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ABSTRACT1

The detection and mapping of segregating QTL influencing withers height, hip height, hip width,2

body length, chest width, chest depth, shoulder width, lumbar width, thurl width, pin bone width,3

rump length, cannon circumference, chest girth, abdominal width and abdominal girth at4

weaning was conducted on chromosomal regions of bovine chromosome one. QTL analysis5

was performed by genotyping half -sib progeny of five Japanese Black sires using microsatellite6

DNA markers. Probability coefficients of inheriting allele 1 or 2 from the sire at specific7

chromosomal locations were computed. The phenotypic data of progeny were regressed on these8

probability coefficients in a within-common-parent regression analysis using a linear model that9

included fixed effects of sex, parity and season of birth as well as age as a covariate. F -statistics10

were calculated every 1cM on a linkage map. Permutation tests of 10,000 iterations were11

conducted to obtain chromosome-wide significance thresholds. A significant QTL for chest width12

was detected at 91cM in Family 3. The detection of this QTL boosts the prospects of13

implementing marker-assisted selection for body conformation traits in Japanese Black beef14

cattle.15
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INTRODUCTION1

Body shape and conformation measurements are useful selection traits in beef cattle2

because of their positive correlation with liveweight changes and growth ( Varade and Ali 2001).3

In dairy cows, body size measurements are very useful in estimating body weight and4

productivity as demonstrated by the reports of Heinrichs et al. (1992), Enevoldsen and5

Kristensen (1997), Kertz et al. (1997) and Koenen and Groen (1998). In beef cattle, sim ilar6

research has been conducted and reported by Gilbert et al. (1993), Vargas et al. (2000) and7

Magnabosco et al. (2002). Similar information in Japanese Black cattle is scanty and where8

available, is limited to performance test and field carcass traits o nly (Mukai et al. 1995, Mukai et9

al. 2000, Karnuah et al. 2001, Smith et al. 2001 and Sosa et al. 2002). There is an abundance10

of published work on breed, age and sex differences in body measurements in cattle (Cestnik11

2001; Tozser et al. 2001; Rodriguez et al. 2001; Roy et al. 2001; Maiwashe et al. 2002;12

Afolayan et al. 2002a, 2002b). However, to our knowledge, apart from the work of Napolitano et13

al. (2001) with Italian Chianina x Piemontese crossbred cattle and Ashwell et al. (1998) with US14

Holsteins, there is no published information on the detection of quantitative trait loci (QTL) for15

body measurements related to shape and conformation traits in any other cattle breed. This16

justifies the need for the present study by our research group with Japanese Bl ack beef cattle.17

The mapping of QTL is the first step towards the identification of genes and causal18

polymorphisms for traits of importance in agriculture (Seaton et al., 2002). The detection of19

quantitative trait loci influencing body shape and conform ation traits would be useful in the20

implementation of marker-assisted selection in the Japanese Black beef cattle. Comparative21

mammalian genomics reveal that bovine chromosome 1 (BTA1) is equivalent to the human22

chromosome 3 (http://bos.cvm.tamu.edu/htmls/ rhbov1.html) which has been demonstrated to23

harbour growth-regulating genes such as growth hormone secretagogue receptor also known as24

ghrelin (Hosoda et al. 2003, Shuto et al. 2002), glycogenin (Mu et al. 2001) and Pit-1 (Ohta et al.25

1992, Hendriks-Stegeman et al. 2001).  It is therefore justifiable to focus on BTA 1 in the scan for26

http://bos.cvm.tamu.edu/htmls/rhbov1.html
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body conformation and growth-related QTL in Japanese Black cattle. Preliminary genome -wide1

scanning in our laboratory using only 30 animals (unpublished data) had suggested Bos taurus2

autosomes (BTA) 1, 2 and 5 as chromosomes containing segregating QTL significantly influencing3

growth traits in Japanese Black cattle. Therefore, in this confirmatory study with a larger data set4

of genotyped animals, we report for the first time, the association between microsatellite DNA5

markers and QTL on BTA1 influencing 15 body shape and conformation measurements at6

weaning of Japanese Black cattle.7

8

MATERIALS AND METHODS9

Animals and management:  One hundred and thirty -two paternal half-sib progeny of five10

