4: Transformation parameters and their rates from various ITRF frames to GDA94 

(Dawson & Steed, 2004). 

Frame ∆X (m) ∆Y (m) ∆Z (m) δs (ppm) α (") β (") γ (") 
Epoch 

(t0) 

ITRF2000 -0.0761 -0.0101 0.0444 0.007935 0.008765 0.009361 0.009325 2000.0 

Rate (yr
-1

) 0.0110 -0.0045 -0.0174 -0.000538 0.001034 0.000671 0.001039  

ITRF2000(IGS) -0.0663 -0.0050 0.0426 0.007936 0.008814 0.009127 0.009042 2000.0 

Rate (yr
-1

) 0.0049 0.0039 0.0049 0.000096 0.001616 0.001200 0.001013  

ITRF97 -0.2088 0.0119 0.1855 0.004559 0.012059 0.013639 0.011825 2000.0 

Rate (yr
-1

) -0.0220 0.0049 0.0169 -0.001090 0.002040 0.001782 0.001697  

ITRF96 -0.0140 0.0431 0.2010 0.024607 0.012464 0.012013 0.006434 2000.0 

Rate (yr
-1

) 0.0411 0.0218 0.0383 0.005897 0.002542 0.001431 -0.000234  

Lower Accuracy Transformations 

Lower accuracy methods, such as the Molodensky and abridged Molodensky formulae 

or a simple block shift, provide transformation accuracies at the 5-10 m level (e.g. 

ICSM, 2002). However, these will not be discussed here since the more accurate 

methods are generally preferred in practice. An extensive evaluation of different models 

using published parameters to transform from AGD to GDA94 was presented by 

Kinneen & Featherstone (2004) and can be consulted for more details on these methods. 

TRANSFORMATION OF HEIGHTS 

Positions obtained by a GNSS such as GPS, Glonass or Galileo include heights referred 

to a reference ellipsoid. These heights are based purely on the geometry of the ellipsoid 

and therefore have no physical meaning. In practice, however, heights are generally 

required that correctly reflect the flow of water, e.g. for drainage and pipeline design. 

National height datums such as the AHD are therefore based on orthometric heights, 

referenced to the geoid or an approximation thereof. 

Geoid Undulation 

Ellipsoidal heights (h) can be converted into orthometric heights (H) by applying the 

geoid undulation (N), also known as geoid-ellipsoid separation, geoid height or N value: 
 

H = h – N              (10) 
 

Strictly speaking, this equation is an approximation since h and N are measured along 

the ellipsoid normal, while H is measured along the curved plumbline, i.e. the direction 

of the gravity vector (Fig. 5). The angle between the direction of the gravity vector and 

the ellipsoid normal at a surface point is known as the deflection of the vertical. Since 

this angle amounts to only several seconds of arc, its effect on equation (10) can 

generally be ignored in practice (Featherstone, 2007). 

It is essential that the N value refers to the correct reference ellipsoid, i.e. in order to 

convert an ellipsoidal height in the GDA94 to an AHD height, the N value relative to 

the GRS80 ellipsoid must be known. Across Australia, the AUSGeoid98 (Featherstone 

et al., 2001) provides geoid undulations relative to the GRS80 ellipsoid on a 2’ by 2’ 

(approx. 3.6 km by 3.6 km) grid, which can also be used in conjunction with heights 

referenced to the WGS84 ellipsoid since both ellipsoids are practically identical. Using 

a simple interpolation, N values can then be obtained for any location in Australia, e.g. 
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through Geoscience Australia’s freely available WINTER software (GA, 2007). In a 

GIS context, this transformation needs to be performed before the data are imported into 

the GIS if it is desired to create from GPS-derived positions a digital elevation model 

(DEM) that has a physical meaning and therefore must be based on orthometric heights. 

A new geoid-type model for Australia is currently being produced to replace 

AUSGeoid98 (Featherstone et al., 2007; 2009). 
 

 

Fig. 5: Relationship between ellipsoidal height (h), orthometric height (H) and geoid 

undulation (N), courtesy of M. Kuhn, Curtin University of Technology. 

In practice, geoid undulation information therefore plays two crucial roles (Rizos, 

1997): On the one hand, N values are needed to convert (non-GPS) geodetic control 

information (i.e. orthometric heights) into a mathematically equivalent reference system 

to which GPS results refer (i.e. ellipsoidal heights). On the other hand, we require N 

values to obtain orthometric heights (i.e. physical meaning) from GPS-derived 

ellipsoidal heights (i.e. geometrical meaning), which is referred to as GPS levelling or 

GPS heighting. 

