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ABSTRACT

 

The detection and mapping of segregating quantitative trait loci (QTL) that influence withers height, hip height, hip width,

body length, chest width, chest depth, shoulder width, lumbar width, thurl width, pin bone width, rump length, cannon

circumference, chest girth, abdominal width and abdominal girth at weaning was conducted on chromosomal regions of

bovine chromosome one. The QTL analysis was performed by genotyping half-sib progeny of five Japanese Black sires using

microsatellite DNA markers. Probability coefficients of inheriting allele 1 or 2 from the sire at specific chromosomal loca-

tions were computed. The phenotypic data of progeny were regressed on these probability coefficients in a within-

common-parent regression analysis using a linear model that included fixed effects of sex, parity and season of birth, as

well as age as a covariate. 

 

F

 

-statistics were calculated every 1 cM on a linkage map. Permutation tests of 10 000 iterations

were conducted to obtain chromosome-wide significance thresholds. A significant QTL for chest width was detected at

91 cM in family 3. The detection of this QTL boosts the prospects of implementing marker-assisted selection for body

conformation traits in Japanese Black beef cattle.
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INTRODUCTION

 

Body shape and conformation measurements are use-
ful selection traits in beef cattle because of their posi-
tive correlation with liveweight changes and growth
(Varade & Ali 2001). In dairy cows, body size measure-
ments are very useful in estimating body weight and
productivity as demonstrated by the reports of Hein-
richs 

 

et al

 

. (1992), Enevoldsen and Kristensen (1997),
Kertz 

 

et al

 

. (1997) and Koenen and Groen (1998). In
beef cattle, similar research has been conducted and
reported by Gilbert 

 

et al

 

. (1993), Vargas 

 

et al

 

. (2000)
and Magnabosco 

 

et al

 

. (2002), but such information in
Japanese Black cattle is scanty and limited to perfor-
mance test and field carcass traits only (Mukai 

 

et al

 

.
1995, 2000; Karnuah 

 

et al

 

. 2001; Smith 

 

et al

 

. 2001;
Sosa 

 

et al

 

. 2002). There is an abundance of published

work on breed, age and sex differences in body mea-
surements in cattle (Cestnik 2001; Rodriguez 

 

et al

 

.
2001; Roy 

 

et al

 

. 2001; Tozser 

 

et al

 

. 2001; Afolayan 

 

et al

 

.
2002a,b; Maiwashe 

 

et al

 

. 2002). However, to our
knowledge, apart from the work of Napolitano 

 

et al

 

.
(2001) with Italian Chianina 

 

¢

 

 Piemontese crossbred
cattle and Ashwell 

 

et al

 

. (1998) with US Holsteins,
there is no published information on the detection of
quantitative trait loci (QTL) for body measurements
related to shape and conformation traits in any other
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cattle breed. This justifies the need for the present
study by our research into Japanese Black beef cattle.

The mapping of QTL is the first step towards iden-
tifying the genes and causal polymorphisms responsi-
ble for traits of importance in agriculture (Seaton 

 

et al

 

.
2002). The detection of QTL influencing body shape
and conformation traits would be useful in the
implementation of marker-assisted selection in
Japanese Black beef cattle. Comparative mammalian
genomics reveal that bovine chromosome 1 (BTA1) is
equivalent to the human chromosome 3 (http://
bos.cvm.tamu.edu/htmls/rhbov1.html), which con-
tains growth-regulating genes such as the growth hor-
mone secretagogue receptor also known as 

 

ghrelin

 

(Shuto 

 

et al

 

. 2002; Hosoda 

 

et al

 

. 2003), 

 

glycogenin

 

 (Mu

 

et al

 

. 2001) and 

 

Pit-1

 

 (Ohta 

 

et al

 

. 1992; Hendriks-
Stegeman 

 

et al

 

. 2001). It is therefore justifiable to
focus on BTA 1 in a scan for body conformation and
growth-related QTL in Japanese Black cattle. Prelimi-
nary genome-wide scanning in our laboratory using
only 30 animals (unpublished data) had suggested 

 

Bos
taurus

 

 autosomes (BTA) 1, 2 and 5 as chromosomes
containing segregating QTL that significantly influ-
enced the growth traits in Japanese Black cattle.
Therefore, in this confirmatory study with a larger
data set of genotyped animals, we report for the first
time, the association between microsatellite DNA
markers and QTL on BTA1 influencing 15 body shape
and conformation measurements at weaning in
Japanese Black cattle.