Japanese Black sires produced by artificial insemination at the Department of Livestock and11

Grassland Science, National Agricultural Research Centre for Western Region, Oda, Shimane12

Prefecture, Japan, were genotyped for this study. Sires 1 an d 2 belonged to the line selected13

for increasing average daily gain while Sires 3, 4 and 5 belonged to the line selected for high14

beef marbling score. Routine management of the animals involved recording of weight at birth15

and monthly thereafter, until 18 months of age. Body shape and conformation measurements16

on withers height, hip height, hip width, body length, chest width, chest depth, shoulder width,17

lumbar width, thurl width, pin bone width, rump length, cannon circumference, chest girth,18

abdominal width and abdominal girth were also taken monthly. Calves were allowed to suckle19

their dams in addition to being fed 1.5 kg/day/head of concentrate and 1 kg/day/head of corn20

silage until 5 months of age when they were weaned. After weaning, they were moved t o the21

grower’s barn and still raised on concentrates (37% corn grain, 39% rice bran, 17% soybean22

meal, 7% minerals) and corn silage until 10 months of age. Between 10 and 18 months of age,23

they were moved to another barn and fed intensively. The proportion s of the ration on dry24

matter basis were: 61% corn grain, 34% soybean and corn glutein meal, 2% bran and 3%25

mineral. For every 20kg bag, this ration provided an estimated 21% crude protein, 3.5% crude26
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fat, 5% crude fibre, 7% ash, 0.6% calcium, 0.40% phosph ate and a total digestible nutrient of1

77%. From 18 to 24 months of age, breeding females were returned to the calving barn while2

steers were moved to the fattening barn and raised primarily on “Mosa meal” a specially3

formulated fattening ration containing  77% corn and rye grain, 10.5% wheat and rice bran, 9%4

soybean oil meal and 3.5% mineral supplement. At all ages, routine veterinary vaccinations5

and health checks were observed.6

7

Extractions of genomic DNA: Following the method of Sambrook et al. (1989) and described8

in detail elsewhere (Malau-Aduli et al. 2003), genomic DNA was extracted and prepared from9

blood leucocytes and sperm.10

11

Polymerase chain reaction (PCR): PCR pre-mix (13 µl) that comprised of: 10.55 µl of12

distilled water, 1.04 µl of 2.5 mM dNTP  Mixture (Takara, Shiga, Japan), 1.3 µl of 10 x buffer13

containing 15 mM MgCl2 and 0.11 µl of 25 mM of MgCl 2 was prepared. A primer (12.5 pmol/14

µl) of microsatellite DNA markers each of which was labelled with one of three fluorescent dyes15

FAM, HEX and TET supplied by the Shirakawa Institute of Animal Genetics, Fukushima, Japan,16

based on the bovine genetic map at the U.S. Meat Animal Research Centre (Kappes et al.,17

1997; http://sol.marc.usda.gov) was added to the PCR pre -mix. Genomic DNA (1 µl) (conc of18

20ng/µl) was added followed by 0.5 µl of Taq polymerase enzyme (conc of 0.75 units/µl)19

containing 50% glycerol (Takara, Japan). The PCR plates were hotplate -sealed and subjected20

to PCR in a DNA thermal cycler. The annealing temperature settings were: 50ºC, 55º C and21

60ºC.22

23

Genotyping: Prior to genotyping, the PCR products were mixed with markers which could be24

genotyped simultaneously in combinations of 4 µl of HEX, 1 µl of FAM and 1 µl of TET for25

multiplex genotyping. Then 0.8 µl of the mixed PCR products was added to 4.5 µl of DNA size26

http://sol.marc.usda.gov
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marker, centrifuged for 1 min at 1000 rpm and denatured using the PCR machine at a1

denaturing temperature of 94ºC for 9 mins. The denatured products were subjected to2

electrophoresis and genotyping in an automated ABI 377 DNA Se quencer. The number of3

informative microsatellite DNA markers utilized for the genotyping in each family is portrayed in4

