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Abstract 

Realistic simulation of soil nitrogen cycling is important for quantifying nitrogen loss pathways to 

the environment, as well as the influence of N on pasture productivity. Although several models have 

been evaluated for their ability to simulate pasture growth, few studies have compared the models APSIM 

and DairyMod. Here, our objectives were to examine the capability of each model in simulating field 

measurements of pasture biomass, soil water content, mineral nitrogen and N2O emissions. For site one, 

DairyMod generally simulated mineral N, cumulative N2O and soil water with lower residual error than 

that from APSIM, but APSIM produced better estimates of pasture biomass. At site two, DairyMod 

produced more precise estimates of mineral N, but APSIM simulations were more reliable in terms of 

cumulative N2O. Overall this study demonstrated that both models produced satisfactory estimates of 

pasture biomass and soil water dynamics, but further research is necessary to diagnose reasons for the 

sometimes large discrepancies between simulated and measured mineral N and cumulative N2O 

emissions. Part of this discrepancy is likely to be caused by heterogeneity of soil N in the field, spatially 

and temporally. Although both models produce temporal estimates of mineral N and N2O, quantification 

of parameter uncertainty associated with spatial variation in mineral N would help improve model 

evaluation such as performed in this study. 
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Introduction 

Reliable simulation of biophysical processes in intensive farming systems is important not only for 

estimation of environmental losses of N, but also for simulation of livestock profitability aspects related to 

pasture growth. Two models commonly used to simulate intensive grazing systems in Australia include 

APSIM (Keating et al., 2003) and DairyMod (Johnson, 2016). APSIM was designed for simulating 

biophysical processes in farming systems, initially with an emphasis on cropping systems, and more 

recently also for pasture systems. In contrast, DairyMod was designed predominantly for pasture-based 

systems. DairyMod operates has been shown to adequately simulate production aspects of pasture-based 

systems across diverse climates, soil types and pasture species (Johnson, 2016). Although developed for 
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different purposes, both models allow simulation of pasture growth as influenced by dynamics of soil 

water and nitrogen. APSIM has been validated at several pasture-based sites, but most past studies have 

been performed in the context of cropping systems; there are few studies of the performance of APSIM in 

simulating pasture growth in concert with mineral nitrogen, greenhouse gas emissions, and soil water 

content.  

Materials and Method 

Each model was calibrated using measurements collected from two field campaigns. Defoliation at 

both sites was conducted by mechanical cutting. The Camden site was located approximately 50 km SW of 

Sydney (-34.12S, 150.71E). The pasture at Camden was dominated by annual ryegrass (Lolium rigidum) 

and kikuyu (Pennisetum clandestinum). Fertiliser was applied at 46 kg N/ha immediately after every 

harvest in spring and autumn and every other harvest in summer and winter. Irrigation was applied 

through a combination of visual inspection of the pasture and soil moisture status. Soil mineral N was 

measured on a single core in each of three replicated plots. The Noorat site was located at the 

Glenormiston College Campus (38o10’S; 142o58’E) in Victoria; pastures at this site were dominated by 

perennial ryegrass. Urea was applied at a rate of 50 kg N/ha after every second defoliation until the end of 

the growing season each year. In 2012-13, after the low rainfall summer, the site suffered a severe decline 

in ryegrass density. As a result, oversowing was undertaken to improve ryegrass density of the pasture. At 

each harvest and seven days after nitrogen fertiliser application, samples of topsoil (0-0.1 m) were 

collected for NO3 and NH4 analyses. Four to six soil cores were collected from the four replicated plots of 

each treatment. Further details of this experiment are provided in Kelly (2013). APSIM classic v7.10 

(Keating et al., 2003) and DairyMod v5.7.6 (Johnson, 2016) were parameterised with data from the two 

sites. Parameterisation was conducted for cumulative N2O rather than for daily N2O fluxes due to the 

variability of nitrous oxide measurements taken in the field (e.g. Fig. 1d). Several formulae were used for 

model evaluation following Tedeschi (2006); each metric was used to assess different qualities in the 

relationship between modelled and measured data. Mean bias (MB) was computed as the normalised 

difference between the observed and modelled mean; ideal MB values are zero. Root mean square error 