 

MATERIALS AND METHODS

Animals and management

 

One hundred and thirty-two paternal half-sib prog-
eny of five Japanese Black sires produced by artificial
insemination at the Department of Livestock and
Grassland Science, National Agricultural Research
Center for Western Region, Oda, Shimane Prefecture,
Japan, were genotyped. Sires 1 and 2 belonged to the
line selected for increasing average daily gain and
sires 3–5 belonged to the line selected for high beef
marbling score. Routine management of the animals
involved recording of weight at birth and monthly
thereafter, until 18 months of age. Body shape and
conformation measurements of withers height, hip
height, hip width, body length, chest width, chest
depth, shoulder width, lumbar width, thurl width,
pin bone width, rump length, cannon circumference,
chest girth, abdominal width and abdominal girth

were also taken monthly. Calves were allowed to
suckle their dams in addition to being fed 1.5 kg/day
per head of concentrate and 1 kg/day per head of
corn silage until 5 months of age when they were
weaned. After weaning, they were moved to the
grower’s barn and continued to be raised on concen-
trates (37% corn grain, 39% rice bran, 17% soybean
meal, 7% minerals) and corn silage until 10 months
of age. Between 10 and 18 months of age, they were
moved to another barn and fed intensively. The pro-
portions of the ration on a dry matter basis were 61%
corn grain, 34% soybean and corn glutein meal, 2%
bran and 3% minerals. For every 20 kg bag, this
ration provided an estimated 21% crude protein,
3.5% crude fat, 5% crude fiber, 7% ash, 0.6% cal-
cium, 0.40% phosphate and a total digestible nutri-
ents of 77%. From 18 to 24 months of age, breeding
females were returned to the calving barn and the
steers were moved to the fattening barn where they
were raised primarily on “Mosa meal” a specially for-
mulated fattening ration containing 77% corn and
rye grain, 10.5% wheat and rice bran, 9% soybean
oil meal and 3.5% mineral supplement. At all ages,
routine veterinary vaccinations and health checks
were performed.

 

Extraction of genomic DNA

 

Following the method of Sambrook 

 

et al

 

. (1989) and
described in detail elsewhere (Malau-Aduli 

 

et al

 

.
2003), genomic DNA was extracted and prepared from
blood leukocytes and sperm.

 

Polymerase chain reaction (PCR)

 

The PCR premix (13 

 

m

 

L) comprised: 10.55 

 

m

 

L of dis-
tilled water, 1.04 

 

m

 

L of 2.5 mmol/L dNTP mixture
(Takara, Shiga, Japan), 1.3 

 

m

 

L of 10 

 

¢ 

 

buffer contain-
ing 15 mmol/L MgCl

 

2

 

 and 0.11 

 

m

 

L of 25 mmol/L of
MgCl

 

2

 

. A primer (12.5 pmol/

 

m

 

L) of the microsatellite
DNA markers, each of which was labeled with one of
three different fluorescent labels, FAM, HEX and TET
(supplied by the Shirakawa Institute of Animal
Genetics, Fukushima, Japan, and based on the bovine
genetic map at the US Meat Animal Research Center
(Kappes 

 

et al

 

. 1997; http://sol.marc.usda.gov)) was
added to the PCR premix. Genomic DNA (1 

 

m

 

L;
20 ng/

 

m

 

L) was added, followed by 0.5 

 

m

 

L of Taq poly-
merase enzyme (0.75 units/

 

m

 

L) containing 50% glyc-
erol (Takara). The PCR plates were hotplate-sealed
and subjected to PCR in a DNA thermal cycler. The
annealing temperature settings were 50

 

∞

 

C, 55

 

∞

 

C and
60

 

∞

 

C.

http://
http://sol.marc.usda.gov
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Genotyping

 