Table 2.5

6

Traits analyzed: Offspring of the five sires born between 1997 and 2002 were evaluated for7

the following body shape and confo rmation measurements at weaning (5 months of age):8

withers height, hip height, hip width, body length, chest width, chest depth, shoulder width,9

lumbar width, thurl width, pin bone width, rump length, cannon circumference, chest girth,10

abdominal width and abdominal girth.11

12

QTL analysis: We adopted the methods of Knott et al. (1996), Haley and Knott (1992) and de13

Koning et al. (1998, 2001) for the detection and mapping of QTL in half -sib populations using14

least squares simple regression. We used the QTL Express computer program with a web-based15

user interface (http://qtl.cap.ed.ac.uk/) developed by Seaton et al. (2002) and based on the16

methods of the researchers mentioned above for the QTL analysis. The half -sib model of QTL17

Express run within and across sires, implemented the analysis in a two-step procedure: Firstly,18

microsatellite DNA marker data on progeny and their common parent (sire) were combined in a19

multi-point approach to calculate the probabilities of inheriting allele 1 or 2 from the sire at speci fic20

chromosomal intervals. These probabilities were combined into coefficients with values between21

0.0 and 1.0. Secondly, the phenotypic data on progeny were regressed on these probability22

coefficients in a within-common-parent regression analysis. A linear model containing the fixed23

effects of sire, sex, parity and season of birth as well as age as a covariate, was fitted to the24

coefficients and phenotypic data. Appropriate F -statistic thresholds for a P<0.05 chromosome-wise25

type 1 error rate were generated by permutation test of 10,000 iterations as described by26

http://qtl.cap.ed.ac.uk/
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Churchill and Doerge (1994), Doerge and Churchill (1996) (and applied to other half -sib studies1

by Spelman et al. 1996 and Vilkki et al.1997). In determining significant thresholds, the QTL2

Express software (Seaton et al. 2002) computed both the F-statistics and the F-threshold at3

P<0.05 chromosome-wise level. QTL were classified as significant when the F -statistic exceeded4

the F-threshold indicating a marker-trait association.5

6

RESULTS7

The means and standard deviations of body conformation measurements at weaning in the five8

Japanese Black families are shown in Table 1. It was evident that in all families, almost all of9

the body conformation measurements within traits were similar. The only clearly  visible sign of10

significant differences between families was in chest girth (CHESTGTH) measurements in11

which Families 1 and 2 (125.9 and 127.2 cm respectively) were higher than in Families 3, 4 and12

5 (121.7, 123.4 and 120.2 cm respectively). Portrayed in Table 2 are the microsatellite DNA13

markers and their relative positions on the BTA1 map that were utilized in genotyping the sires14

and half-sib progeny. The table shows that 18, 23, 11, 19 and 17 markers were informative for15

families 1, 2, 3, 4 and 5 respectively.16

The estimates of allele substitution of sire QTL effects and locations obtained at a peak of F -17

statistics and thresholds of chromosome -wide 5% significant levels for body shape and18

conformation traits in the five Japanese Black families are shown  in Table 3, while the plot of F -19

statistics in groups of 5 body conformation measurements is shown in Figure 1. A significant20

QTL for chest width (CHESTWD) at 91cM was detected in Family 3.21

22

DISCUSSION23

Animal improvement has been achieved by selection bas ed on either phenotype or predicted24

additive genetic merit of superior animals for production traits. Molecular biology techniques25

allow the identification of genetic variation at specific loci and the association between QTL and26
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production traits. The final goal is to use marker assisted selection to improve the genetic gain1

achieved by selection as a result of higher accuracy on the estimation of an animal’s genetic2

value (Tambasco et al. 2003). Microsatellites are referred to be the best genome markers a nd3

useful ones can be included in marker -assisted selection programmes to increase the rate of4

genetic progress (Georges et al. 1993). Napolitano et al. (1996) reported the localization of5

three microsatellites IDVGA-2, IDVGA-3 and IDVGA-46 on bovine chromosomes 2, 11 and 196

respectively, and their association with beef performance traits in F 1 Piemontese x Chianina7

crossbred cows. Of the three microsatellites, IDVGA -46 was reported to be the best marker for8

most beef conformation traits in this crossbred p opulation, and that animals homozygous for9

allele 205 gave the best results in terms of linkage with segregating QTL for beef conformation10

(Napolitano et al. 2001). Their study examined only seven body conformation measurements –11