(RMSE) is the square root of the squared modelled values less the squared observations, divided by the 

number of observed values. Ideal RMSE values are zero. Mean prediction error (MPE) was calculated as 

the RMSE divided by the mean of the observed values. MPE values either < 0.10, 0.10-0.20 or >0.20 

indicate good, moderate and poor simulation adequacy, respectively. The variance ratio (VR) was defined 

as the ratio of the variance of the observed data to that of the modelled data. The VR assumes ideal 

values when equal to unity; values greater than unity indicate that there is more variation in the actual 

data compared with the simulated data. 

Results and Discussion 

Evaluation metrics for the simulations conducted for the Camden and Noorat sites are shown in 

Tables 1 and 2, respectively.  
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Table 1. Assessment of DairyMod and APSIM simulations of biomass, soil NO3 and NH4, cumulative N2O 

and soil water content in the surface layer (SWL1) at Camden. Evaluation metrics compared data on a daily 

time-step. 

Model/variable RMSE R2 MB MPE VR 

DairyMod/biomass 1234 0.05 -70 0.61 0.51 

DairyMod/NO3 26 0.11 11 0.79 2.02 

DairyMod/NH4 11 0.01 7 0.84 0.54 

DairyMod/N2O 540 0.94 -187 0.25 0.70 

DairyMod/SWL1 0.08 0.08 -0.01 0.21 0.90 

APSIM/biomass 516 0.13 -171 0.26 1.98 

APSIM/NO3 41 0.07 31 1.22 5.97 

APSIM/NH4 14 0.03 13 1.04 22.60 

APSIM/N2O 719 0.80 401 0.33 0.77 

APSIM/SWL1 0.10 0.10 -0.03 0.27 0.66 

  

Simulated biomass from APSIM at Camden was generally better than that from DairyMod, with 

RMSE values for individual harvests of 516 and 1234 kg DM/ha, respectively, though R2 values for both 

models were poor. This was caused by the transition between the annual ryegrass and kikuyu in autumn 

and late spring. For example, both models overestimated pasture biomass in late June of 2013 (Fig. 1), 

indicating that either both models are poorly designed with respect to simulation of mixed swards, both 

models were poorly parameterised, or that other factors limited pasture growth during this period, such 

as soil borne diseases, spatial nutrient variability etc. Changes in biomass from harvest to harvest from 

DairyMod tended to be more variable than that from APSIM; DairyMod overestimated ryegrass and 

kikuyu production at the start and end of the simulation at Camden (Fig. 1A). Simulated soil NO3 and NH4 

by both models at each site was generally poor, particularly at Camden (Fig. 1). Simulated NO3 from 

DairyMod was generally better than that from APSIM for both sites, as the daily NO3 flux from the former 

model tended to be lower than that from APSIM (Fig. 1E). Simulated NH4 from both models exhibited 

much greater variability than that in measured data (Fig. 1F). Although both models had NH4-sensitive 

parameters (e.g. max denitrification/nitrification rate, NH4 concentration for half maximum 

denitrification/nitrification rate in DairyMod), modification of such parameters typically only altered the 

magnitude of the NH4 peak, rather than the rate of change of NH4 in the soil solution (e.g. Fig. 1F). 

Consequently, the model assessment metrics in Tables 1 and 2 suggest that DairyMod was more reliable 

than APSIM in simulating trends in both NO3 and NH4, though this outcome was primarily caused by the 

lower temporal variability of mineral N from DairyMod cf. mineral N simulated by APSIM. 
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Fig. 1.  Simulated and measured (A) pasture biomass, (B) weekly average soil water content, (C) 

cumulative weekly N2O flux rate, (D) cumulative daily N2O emissions, (E) soil NO3 and (F) soil NH4 from 14 

October 2012 to 13 May 2014 at Camden, NSW, Australia. 