Prior to genotyping, the PCR products were mixed
with the markers, which could be genotyped simulta-
neously in combinations of 4 

 

m

 

L of HEX, 1 

 

m

 

L of FAM
and 1 

 

m

 

L of TET, for multiplex genotyping. Next,
0.8 

 

m

 

L of the mixed PCR products was added to 4.5 

 

m

 

L
of DNA size marker, centrifuged for 1 min at 120 

 

g

 

 and
denatured using the PCR machine at a denaturing
temperature of 94

 

∞

 

C for 9 min. The denatured prod-
ucts were subjected to electrophoresis and genotyping
in an automated ABI 377 DNA Sequencer. The num-
ber of informative microsatellite DNA markers used
for the genotyping in each family is shown in Table 1.

 

Traits analyzed

 

Offspring of the five sires born between 1997 and 2002
were evaluated (SAS Institute 2002) for the following
body shape and conformation measurements at wean-
ing (5 months of age): withers height, hip height, hip
width, body length, chest width, chest depth, shoulder
width, lumbar width, thurl width, pin bone width,
rump length, cannon circumference, chest girth,
abdominal width and abdominal girth.

 

QTL analysis

 

We adopted the methods of Haley and Knott (1992),
Knott 

 

et al

 

. (1996) and de Koning 

 

et al

 

. (1998, 2001)
for the detection and mapping of QTL in half-sib pop-
ulations using least squares simple regression. We used
the 

 

QTL Express

 

 computer program with a web-based
user interface (http://qtl.cap.ed.ac.uk/) developed by
Seaton 

 

et al

 

. (2002) and based on the methods of the
previously mentioned researchers for the QTL analy-
sis. The half-sib model of 

 

QTL Express

 

 run within and
across sires, implemented the analysis in a two-step
procedure. First, microsatellite DNA marker data on
progeny and their common parent (sire) were com-
bined in a multipoint approach to calculate the prob-
abilities of inheriting allele 1 or 2 from the sire at
specific chromosomal intervals. These probabilities
were combined into coefficients with values between
0.0 and 1.0. Second, the phenotypic data on progeny
were regressed on these probability coefficients in a
within-common-parent regression analysis. A linear
model containing the fixed effects of sire, sex, parity
and season of birth as well as age as a covariate, was
fitted to the coefficients and phenotypic data. Appro-
priate F-statistic thresholds for a 

 

P

 

 

 

<

 

 0.05 chromo-
some-wise type 1 error rate were generated by
permutation test of 10 000 iterations as described by

Churchill and Doerge (1994), Doerge and Churchill
(1996) (and applied to other half-sib studies by
Spelman 

 

et al

 

. 1996 and Vilkki 

 

et al

 

. 1997). In deter-
mining significant thresholds, the 

 

QTL Express

 

 software
(Seaton 

 

et al

 

. 2002) computed both the 

 

F

 

-statistic and
the 

 

F

 

-threshold at 

 

P

 

 

 

<

 

 0.05 chromosome-wise level.
QTL were classified as significant when the 

 

F

 

-statistic
exceeded the 

 

F

 

-threshold, indicating a marker-trait
association.

 

RESULTS

 

The means and standard deviations of the body con-
formation measurements at weaning in the five
Japanese Black families are shown in Table 2. It was
evident that in all families, almost all of the body con-
formation measurements within traits were similar.
The only clearly visible sign of significant differences
between families was in the chest girth (CHESTGTH)
measurements, which were higher in families 1 and 2
(125.9 and 127.2 cm, respectively) than in families 3–
5 (121.7, 123.4 and 120.2 cm, respectively). Table 1
shows the microsatellite DNA markers that were uti-
lized in genotyping the sires and half-sib progeny and
their relative positions on the BTA1 map; 18, 23, 11,
19 and 17 markers were informative for families 1, 2,
3, 4 and 5, respectively.

The estimates of allele substitution of sire QTL
effects and locations obtained at the peak of the 

 

F

 

-sta-
tistics and thresholds of chromosome-wide 5% signif-
icant levels for body shape and conformation traits in
the five Japanese Black families are shown in Table 3,
and the plot of the 

 

F

 

-statistics in groups of five body
conformation measurements is shown in Fig. 1. A sig-
nificant QTL for chest width (CHESTWD) at 91 cM
was detected in family 3.