Withers height, body length, chest width, chest depth, chest girth, rump length and pelvis width.12

In our present study, we examined 15 body conformation measurements and detected a13

significant QTL for chest width located at 91 cM.  The implication is that the microsatellite14

markers BMS119 and BMS4019 flanking this interval can be used in marker -assisted selection15

to introduce or retain the beneficial QTL allele. The phenomenon of genetic linkage means that16

each marker can be used to follow the inheritance of a section of the linked chromosome.17

However, markers have to be very closely linked to the causative mutation in the trait gene if18

they are to remain associated with specific QTL alleles through several generations of selection19

and therefore be useful in practical breeding progra mmes. If a genetic marker and a trait are20

significantly linked as portrayed in our study, there is a tendency for such associations to be21

maintained at a population level. This phenomenon of linkage disequilibrium could be exploited22

to locate the trait genes using single nucleotide polymorphisms (SNPs), that is where two DNA23

sequences differ by a single base. On -going work in our laboratory to confirm or dispute the24

presence of significant QTL for body conformation and growth on BTA2 and BTA5 are still in25
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progress. It is our goal to utilize positional cloning using the candidate gene approach in the1

future to identify the underlying mutation linked to the detected QTL in this study.2

3

There were significant differences between families in chest girth (CHESTG TH) measurements4

in which Families 1 and 2 were higher than in Families 3, 4 and 5. This was not entirely5

surprising because Sires 1 and 2 had been selected for average daily gain (daily gain line)6

while Sires 3, 4 and 5 belonged to the beef marbling score  (BMS) line. Chest girth is an7

important body conformation measurement that has been reported in Japanese Black cattle.8

For instance, Mukai et al. (1995) studied the genetic relationships between body9

measurements, growth and field carcass performance trai ts and reported highly significant and10

positive genetic correlations between chest girth and carcass weight at the beginning, middle11

and end of performance testing of 0.64, 0.77 and 0.79 respectively. They concluded that it was12

possible to improve total merit of the carcass by introducing chest girth into performance testing13

of Japanese Black cattle. Other studies (Oyama et al. 1996; Kitamura et al. 1999) on genetic14

relationships among recorded body measurement traits, reproductive traits of breeding female s15

and carcass traits in Japanese Black cattle buttress the finding of Mukai et al. (1995) that there16

is an unfavourable or low correlation between chest girth and beef marbling score ( -0.07, 0.2817

and 0.21 at the beginning, middle and end of performance tes ting respectively). It is this low18

correlation that has been observed in this present study with the BMS line families having lower19

chest girth measurements than the daily gain line families. Other body conformation20

measurements like chest depth, thurl wid th and withers height were also found to be genetically21

correlated with field carcass weight ranging from 0.64 to 0.90 (Mukai et al. 1995), indicating22

that body conformation measurements can be valuable in selection for meat quality as well.23

Unpublished data from our group portray a significant and positive relationship between body24

conformation measurements and average daily gain to weaning and yearling age. Thus, the25

identification of a significant QTL for chest width in the present study holds hope for t he26
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utilization of markers closely linked to this trait for the implementation of marker -assisted1

selection for growth and carcass traits. In conclusion, the presence of a QTL on BTA1 located2

at 91cM between the markers BMS119 and BMS4019 significantly segr egating for chest width3

in Japanese Black cattle has been demonstrated in this study.  The detection of this significant4

QTL boosts the prospect of implementing marker -assisted selection for body conformation5

traits in Japanese Black beef cattle. Furthermore, this finding could pave the way for positional6

cloning using candidate genes in Japanese Black cattle such as growth hormone secretagogue -7

receptor, glycogenin or Pit-1. Subsequent prospects of isolating and characterising the genes8

using single nucleotide polymorphisms (SNPs) appear promising.9

10
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Table 1. Means ± S.D. of the body conformation measurements (cm) in the progeny of 5 Japanese Black sires at weaning.