 

Simulated cumulative N2O from DairyMod was more accurate than that from APSIM at Camden (Table 1 

and Fig. 1D), though the converse was true at Noorat. Differences in N2O emissions between models was a 

partially caused by differences in denitrification and consequently N2O/N2 ratios. In both models, N2O/N2 

ratios are calculated as a function of water-filled pore space (WFPS; the volumetric water content relative 

to saturation), and peaks of N2O are sensitive to the WFPS value at which denitrification begins (between 

drained upper limit and saturation), as well as NO3 concentration. Parameters specifying heterotrophic 

CO2 respiration and gas diffusivity in the soil also affect the N2O/N2 ratio in APSIM. For Camden, the 
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observed data had the greatest N2O peaks around 21 February 2013 and 1 June 2013; these peaks 

generally coincided with peaks in observed soil water content (cf. Figs 1E and 1B). Compared with the 

observed data, simulated N2O from APSIM had a lower baseline but with more peaks (Fig. 1C), somewhat 

reflecting the greater frequency of soil water peaks in the surface layer (Fig 1B). In contrast, simulated N2O 

from DairyMod had fewer peaks than that from APSIM, and for Camden DairyMod simulated cumulative 

N2O more reliably until the start of November 2013 (Fig. 1B).  

Table 2. Assessment of DairyMod and APSIM simulations of biomass, soil NO3 and NH4, N2O and soil water 

content (v/v) in layers 0-10 cm (SW1), 10-20 cm (SW2), 20-30 cm (SW3) and 30-50 cm (SW4) at Noorat. Data 

were compared on a daily time-step. Evaluation metrics are described in the methods. 

Model/variable RMSE R2 MB MPE VR 

DairyMod/biomass 695 0.42 -313 0.56 0.61 

DairyMod/NO3 11 0.53 4.7 0.49 0.93 

DairyMod/NH4 23 0.25 3.8 0.98 1.59 

DairyMod/N2O 39 0.88 7.6 0.27 0.60 

DairyMod/SW1 0.06 0.71 0.00 0.22 0.91 

DairyMod/SW2 0.04 0.84 0.01 0.16 0.87 

DairyMod/SW3 0.03 0.93 -0.03 0.12 0.83 

DairyMod/SW4 0.03 0.85 0.01 0.07 1.55 

APSIM/biomass 660 0.19 -405 0.54 1.02 

APSIM/NO3 25 0.02 -6.4 1.08 0.72 

APSIM/NH4 31 0.02 -0.6 1.30 1.29 

APSIM/N2O 14 0.97 5.0 0.10 0.82 

APSIM/SW1 0.04 0.87 0.02 0.15 0.93 

APSIM/SW2 0.04 0.89 0.02 0.13 0.95 

APSIM/SW3 0.02 0.88 0.01 0.08 0.94 

APSIM/SW4 0.03 0.85 0.01 0.07 1.55 

 

CONCLUSIONS 

This study has demonstrated a need for calibration of models to multiple sites when comparing 

simulations of mineral N, N2O emissions and soil water content, as well as increased replication of field 

data to provide an indication of variability. Our results showed that the “right” answer can be achieved for 

the “wrong” reasons; coefficients used in N2O algorithms in both models could be manipulated after 

having calibrated mineral N, allowing reasonable estimation of cumulative N2O even though simulated 

NO3 and/or NH4 exhibited a temporal dynamic that was not present in the data. In addition to daily data, 

future modelling of mineral N should thus consider conducting validation over longer periods (e.g. weekly 

averages) due to the tendency of NO3 and particularly NH4 to fluctuate widely in short time spans. More 

frequent field measurements of mineral N would also be useful in this regard. The discrepancies between 

measured and modelled mineral N are likely partially due to both modelled and measured data; existing 

model equations and model parameterisation may not be sufficient to capture the complexity of 

biological processes influencing mineral N content such as mineralisation, nitrification and denitrification. 

On the other hand, the temporal and spatial variability of mineral N in the field may not have been 

adequately captured in the measured NO3 and NH4 data. 
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