 

DISCUSSION

 

Animal improvement has been achieved by selection
based on either phenotype or the predicted additive
genetic merit of superior animals for production traits.
Molecular biology techniques allow the identification
of genetic variation at specific loci and the association
between QTL and production traits. The final goal is to
use marker-assisted selection to improve the genetic
gain achieved by selection as a result of higher accu-
racy on the estimation of an animal’s genetic value
(Tambasco 

 

et al

 

. 2003). Microsatellites are thought
to be the best genome markers and useful ones can
be included in marker-assisted selection programs

http://qtl.cap.ed.ac.uk/
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to increase the rate of genetic progress (Georges et al.
1993). Napolitano et al. (1996) reported the localiza-
tion of three microsatellites, IDVGA-2, IDVGA-3 and
IDVGA-46, on bovine chromosomes 2, 11 and 19,

respectively, and their association with beef per-
formance traits in F1 Piemontese Chianina  cross-
bred cows. Of the three microsatellites, IDVGA-46
was reported to be the best marker for most

Table 2 Body conformation measurements at weaning (means ± SD; cm) of the progeny of the five Japanese Black sires

Trait Family 1 Family 2 Family 3 Family 4 Family 5

Withers height 99.5 ± 3.9 100.9 ± 3.5 98.5 ± 3.5 97.5 ± 2.7 97.6 ± 4.0
Hip height 103.1 ± 3.9 103.0 ± 3.0 101.0 ± 3.8 101.1 ± 3.8 98.7 ± 4.1
Body length 106.5 ± 5.9 108.1 ± 5.0 103.2 ± 7.5 103.2 ± 4.5 101.9 ± 5.3
Chest width 28.1 ± 2.2 29.5 ± 2.3 27.7 ± 2.6 26.9 ± 2.2 27.2 ± 1.6
Shoulder width 31.2 ± 2.6 31.4 ± 2.1 28.4 ± 2.2 28.6 ± 2.0 27.4 ± 2.3
Chest depth 46.3 ± 1.8 46.6 ± 1.5 44.7 ± 1.8 45.5 ± 1.4 43.8 ± 2.2
Hip width 28.3 ± 1.8 29.0 ± 1.3 26.3 ± 2.1 28.1 ± 1.4 27.4 ± 1.5
Lumbar width 22.7 ± 1.5 23.1 ± 1.0 21.1 ± 2.1 22.6 ± 1.3 22.0 ± 1.3
Thurl width 33.0 ± 2.2 33.6 ± 1.7 31.0 ± 1.6 31.3 ± 1.9 31.0 ± 2.0
Pin bone width 20.5 ± 2.1 20.6 ± 1.3 18.6 ± 1.9 18.9 ± 1.0 18.1 ± 1.4
Rump length 35.2 ± 2.1 35.8 ± 1.8 34.6 ± 1.7 35.3 ± 1.4 34.4 ± 1.7
Cannon circumference 14.4 ± 0.9 14.7 ± 0.9 13.8 ± 1.0 13.5 ± 0.8 13.4 ± 0.9
Chest girth 125.9 ± 5.2a 127.2 ± 4.3a 121.7 ± 4.9b 123.4 ± 3.8b 120.2 ± 5.9b

Abdominal width 37.0 ± 2.5 37.7 ± 2.5 35.4 ± 2.9 36.5 ± 2.2 35.5 ± 1.9
Abdominal girth 144.0 ± 7.0 143.5 ± 6.1 138.5 ± 7.4 140.6.0 ± 6 138.0 ± 7.2
No. of progeny 40 36 19 17 20

Means in rows bearing different superscripts significantly differ between families.

Fig. 1 Map of the F-statistics depicting the positions of quantitative trait loci (QTL) of body conformation traits in Japanese Black 
cattle. A QTL for CHESTWD at 91 cM reached chromosome-wide significance (P < 0.05) in family 3 only (threshold in bold).