Trait/Acronym   Family 1 Family 2 Family 3 Family 4 Family 5
WHT
Withers height

  99.5 ± 3.9 100.9 ± 3.5   98.5 ± 3.5   97.5 ± 2.7   97.6 ± 4.0

HIPHT
Hip height

103.1 ± 3.9 103.0 ± 3.0 101.0 ± 3.8 101.1 ± 3.8   98.7 ± 4.1

BL
Body length

106.5 ± 5.9 108.1 ± 5.0 103.2 ± 7.5 103.2 ± 4.5 101.9 ± 5.3

CHESTWD
Chest width

  28.1 ± 2.2   29.5 ± 2.3   27.7 ± 2.6   26.9 ± 2.2   27.2 ± 1.6

SHOUWD
Shoulder width

  31.2 ± 2.6   31.4 ± 2.1   28.4 ± 2.2   28.6 ± 2.0   27.4 ± 2.3

CHESTDP
Chest depth

  46.3 ± 1.8 46.6 ± 1.5   44.7 ± 1.8   45.5 ± 1.4   43.8 ± 2.2

HIPWDT
Hip width

  28.3 ± 1.8   29.0 ± 1.3   26.3 ± 2.1   28.1 ± 1.4   27.4 ± 1.5

LUMBARWD   Lumbar width   22.7 ± 1.5   23.1 ± 1.0   21.1 ± 2.1   22.6 ± 1.3   22.0 ± 1.3
THURLWD
Thurl width

 33.0 ± 2.2   33.6 ± 1.7   31.0 ± 1.6   31.3 ± 1.9   31.0 ± 2.0

PINBWD
Pin bone width

  20.5 ± 2.1   20.6 ± 1.3   18.6 ± 1.9   18.9 ± 1.0   18.1 ± 1.4

RUMPL
Rump length

  35.2 ± 2.1   35.8 ± 1.8   34.6 ± 1.7   35.3 ± 1.4   34.4 ± 1.7

CANNONCIR
Cannon circumference

  14.4 ± 0.9   14.7 ± 0.9   13.8 ± 1.0   13.5 ± 0.8   13.4 ± 0.9
CHESTGTH
Chest girth

125.9 ± 5.2a 127.2 ± 4.3a 121.7 ± 4.9b 123.4 ± 3.8b 120.2 ± 5.9b

ABDWD
Abdominal width

  37.0 ± 2.5   37.7 ± 2.5   35.4 ± 2.9   36.5 ± 2.2   35.5 ± 1.9

ABDGTH
Abdominal girth

144.0 ± 7.0 143.5 ± 6.1 138.5 ± 7.4 140.6 ± 6.0 138.0 ± 7.2

No. of progeny   40   36   19 17 20

Means in rows bearing different superscripts significantly differ between families.
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Table 2. Microsatellite DNA markers used for genotyping in the 5 Japanese Black cattle families and their relative positions on the map (cM)*

Family Marker Position Family Marker Position Family Marker Position Family Marker Position Family Marker Position
1 BMS1928 6.9 2 BM8139 8.2 3 BMS2321 14.0 4 BMS1928 6.9 5 BM8139 8.2
1 BMS711 21.3 2 TGLA57 46.2 3 ILSTS104 28.2 4 BMS711 21.3 5 BMS2321 14.0
1 ILSTS104 28.2 2 BMS4012 51.0 3 BMS4002 47.9 4 TGLA57 46.2 5 BMS711 21.3
1 MB055 32.0 2 BMS4013 61.3 3 BMS4012 51.0 4 BMS4035 55.0 5 BMS2725 41.8
1 TGLA57 46.2 2 BMS4001 64.7 3 BMS4035 55.0 4 BMS4029 61.3 5 BMS4002 47.9
1 BMS4012 51.0 2 BM9019 67.5 3 RME36 63.0 4 BM9019 67.5 5 BMS4012 51.0
1 BMS4035 55.0 2 BL26_1 77.7 3 BM8246 76.2 4 BMS4008 71.7 5 RM326 55.6
1 RM326 55.6 2 BMS4006 79.4 3 BMS119 88.6 4 BMS4048 76.2 5 BMS4030 59.2
1 RME36 63.0 2 URB038 80.6 3 BMS4019 98.8 4 URB038 80.6 5 BMS4029 61.3
1 INRA049 67.5 2 MCM130 83.3 3 UWCA46 113.8 4 BMS4010 87.1 5 INRA119 68.7
1 BM65O6 69.2 2 BMS4010 87.1 3 BMS599 125.8 4 BM864 88.2 5 BMS4008 71.7
1 URB038 80.6 2 BM864 88.2 4 BMS1170 92.8 5 BM8246 76.2
1 BMS4052 94.6 2 BMS1170 92.8 4 BMS4019 98.8 5 BMS4006 79.4
1 BMS4028 95.6 2 BMS4028 95.6 4 BMS4011 102.1 5 BMS4010 87.1
1 BMS4040 98.8 2 BMS4019 98.8 4 BMS4049 114.3 5 BMS4019 98.8
1 BMS1789 100.9 2 BMS1789 100.9 4 BMS918 118.1 5 BMS1757 108.3
1 BMS4044 128.7 2 BMS1939 104.1 4 BMS599 125.8 5 BMS4044 128.7
1 BMS2263 135.1 2 BMS4039 108.3 4 BMS4044 128.7