Geoid Determination 

If N values are not available for a particular ellipsoid or are not accurate enough, there 

are several options to calculate geoid undulations in order to determine a local geoid 

model for an area (e.g. Steed, 1990; Rizos, 1997): 

1) Astro-geodetic method: Profiles of N values are calculated by comparison of 

positions determined geodetically (referred to local ellipsoid, e.g. ANS) and 

astronomically (referred to geoid) through computation of the deflection of the 

vertical at each point. A relative accuracy of a few metres is achievable but the 

method is difficult and expensive to undertake, hence it is no longer used in practice. 

2) Geopotential models: These models are derived from a combination of satellite and 

terrestrial data, using high degree spherical harmonic series expansions to evaluate N 

values relative to a geocentric ellipsoid. The achievable accuracy is generally a few 

m (absolute) and ~5 ppm (relative). This method is very convenient to use and 

therefore often included in GNSS software. 

3) Geometric method: A local representation of the geoid is obtained according to 

equation (10) at points which have both levelled (orthometric) and ellipsoidal 

(GNSS-derived) heights. N values at other points are then linearly interpolated. The 

achievable accuracy is very much dependent on the number and quality of the 

common points and the smoothness of the geoid, but the method is very easy to 

implement and therefore commonly applied in practice. 

4) Gravimetric method: This method utilises Stokes’ integral and requires terrestrial 

gravity data in the vicinity of the points at which the geoid is to be evaluated – a 

severe restriction in some parts of the world. Where good gravity data coverage is 
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available, a relative accuracy of a few cm can be achieved, making this potentially 

the most accurate geoid determination method. However, it is inconvenient to use 

since it must be pre-computed. 

Datum Transformation using Geoid Undulations 

In Australia, spatial professionals continue to face the task of transforming coordinates 

from projected grid coordinates, based on a regional ellipsoid, and gravity-related 

heights (i.e. E, N, H in the AMG66/84) to curvilinear coordinates based on a geocentric 

ellipsoid (i.e. φ, λ, h in the GDA94), e.g. in order to combine older terrestrial survey 

control information with recent GPS observations. The orthometric height H is 

independent of the reference ellipsoid. However, this transformation requires 

knowledge of the appropriate N value referring to the regional ellipsoid (i.e. NANS). 

AMG coordinates can then be transformed into GDA94 as follows: 

1) Convert (E, N)AMG to (φ, λ)AGD on the ANS ellipsoid using Redfearn’s (1948) 

formulae. 

2) Convert H to hANS using equation (10) and NANS (if known). 

3) Convert the curvilinear coordinates (φ, λ, h)AGD in the regional datum to Cartesian 

coordinates (X, Y, Z)AGD using equation (1) and the ANS ellipsoid parameters. 

4) Perform a similarity transformation between the regional datum (X, Y, Z)AGD and the 

geocentric datum (X, Y, Z)GDA94 according to equation (8) and the parameters given 

in Table 2. 

5) Convert the Cartesian coordinates (X, Y, Z)GDA94 in the geocentric datum to 

curvilinear coordinates (φ, λ, h)GDA94, e.g. using equation (3). 

However, we may not have access to the required N values that refer to the regional 

datum. The readily available AUSGeoid98 only supplies geoid undulations related to 

the geocentric GRS80 ellipsoid (i.e. NGRS80). This problem can be overcome by making 

use of the fact that the difference in ellipsoidal height is equivalent to the change in 

geoid undulation between the datums (ignoring rotations and scale change): 
 

hANS = H + NANS     and     hGRS80 = H + NGRS80         (11) 
 

Since H is independent of the reference ellipsoid and therefore constant, differencing 

yields: 
 

∆hGRS80-ANS = ∆NGRS80-ANS            (12) 
 

If, in the procedure outlined above, step 2 is skipped and an initial ellipsoidal height of 

hANS = 0 is used in step 3, the result after step 5 represents the difference in ellipsoidal 

height ∆hGRS80-ANS between the two ellipsoids. The AUSGeoid98 can then be used to 

obtain NGRS80 and thus NANS is determined based on equation (12). The final coordinates 

in the GDA94 are obtained by performing step 2 and repeating steps 3-5 with the 

correct hANS value. It should be noted that a more rigorous treatment of the problem is 

required if the scale change between the datums cannot be ignored, cf. Kotsakis (2008). 

CONCLUDING REMARKS 

This paper has provided a compendium of the theory and the tools required for spatial 

professionals to handle transformations between the various coordinate systems and 
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datums currently used in Australia. The differences between Cartesian, curvilinear and 

projection coordinates referring to different geodetic datums have been reviewed, and 

practical solutions for the required coordinate conversions and transformations have 

been outlined. Transformation parameters to be used in the Australian context have 

been compiled in order to provide this information in one place and in a consistent 

manner, referring the interested reader to the literature for a more in-depth treatment 

where appropriate. The computational procedure for the transformation between 

orthometric and ellipsoidal heights in the absence of geoid undulations referenced to a 

regional ellipsoid has been presented. It is hoped that this paper has eliminated any 

confusion in regards to geodetic transformations applicable to the Australian spatial 

science community. 
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