WHT HIPHT BL CHESTWD SHOUWD CHESTDP HIPWD LUMBWD THURLWD PINBWD RUMPL CANCIR CHESTGT ABDWD ABDGT

(Family 1)

(Family 2)

(Family 3)

(Family 4)
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conformational traits in this crossbred population, and
that animals homozygous for allele 205 gave the best
results in terms of linkage with the segregating QTL for
beef conformation (Napolitano et al. 2001). Their
study examined only seven body conformation mea-
surements: withers height, body length, chest width,
chest depth, chest girth, rump length and pelvis width,
whereas we examined 15 measurements and detected
a significant QTL for CHESTWD located at 91 cM. The
implication is that the microsatellite markers BMS119
and BMS4019 flanking this interval can be used in
marker-assisted selection to introduce or retain the
beneficial QTL allele. The phenomenon of genetic
linkage means that each marker can be used to follow
the inheritance of a section of the linked chromosome.
However, markers have to be very closely linked to the
causative mutation in the trait gene if they are to
remain associated with specific QTL alleles through
several generations of selection and therefore be use-
ful in practical breeding programs. If a genetic marker
and a trait are significantly linked, as portrayed in our
study, there is a tendency for such associations to be
maintained at a population level. This phenomenon of
linkage disequilibrium could be exploited to locate the
trait genes using single nucleotide polymorphisms
(SNP), which is when two DNA sequences differ by a
single base. There is ongoing work in our laboratory to
confirm or dispute the presence of significant QTL for
body conformation and growth on BTA2 and BTA5. It
is our goal to utilize positional cloning using the can-
didate gene approach to identify the underlying muta-
tion linked to the QTL detected in the present study.

There were significant differences between families
in CHESTGTH measurements, for which families 1 and
2 were had higher results than families 3–5, which was
not entirely surprising because sires 1 and 2 had been
selected for average daily gain (daily gain line)
whereas sires 3–5 belonged to the beef marbling score
line. Chest girth is an important body conformation
measurement that has been reported in Japanese
Black cattle. Mukai et al. (1995) studied the genetic
relationships between body measurements, growth
and field carcass performance traits and reported
highly significant and positive genetic correlations
between CHESTGTH and carcass weight at the begin-
ning, middle and end of performance testing of 0.64,
0.77 and 0.79, respectively. They concluded that it was
possible to improve total merit of the carcass by intro-
ducing CHESTGTH into performance testing of Japa-
nese Black cattle. Other studies (Oyama et al. 1996;
Kitamura et al. 1999) on genetic relationships among

recorded body measurement traits, reproductive traits
of breeding females and carcass traits in Japanese
Black cattle buttress the finding of Mukai et al. (1995)
that there is an unfavorable or low correlation
between CHESTGTH and beef marbling score (-0.07,
0.28 and 0.21 at the beginning, middle and end of per-
formance testing, respectively). It is this low correla-
tion that was also observed in this present study with
the beef marbling score families having lower CHEST-
GTH measurements than the daily gain line families.
Other body conformation measurements, such as
chest depth, thurl width and withers height, were also
found to be genetically correlated with field carcass
weight, ranging from 0.64 to 0.90 (Mukai et al. 1995),
indicating that body conformation measurements can
be valuable in selection for meat quality as well.
Unpublished data from our group show a significant
and positive relationship between body conformation
measurements and average daily gain to weaning and
yearling age. Thus, the identification of a significant
QTL for CHESTWD in the present study gives hope for
the utilization of markers closely linked to this trait
for the implementation of marker-assisted selection
for growth and carcass traits.

In conclusion, the presence of a QTL on BTA1
located at 91 cM between the markers BMS119 and
BMS4019 significantly segregating for CHESTWD in
Japanese Black cattle has been demonstrated. The
detection of this significant QTL boosts the prospect of
implementing marker-assisted selection for body con-
formation traits in the breed. Furthermore, this find-
ing could pave the way for positional cloning using
candidate genes in Japanese Black cattle such as ghre-
lin, glycogenin or Pit-1. The prospect of subsequently
isolating and characterizing the genes using single
nucleotide polymorphisms (SNP) appears promising.
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