2 BM3205 113.8 4 BMS922 135.5
2 BMS599 125.8
2 BMS4043 128.7
2 BMS2263 135.1
2 BMS4014 135.5

Total 18 23 11 19 17
*Based on the bovine genetic map at the U.S. Meat Animal Research Centre (Kappes et al., 1997; http://sol.marc.usda.gov)
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Table 3. Allele substitution/Sire QTL effects ± standard errors (ß ± S.E.) and estimated QTL locations (cM) for body shape and conformation
traits in Japanese Black cattle families.

Trait    Family 1    Family 2    Family 3    Family 4    Family 5
WHT ß ± S.E.

QTL (cM)
-3.5 ± 1.7
 77cM (F=4.5/9.0) ns

 2.8 ± 1.3
 18cM (F=4.3/9.0) ns

 5.5 ± 3.6
 97cM (F=2.3/12.8) ns

  2.5 ± 1.7
  78cM (F=2.1/44.6) ns

-4.6 ± 1.7
 58cM (F=7.5/15.1) ns

HIPHT ß ± S.E.
QTL (cM)

-2.5 ± 1.6
 14cM (F=2.5/9.4) ns

 3.0 ± 1.1
 18cM (F=7.0/9.0) ns

-2.9 ± 2.4
 53cM (F=1.4/11.9) ns

-4.2 ± 1.7
  16cM (F=6.1/76.0) ns

 3.2 ± 1.7
 0cM (F=3.7/13.0) ns

BL ß ± S.E.
QTL (cM)

    3.9 ± 2.4
    122cM (F=2.6/8.9) ns

    4.7 ± 2.0
    18cM (F=5.7/9.2) ns

-7.1 ± 4.3
 53cM (F=2.8/12.9) ns

-10.8 ± 6.4
   132cM (F=2.8/87.5) ns

-5.4 ± 2.8
 71cM (F=3.7/16.2) ns

CHESTWD ß ± S.E.
QTL (cM)

-1.2 ± 0.8
 109cM (F=2.0/9.3) ns

-2.0 ± 0.9
 92cM (F=5.0/9.3) ns

5.3±1.5
91cM (F=12.0/10.05) sig

-7.9 ± 2.9
 102cM (F=7.2/93.9) ns

-1.1 ± 0.9
 5cM (F=1.2/14.8) ns

SHOUWD ß ± S.E.
QTL (cM)

-2.0 ± 1.1
 71cM (F=3.0/8.9) ns

     1.4 ± 0.9
     25cM (F=2.5/9.7) ns

     2.5 ± 1.6
     95cM (F=2.4/12.4) ns

-3.7 ± 3.1
 0cM (F=1.4/95.4) ns

-2.0 ± 1.1
 72cM (F=3.1/13.8) ns

CHESTDP ß ± S.E.
QTL (cM)

-2.1 ± 0.9
 81cM (F=5.3/9.4) ns

     1.4 ± 0.6
     18cM (F=6.0/10.2) ns

-1.5 ± 0.9
 52cM (F=2.4/11.5) ns

-1.5 ± 1.6
 0cM (F=0.8/74.5) ns

  3.4 ± 1.7
     120cM (F=3.9/13.3) ns

HIPWDT ß ± S.E.
QTL (cM)

     1.2 ± 1.0
     36cM (F=1.6/9.8) ns

     1.1 ± 0.5
     18cM (F=5.7/10.3) ns

     1.8 ± 0.8
     10cM (F=5.5/13.2) ns

-2.0 ± 1.1
 16cM (F=3.5/39.9) ns

-0.9 ± 0.6
 72cM (F=2.1/10.8) ns

LUMBARWD ß ± S.E.
QTL (cM)

     0.8 ± 0.7
     38cM (F=1.4/8.9) ns

-0.6 ± 0.4
 48cM (F=2.1/9.2) ns

     1.8 ± 0.7
     11cM (F=6.8/12.3) ns

     0.4 ± 0.5
     42cM (F=0.9/49.5) ns

-0.8 ± 0.7
 72cM (F=1.6/14.6) ns

THURLWD ß ± S.E.
QTL (cM)

-1.4 ± 0.9
 42cM (F=2.7/9.1) ns

     1.9 ± 0.7
     18cM(F=7.3/9.3) ns

     1.2 ± 1.2
     95cM (F=1.1/12.2)  ns

     1.0 ± 0.8
     42cM (F=1.5/66.9)  ns

-0.8 ± 0.7
 71cM (F=1.3/15.0)  ns

PINBWD ß ± S.E.
QTL (cM)

     1.2 ± 1.1
     91cM (F=1.3/9.2) ns

     0.8 ± 0.5
     18cM (F=2.3/9.2) ns

     2.6 ± 0.9
     10cM (F=8.3/11.4) ns

     1.5 ± 0.4
     42cM (F=13.7/52.3) ns

-1.9 ± 1.0
 101cM (F=3.8/14.9) ns

RUMPL ß ± S.E.
QTL (cM)

-2.2 ± 1.0
 11cM (F=4.6/8.9) ns

     1.0 ± 0.6
     101cM (F=3.5/9.9) ns

-1.7 ± 0.5
 53cM (F=9.5/10.9) ns,

-1.8 ± 1.1
 13cM (F=2.7/32.5) ns

-1.4 ± 0.6
 72cM (F=5.0/12.4) ns

CANNONCIR ß ± S.E.
QTL (cM)

-0.4 ± 0.3
42cM (F=2.1/9.4) ns

-0.5 ± 0.2
 80cM (F=4.0/9.5) ns

     1.7 ± 0.7
     98cM (F=6.9/11.5) ns

     0.4 ± 0.4
     42cM (F=1.2/57.0) ns

-0.2 ± 0.3
 53cM (F=0.4/14.3) ns

CHESTGTH ß ± S.E.
QTL (cM)

-2.8 ± 2.3
 14cM (F=1.5/9.1) ns

     3.8 ± 1.7
     24cM (F=4.9/9.9) ns

-4.2 ± 3.6
 56cM (F=1.4/12.9) ns

-4.6 ± 4.7
 99cM (F=1.0/69.6) ns

-3.9 ± 3.0
 71cM (F=1.8/14.4) ns

ABDWD ß ± S.E.
QTL (cM)

-1.9 ± 1.3
 70cM (F=2.2/8.9) ns

     2.2 ± 1.0
     113cM (F=4.8/10.2) ns

     2.8 ± 2.4
     97cM (F=1.4/13.6) ns

-5.2 ± 1.4
118cM (F=14.0/60.2) ns

-1.3 ± 1.0
 3cM (F=1.5/15.9) ns

ABDGTH ß ± S.E.
QTL (cM)

-6.3 ± 3.4
 77cM (F=3.3/9.2) ns

     6.0 ± 2.5
     18cM (F=6.0/9.5) ns

-5.1 ± 3.5
 42cM (F=2.1/12.3) ns

-13.2 ± 6.3
 115cM (F=4.3/97.6) ns

-2.4 ± 3.8
 56cM (F=0.4/15.5) ns

Figures in brackets are F-statistics/F-threshold values at P<0.05 chromosome-wide level, ns=not significant

http://sol.marc.usda.gov
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Fig. 1: Map of F-statistics depicting QTL positions of body conformation traits in Japanese Black cattle. A QTL for CHESTWD at 91cM reached chromosome-wide significance
(P<0.05) in Family 3 only (threshold in bold line)
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